1
|
Yu Y, Liao Y, Tang D, Huang X. Discarded floral foam as a source for green preparation of sustainable adsorbent for quick and efficient removal of phenoxyacetic acid herbicides from waters. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137300. [PMID: 39862778 DOI: 10.1016/j.jhazmat.2025.137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Due to the high toxicity and increasing consumption, efficient removal of phenoxyacetic acid herbicides (PAAHs) from water is imperative. In current study, a new adsorbent was prepared by modifying porous carbon derived from disused floral foam with chitosan (CS) (ACFC). Density functional theory (DFT) calculation uncovered that the amino and hydroxyl groups in the introduced CS played a critical role in the efficient adsorption of ACFC towards PAAHs. Batch experiments were performed to study the adsorption behaviors and removal mechanism. Under the optimal adsorption conditions, the PAAHs residues in various environmental waters were efficiently removed within 20 min by the ACFC, the removal rates varied from 81.9 % to 93.8 %, which remarkably better than that achieved on unmodified carbon (32.5-56.5 %). The maximum adsorption capacities were in the range of 172-221 μg/g. In addition, the prepared adsorbent presented excellent preparation repeatability and acceptable reusability. In comparison with reported adsorbents, the ACFC displayed some merits such as low cost, green, short removal period and high removal rate. The current study not only supplies a cost-effective and sustainable adsorbent for the removal of PAAHs residues from waters, but also opens up a new route for the recycle utilization of disused floral foam.
Collapse
Affiliation(s)
- Yilin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China
| | - Yingmin Liao
- Department of Environmental Science & Engineering, Tan Kah Kee College, Zhangzhou 363105, China
| | - Dingliang Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaojia Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
2
|
Sun J, Garg S, Waite TD. Utilizing an Integrated Flow Cathode-Membrane Filtration System for Effective and Continuous Electrochemical Hydrodechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13131-13144. [PMID: 38986049 DOI: 10.1021/acs.est.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Pd-based electrodes are recognized to facilitate effective electrochemical hydrodechlorination (EHDC) as a result of their superior capacity for atomic hydrogen (H*) generation. However, challenges such as electrode stability, feasibility of treating complex matrices, and high cost associated with electrode synthesis hinder the application of Pd-based electrodes for EHDC. In this work, we investigated the feasibility of degrading 2,4-dichlorophenol (2,4-DCP) by EHDC employing Pd-loaded activated carbon particles, prepared via a simple wet-impregnation method, as a flow cathode (FC) suspension. Compared to other Pd-based EHDC studies, a much lower Pd loading (0.02-0.08 mg cm-2) was used. Because of the excellent mass transfer in the FC system, almost 100% 2,4-DCP was hydrodechlorinated to phenol within 1 h. The FC system also showed excellent performance in treating complex water matrices (including hardness ion-containing wastewater and various other chlorinated organics such as 2,4-dichlorobenzoic acid and trichloroacetic acid) with a relatively low energy consumption (0.26-1.56 kW h m-3 mg-1 of 2,4-DCP compared to 0.32-7.61 kW h m-3 mg-1 of 2,4-DCP reported by other studies). The FC synthesized here was stable over 36 h of continuous operation, indicating its potential suitability for real-world applications. Employing experimental investigations and mathematical modeling, we further show that hydrodechlorination of 2,4-DCP occurs via interaction with H*, with no role of direct electron transfer and/or HO•-mediated processes in the removal of 2,4-DCP.
Collapse
Affiliation(s)
- Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - Shikha Garg
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney 2052, NSW, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing 214206, Jiangsu Province, P. R. China
| |
Collapse
|
3
|
Chen Y, Tian L, Liu W, Mei Y, Xing QJ, Mu Y, Zheng LL, Fu Q, Zou JP, Wu D. Controllable Pyridine N-Oxidation-Nucleophilic Dechlorination Process for Enhanced Dechlorination of Chloropyridines: The Cooperation of HCO 4- and HO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4438-4449. [PMID: 38330552 DOI: 10.1021/acs.est.3c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.
Collapse
Affiliation(s)
- Ying Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Mei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qiu-Ju Xing
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yi Mu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ling-Ling Zheng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, P. R. China
| |
Collapse
|
4
|
Liu LY, Liu GS, Niu SM, Liu H, Cui MH, Wang AJ. Atomic hydrogen-mediated enhanced electrocatalytic hydrodehalogenation on Pd@MXene electrodes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132113. [PMID: 37487329 DOI: 10.1016/j.jhazmat.2023.132113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
In this study, a Pd@MXene catalyst was synthesized to enhance the electrocatalytic hydrodehalogenation (ECH) of emerging halogenated organic pollutants (HOPs) by improving the dispersibility, catalytic activity, and stability of palladium (Pd). The average size of Pd nanoparticles (NPs) was reduced to 3.62 ± 0.34 nm with a more intensive peak of Pd (111), which facilitated atomic hydrogen (H*) production. The Pd@MX/CC electrode demonstrated superior ECH activity for diclofenac (DCF) degradation, with a reaction rate constant (kobs) 2.48 times higher than that of Pd/CC (without MXene). The satisfactory ECH performance of Pd@MX/CC remained consistent within a wide range of initial DCF concentrations (5-100 mg/L), and no significant ECH attenuation was observed even after up to 10 batches. Furthermore, the high activity of Pd@MX/CC was also observed in the ECH of other halogenated organic pollutants (levofloxacin, tetrabromobisphenol A, and diatrizoate). Density functional theory (DFT) calculations revealed that electronic configuration modulation of the Pd@MXene catalyst optimized binging energies to H* , DCF, and dechlorinated products, thereby enhancing the ECH efficiency of DCF.
Collapse
Affiliation(s)
- Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Shuai Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
5
|
Song G, Wu H, Jing J, Zhang X, Wang X, Li S, Zhou M. Insights into Electrochemical Dehalogenation by Non-Noble Metal Single-Atom Cobalt with High Efficiency and Low Energy Consumption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14482-14492. [PMID: 37699122 DOI: 10.1021/acs.est.3c06021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
It is critical to discover a non-noble metal catalyst with high catalytic activity capable of replacing palladium in electrochemical reduction. In this work, a highly efficient single-atom Co-N/C catalyst was synthesized with metal-organic frameworks (MOFs) as a precursor for electrochemical dehalogenation. X-ray absorption spectroscopy (XAS) revealed that Co-N/C exhibited a Co-N4 configuration, which had more active sites and a faster charge-transfer rate and thus enabled the efficient removal of florfenicol (FLO) at a wide pH, achieving a rate constant 3.5 and 2.1 times that of N/C and commercial Pd/C, respectively. The defluorination and dechlorination efficiencies were 67.6 and 95.6%, respectively, with extremely low Co leaching (6 μg L-1), low energy consumption (22.7 kWh kg-1), and high turnover frequency (TOF) (0.0350 min-1), demonstrating excellent dehalogenation performance. Spiking experiments and density functional theory (DFT) verified that Co-N4 was the active site and had the lowest energy barrier for forming atomic hydrogen (H*) (ΔGH*). Capture experiments, electron paramagnetic resonance (EPR), electrochemical tests, and in situ Fourier transform infrared (FTIR) proved that H* and direct electron transfer were responsible for dehalogenation. Toxicity assessment indicated that FLO toxicity decreased significantly after dehalogenation. This work develops a non-noble metal catalyst with broad application prospects in electrocatalytic dehalogenation.
Collapse
Affiliation(s)
- Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Huizhong Wu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuyang Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuaishuai Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Rigby K, Huang D, Leshchev D, Lim HJ, Choi H, Meese AF, Weon S, Stavitski E, Kim JH. Palladium Single-Atom (In)Stability Under Aqueous Reductive Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13681-13690. [PMID: 37650677 PMCID: PMC10501378 DOI: 10.1021/acs.est.3c03346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Here, we investigate the stability and performance of single-atom Pd on TiO2 for the selective dechlorination of 4-chlorophenol. A challenge inherent to single atoms is their high surface free energy, which results in a tendency for the surface migration and aggregation of metal atoms. This work evaluates various factors affecting the stability of Pd single-atoms, including atomic dispersion, coordination environment, and substrate properties, under reductive aqueous conditions. The transition from single atoms to clusters vastly enhanced dechlorination kinetics without diminishing carbon-chlorine bond selectivity. X-ray absorption spectroscopy analysis using both in situ and ex situ conditions followed the dynamic transformation of single atoms into amorphous clusters, which consist of a unique unsaturated coordination environment and few nanometer diameter. The intricate relationship between stability and performance underscores the vital role of detailed characterization to properly determine the true active species for dehalogenation reactions.
Collapse
Affiliation(s)
- Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- NSF
Nanosystems Engineering Research Center for Nanotechnology Enabled
Water Treatment (NEWT), Houston, Texas 77005, United States
| | - Dahong Huang
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Denis Leshchev
- National
Synchrotron Light Source-II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Hyeyeon Choi
- School
of Health and Environmental Science, Korea
University, Seoul 02841, Republic
of Korea
- Department
of Health and Safety Convergence Science, Korea University, Seoul 02841, Republic
of Korea
| | - Aidan Francis Meese
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Seunghyun Weon
- School
of Health and Environmental Science, Korea
University, Seoul 02841, Republic
of Korea
- Department
of Health and Safety Convergence Science, Korea University, Seoul 02841, Republic
of Korea
| | - Eli Stavitski
- National
Synchrotron Light Source-II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- NSF
Nanosystems Engineering Research Center for Nanotechnology Enabled
Water Treatment (NEWT), Houston, Texas 77005, United States
| |
Collapse
|
7
|
Luo YH, Long X, Cai Y, Zheng CW, Roldan MA, Yang S, Zhou D, Zhou C, Rittmann BE. A synergistic platform enables co-oxidation of halogenated organic pollutants without input of organic primary substrate. WATER RESEARCH 2023; 234:119801. [PMID: 36889084 DOI: 10.1016/j.watres.2023.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
While co-oxidation is widely used to biodegrade halogenated organic pollutants (HOPs), a considerable amount of organic primary substrate is required. Adding organic primary substrates increases the operating cost and also leads to extra carbon dioxide release. In this study, we evaluated a two-stage Reduction and Oxidation Synergistic Platform (ROSP), which integrated catalytic reductive dehalogenation with biological co-oxidation for HOPs removal. The ROSP was a combination of an H2-based membrane catalytic-film reactor (H2-MCfR) and an O2-based membrane biofilm reactor (O2-MBfR). 4-chlorophenol (4-CP) was used as a model HOP to evaluate the performance of ROSP. In the MCfR stage, zero-valent palladium nanoparticles (Pd0NPs) catalyzed reductive hydrodechlorination that converted 4-CP to phenol, with a conversion yield over 92%. In the MBfR stage, the phenol was oxidized and used as a primary substrate that supported the co-oxidation of residual 4-CP. Genomic DNA sequencing revealed that phenol produced from 4-CP reduction enriched bacteria having genes for functional enzymes for phenol biodegradation in the biofilm community. In the ROSP, over 99% of 60 mg/L 4-CP was removed and mineralized during continuous operation: Effluent 4-CP and chemical oxygen demand concentrations were below 0.1 and 3 mg/L, respectively. H2 was the only added electron donor to the ROSP, which means no extra carbon dioxide was produced by primary-substrate oxidation.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Yuhang Cai
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Chen-Wei Zheng
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Manuel A Roldan
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Shize Yang
- Eyring Materials Center, Arizona State University, Tempe AZ 85287-3005, USA
| | - Dandan Zhou
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China; Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA.
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5306, USA
| |
Collapse
|