1
|
Jiang X, Zhang L, Miao Y, Chen L, Liu J, Zhang T, Cheng S, Song Y, Zhao Y. Intrinsic roles of nanosheet characteristics in two-dimensional montmorillonite membranes for efficient Li +/Mg 2+ separation. WATER RESEARCH 2025; 276:123291. [PMID: 39955792 DOI: 10.1016/j.watres.2025.123291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/17/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Stacking two-dimensional (2D) nanosheets into lamellar membranes holds great promise in the selective separation of Li+ and Mg2+ from salt-lake brines, but revealing the intrinsic effect of nanosheet properties on the ion transport remains a great challenge. The primary reasons are inevitable emerging defects and changes in surface functional groups during nanosheet preparation. Here, we successfully demonstrated the intrinsic dependence of ion separation on the size and layer charge density of 2D building blocks using defect-free and inherently permanent charged clay nanosheets. The smaller-sized nanosheets readily assembled into lamellar membranes with narrower nanochannel dimension, which facilitated the steric hindrance effect to improve the Li+/Mg2+ selectivity. Experiments and calculations demonstrated the layer charge density-dependent ion separation as well, for which a novel mechanism of intrinsic selective separation driven from the energy barrier difference of ions transport was proposed. Based on the "internal" regulation of the intrinsic nanosheet properties, MMT membranes realized stable and efficient Li+/Mg2+ separation under extreme conditions, multi-cycle and long-term experiments, with an optimal SLi/Mg of 38.9, superior to most of the reported state-of-the-art membranes. This work reveals the intrinsic interplay of nanosheet properties tuning the ion transport and separation, which will inspire the design and development of advanced 2D lamellar membranes, particularly for sustainable and environmental energy exploitation.
Collapse
Affiliation(s)
- Xiongrui Jiang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Lingjie Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China; Facultad de Ciencias, Universidad Autonoma de San Luis Potosi, Av. Parque Chapultepec 1570, San Luis Potosi 78210, Mexico.
| | - Yanhui Miao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Licai Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Jiaoyan Liu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Tingting Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China; Wuhan Clayene Technology Co., Ltd., Tangxunhu North Road 36, Wuhan, Hubei 430223, China
| | - Shuai Cheng
- State Development Investment Xinjiang Lop Nur Potash Corporation, Jianshe West Road 68, Hami, Xinjiang 839000, China
| | - Yuhan Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Yunliang Zhao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China; Wuhan Clayene Technology Co., Ltd., Tangxunhu North Road 36, Wuhan, Hubei 430223, China.
| |
Collapse
|
2
|
Yang F, Yong M, Li Z, Yang Z, Zhang X. Breaking the trade-off between lithium purity and lithium recovery: A comprehensive mathematical modeling based on membrane structure-property-performance relationships. WATER RESEARCH 2025; 281:123678. [PMID: 40280005 DOI: 10.1016/j.watres.2025.123678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
The application of nanofiltration (NF) membranes for resource recovery, particularly lithium (Li) extraction from high magnesium (Mg) brines, is a rapidly growing research area. However, the trade-off between high Li+ purity and recovery remains challenging. In our study, we extend the widely adopted Donnan Steric Pore Model with Dielectric Exclusion (DSPM-DE) to analyze membrane structure-property-performance relationships at the process scale. For the first time, we quantify how membrane intrinsic parameters (e.g., pore size, effective thickness, and charge density) affect Li+ purity and recovery under module-scale processes. Under this framework, we demonstrate that electrically neutral and positively charged membranes outperform negatively charged membranes, albeit at the cost of slightly higher required hydraulic pressure. Notably, positively charged membranes with smaller pore size yet high water permeance (40-80 L m-2 h-1 bar-1) are preferred, which could simultaneously achieve excellent Li+ purity (∼98 %) and high Li+ recovery (∼93 %) in the single-pass process, effectively overcoming the purity-recovery trade-off correlation. We further demonstrate that negative Li+ rejection plays a crucial role in overcoming the trade-off correlation by significantly increasing Li+ recovery. Nevertheless, poor system flux distribution is inadvertently observed in the regions where strong negative rejection occurs, highlighting the need for careful consideration of the balance between system stability and lithium extraction performances. Our study identifies critical membrane parameters for achieving optimal lithium extraction performance at the process scale, offering fundamental insights for designing high-performance membranes for resource recovery.
Collapse
Affiliation(s)
- Fengrui Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ming Yong
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhikao Li
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiwang Zhang
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia; ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, Australia
| |
Collapse
|
3
|
Shi Y, Mai Z, Guan K, Li B, Shen Q, Song Q, Fu W, Xiang S, Takagi R, Matsuyama H. Nanomorphogenesis of interlayered polyamide membranes for precise ion sieving in lithium extraction. WATER RESEARCH 2025; 274:123063. [PMID: 39740327 DOI: 10.1016/j.watres.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li+/Mg2+selectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge. In this study, we report the development of an interlayered thin-film composite (iTFC) membrane incorporating functionalized sulfonated carrageenan to regulate the interfacial polymerization process. This integrated interlayer plays a crucial role in controlling the diffusion and spatial distribution of amine monomers, leading to the formation of dense, nano-striped polyamide networks. These structural improvements including refined pore size and reduced negative charge significantly enhanced Li+/Mg2+selectivity (133.5) and increased permeance by 2.5 times compared to conventional TFC membranes. Additionally, the nano-striped structure optimized the membrane filtration area while minimizing ion transport resistance, effectively overcoming the traditional trade-off between ion selectivity and permeability. This study highlights the potential of iTFC membranes for achieving both high lithium purity and recovery, offering a promising avenue for large-scale lithium extraction from brines.
Collapse
Affiliation(s)
- Yongxuan Shi
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Zhaohuan Mai
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Bowen Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Qiangqiang Song
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Wenming Fu
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shang Xiang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Ryosuke Takagi
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
4
|
Zhang H, Zhao L, Guo Z, Wang L, Ma Y, Zhang P, Wang J, Ji ZY. Ultrashort and Vertically Aligned Channels: Boosted Lithium Selective Extraction via Hybrid Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6881-6890. [PMID: 39993059 DOI: 10.1021/acs.est.4c13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Hybrid capacitive deionization (HCDI) is energetically and operationally favorable for Li+ extraction from salt lake brines. The bottlenecks of current LiMn2O4 (LMO)-based electrodes are their limited Li+ adsorption rate and capacity, caused by disordered electron/ion transport channels and insufficient ion-accessible sites. Inspired by selective ion uptake processes in mangroves, we propose the strategy, fabricating ultrashort, vertically aligned channels for Li+ transport in the electrode to enhance the Li+ selective performance of HCDI. The self-supporting graphene/LMO/bacterial cellulose electrode featuring vertically aligned channels (VGLB) possesses sturdy framework, excellent electrical conductivity, fast electron/ion transport channels, and abundant available Li+ adsorption sites, enabling an ultrahigh Li+ adsorption rate of 2.6 mg g-1 min-1 and capacity up to 33.9 mg g-1 with a high retention of 91.62% after 100 cycles. VGLB also manifests superior selectivity in various simulated salt lake brines with Li+ purity in recovered solution of over 85%. Most importantly, VGLB enables selective Li+ extraction in low-grade brine from Jingbian oil and gas-produced water. We conduct finite element simulations to study the Li+ distribution in the electrode and disclose how the electrode microstructure influences the Li+ extraction performance. This approach put forward an avenue for electrode structure design for efficient Li+ extraction from both salt lakes and low-grade brines with HCDI application.
Collapse
Affiliation(s)
- Hongmei Zhang
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Lu Zhao
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhiyuan Guo
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Lei Wang
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Yueqi Ma
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Wang
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Zhi-Yong Ji
- Engineering Research Center of Seawater Utilization Technology, Ministry of Education, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
5
|
Ren Y, Qi P, Han Y, Wan Y, Lin J, Xie M, Chen X, Feng S, Luo J. Mix-Charged Nanofiltration Membrane for Efficient Organic Removal from High-Salinity Wastewater: The Role of Charge Spatial Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1434-1447. [PMID: 39772477 DOI: 10.1021/acs.est.4c10120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The efficient removal of organic contaminants from high-salinity wastewater is crucial for resource recovery and achieving zero discharge. Nanofiltration (NF) membranes are effective in separating organic compounds and monovalent salts, but they typically exhibit an excessive rejection of divalent salts. Modifying the charge characteristics of NF membranes can improve salt permeation; however, the role of charge spatial distribution in governing salt transport behavior is not fully understood. In this study, we developed a mix-charged NF membrane with a horizontal charge distribution by employing interfacial polymerization combined with a polyester template etching and solvent-induced polyamine intercalation strategy. The ratio of positive to negative charge domains in the membrane can be precisely controlled by adjusting the aqueous monomer ratio and polyamine modifier type. X-ray photoelectron spectroscopy (XPS) depth profiling and separation layer thickness analysis confirmed the complete penetration of polyamines into the separation layer, providing direct evidence of the formation of horizontally distributed charge domains. This unique charge distribution results in a high charge density and a near-electroneutral surface, which facilitates the permeation of the divalent salts. The size-dependent "plug-in" modification and covalent cross-linking further reduce pore size, enhancing rejection of small organic molecules. Additionally, the membrane demonstrated exceptional antifouling performance against both negatively and positively charged pollutants, attributed to its unique charge distribution and smooth surface. Molecular dynamics (MD) simulations further revealed that weak electrostatic interactions and a tightly bound hydration layer contribute to the membrane's superior antifouling properties. This work provides valuable insights into the design of NF membranes with tailored microstructures and charge distributions for improved water treatment performance.
Collapse
Affiliation(s)
- Yuling Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Environment, Henan Normal University, Xinxiang 453007, PR China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, PR China
| | - Pengfei Qi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Yujie Han
- School of Environment, Henan Normal University, Xinxiang 453007, PR China
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Jiuyang Lin
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, PR China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Xiangrong Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shichao Feng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, PR China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
6
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Zhao X, Yang S, Song X, Wang Y, Zhang H, Li M, Wang Y. Enhanced Lithium Extraction from Brines: Prelithiation Effect of FePO 4 with Size and Morphology Control. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405176. [PMID: 39287070 PMCID: PMC11538655 DOI: 10.1002/advs.202405176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Extracting lithium resources from seawater and brine can promote the development of the new energy materials industry. The electrochemical method is green and efficient. Iron phosphate (FePO4) crystal, with its 1D ion channel, holds significant potential as a primary lithium extraction electrode material. Li+ encounters a substantial concentration disadvantage in brines, and the co-intercalation of Na+ diminishes Li+ selectivity. To address this issue, this work enhances the energy barrier for Na+ insertion through prelithiation strategies applied to the 1D channels of FePO4 crystal, thereby improving Li+ selectivity, and further investigating the prelithiation effect with particle size and morphology control. The results indicate that the Li(4C-40%)FePO4// Activated carbon(AC) system enhances selectivity of lithium. The Li(4C-40%)FePO4 with size diameter of 2500 nm demonstrates an energy consumption of 0.79 Wh mol-1 and a purity of 97.94% for lithium extraction at a unit lithium extraction of 5.93 mmol g-1 in simulated brine. Li(4C-40%)FePO4-nanoplates demonstrate the most optimal lithium extraction performance among the three morphologies due to their lamellar structure's short ion diffusion path in the [010] channel, favoring Li+ diffusion. The diffusion energy barriers of Li+ and Na+ are calculated using Density Functional Theory (DFT) before and after prelithiation, showing good agreement with experimental results.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Biobased Fiber Manufacturing TechnologyTianjin University of Science and TechnologyTianjin300457China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilizationCollege of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjin300457China
| | - Shuo Yang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilizationCollege of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjin300457China
| | - Xiuli Song
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilizationCollege of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjin300457China
| | - Yushuang Wang
- State Key Laboratory of Biobased Fiber Manufacturing TechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Hui Zhang
- State Key Laboratory of Biobased Fiber Manufacturing TechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Muhan Li
- State Key Laboratory of Biobased Fiber Manufacturing TechnologyTianjin University of Science and TechnologyTianjin300457China
| | - Yanfei Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilizationCollege of Chemical Engineering and Materials ScienceTianjin University of Science and TechnologyTianjin300457China
| |
Collapse
|
8
|
Foo ZH, Lee TR, Wegmueller JM, Heath SM, Lienhard JH. Toward a Circular Lithium Economy with Electrodialysis: Upcycling Spent Battery Leachates with Selective and Bipolar Ion-Exchange Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19486-19500. [PMID: 39420454 PMCID: PMC11526793 DOI: 10.1021/acs.est.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Recycling spent lithium-ion batteries offers a sustainable solution to reduce ecological degradation from mining and mitigate raw material shortages and price volatility. This study investigates using electrodialysis with selective and bipolar ion-exchange membranes to establish a circular economy for lithium-ion batteries. An experimental data set of over 1700 ion concentration measurements across five current densities, two solution compositions, and three pH levels supports the techno-economic analysis. Selective electrodialysis (SED) isolates lithium ions from battery leachates, yielding a 99% Li-pure retentate with 68.8% lithium retention, achieving relative ionic fluxes up to 2.41 for Li+ over transition metal cations and a selectivity of 5.64 over monovalent cations. Bipolar membrane electrodialysis (BMED) converts LiCl into high-purity LiOH and HCl, essential for battery remanufacturing and reducing acid consumption via acid recycling. High current densities reduce ion leakage, achieving lithium leakage as low as 0.03%, though hydronium and hydroxide leakage in BMED remains high at 11-20%. Our analysis projects LiOH production costs between USD 1.1 and 3.6 per kilogram, significantly lower than current prices. Optimal SED and BMED conditions are identified, emphasizing the need to control proton transport in BMED and improve cobalt-lithium separation in SED to enhance cost efficiency.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Trent R. Lee
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jakob M. Wegmueller
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M. Heath
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H. Lienhard
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Zhai X, Lin S, Li X, Wang Z. The Hidden Role of the Dielectric Effect in Nanofiltration: A Novel Perspective to Unravel New Ion Separation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15874-15884. [PMID: 39173047 DOI: 10.1021/acs.est.4c07510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Nanofiltration (NF) membranes play a critical role in separation processes, necessitating an in-depth understanding of their selective mechanisms. Existing NF models predominantly include steric and Donnan mechanisms as primary mechanisms. However, these models often fail in elucidating the NF selectivity between ions of similar dimensions and the same valence. To address this gap, an innovative methodology was proposed to unravel new selective mechanisms by quantifying the nominal dielectric effect isolated from steric and Donnan exclusion through fitted pore dielectric constants by regression analysis. We demonstrated that the nominal dielectric effect encompassed unidentified selective mechanisms of significant relevance by establishing the correlation between the fitted pore dielectric constants and these hindrance factors. Our findings revealed that dehydration-induced ion-membrane interaction, rather than ion dehydration, played a pivotal role in ion partitioning within NF membranes. This interaction was closely linked to the nondeformable fraction of hydrated ions. Further delineation of the dielectric effect showed that favorable interactions between ions and membrane functional groups contributed to entropy-driven selectivity, which is a key factor in explaining ion selectivity differences between ions sharing the same size and valence. This study deepens our understanding of NF selectivity and sheds light on the design of highly selective membranes for water and wastewater treatment.
Collapse
Affiliation(s)
- Xiaohu Zhai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Lair L, Ouimet JA, Dougher M, Boudouris BW, Dowling AW, Phillip WA. Critical Mineral Separations: Opportunities for Membrane Materials and Processes to Advance Sustainable Economies and Secure Supplies. Annu Rev Chem Biomol Eng 2024; 15:243-266. [PMID: 38663030 DOI: 10.1146/annurev-chembioeng-100722-114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sustainable energy solutions and electrification are driving increased demand for critical minerals. Unfortunately, current mineral processing techniques are resource intensive, use large quantities of hazardous chemicals, and occur at centralized facilities to realize economies of scale. These aspects of existing technologies are at odds with the sustainability goals driving increased demand for critical minerals. Here, we argue that the small footprint and modular nature of membrane technologies position them well to address declining concentrations in ores and brines, the variable feed concentrations encountered in recycling, and the environmental issues associated with current separation processes; thus, membrane technologies provide new sustainable pathways to strengthening resilient critical mineral supply chains. The success of creating circular economies hinges on overcoming diverse barriers across the molecular to infrastructure scales. As such, solving these challenges requires the convergence of research across disciplines rather than isolated innovations.
Collapse
Affiliation(s)
- Laurianne Lair
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Jonathan Aubuchon Ouimet
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Molly Dougher
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - Bryan W Boudouris
- 2Charles D. Davidson School of Chemical Engineering and Department of Chemistry, Purdue University, West Lafayette, Indiana, USA;
| | - Alexander W Dowling
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| | - William A Phillip
- 1Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, USA; , , , ,
| |
Collapse
|
12
|
Zhang Y, Zhou K, Su S, Gao J, Liu J, Jiang L. Congener-welded crystalline carbon nitride membrane for robust and highly selective Li/Mg separation. SCIENCE ADVANCES 2024; 10:eadm9620. [PMID: 38875338 PMCID: PMC11177944 DOI: 10.1126/sciadv.adm9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/10/2024] [Indexed: 06/16/2024]
Abstract
Extracting lithium from salt-lake brines critically relies on the separation of Li+ and Mg2+, which could combat the lithium shortage. However, designing robust sieving membrane with high Li+/Mg2+ selectivity in the long-time operation has remained highly challenging. Here, we demonstrate a bioinspired congener-welded crystalline carbon nitride membrane that can accomplish efficient and stable monovalent ion sieving over divalent Mg ion. The crystalline carbon nitrides have uniform and narrow pore size to reject the large hydrated Mg2+ and rich ligating sites to facilitate an almost barrierless Li+ transport as suggested by ab initio simulations. These crystals were then welded by vapor-deposited congeners, i.e., amorphous polymer carbon nitride, which have similar composition and chemistry with the crystals, forming intimate and compatible crystal/polymer interface. As a result, our membrane can sieve out highly dilute Li+ (0.002 M) from concentrated Mg2+ (1.0 M) with a high selectivity of 1708, and can be continuously operated for 10 days.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Shigang Su
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jun Gao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100090, China
| |
Collapse
|
13
|
Han B, Sun X, Fan Z, Jiang H, Wang Z, Zhang W, He M, Ma J. Enhanced Mono/Divalent Ion Separation via Charged Interlayer Channels in Montmorillonite-Based Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4415-4427. [PMID: 38373279 DOI: 10.1021/acs.est.3c08853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Xuejin Sun
- North China Municipal Engineering Design & Research Institute Company, Limited, Tianjin 300110, People's Republic of China
| | - Zuoming Fan
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Haicheng Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Ziyue Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Mingrui He
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| | - Jun Ma
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China
| |
Collapse
|
14
|
Zhang S, Wei X, Cao X, Peng M, Wang M, Jiang L, Jin J. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine. Nat Commun 2024; 15:238. [PMID: 38172144 PMCID: PMC10764783 DOI: 10.1038/s41467-023-44625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for lithium extraction from salt-lake brines is increasing to address the lithium supply shortage. Nanofiltration separation technology with high Mg2+/Li+ separation efficiency has shown great potential for lithium extraction. However, it usually requires diluting the brine with a large quantity of freshwater and only yields Li+-enriched solution. Inspired by the process of selective ion uptake and salt secretion in mangroves, we report here the direct extraction of lithium from salt-lake brines by utilizing the synergistic effect of ion separation membrane and solar-driven evaporator. The ion separation membrane-based solar evaporator is a multilayer structure consisting of an upper photothermal layer to evaporate water, a hydrophilic porous membrane in the middle to generate capillary pressure as the driving force for water transport, and an ultrathin ion separation membrane at the bottom to allow Li+ to pass through and block other multivalent ions. This process exhibits excellent lithium extraction capability. When treating artificial salt-lake brine with salt concentration as high as 348.4 g L-1, the Mg2+/Li+ ratio is reduced by 66 times (from 19.8 to 0.3). This research combines ion separation with solar-driven evaporation to directly obtain LiCl powder, providing an efficient and sustainable approach for lithium extraction.
Collapse
Affiliation(s)
- Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Xian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Xue Cao
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Meiwen Peng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, China
| | - Min Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Lin Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, China.
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Soochow University, Suzhou, Jiangsu, China.
- Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
15
|
Foo ZH, Thomas JB, Heath SM, Garcia JA, Lienhard JH. Sustainable Lithium Recovery from Hypersaline Salt-Lakes by Selective Electrodialysis: Transport and Thermodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14747-14759. [PMID: 37721998 DOI: 10.1021/acs.est.3c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Evaporative technology for lithium mining from salt-lakes exacerbates freshwater scarcity and wetland destruction, and suffers from protracted production cycles. Electrodialysis (ED) offers an environmentally benign alternative for continuous lithium extraction and is amenable to renewable energy usage. Salt-lake brines, however, are hypersaline multicomponent mixtures, and the impact of the complex brine-membrane interactions remains poorly understood. Here, we quantify the influence of the solution composition, salinity, and acidity on the counterion selectivity and thermodynamic efficiency of electrodialysis, leveraging 1250 original measurements with salt-lake brines that span four feed salinities, three pH levels, and five current densities. Our experiments reveal that commonly used binary cation solutions, which neglect Na+ and K+ transport, may overestimate the Li+/Mg2+ selectivity by 250% and underpredict the specific energy consumption (SEC) by a factor of 54.8. As a result of the hypersaline conditions, exposure to salt-lake brine weakens the efficacy of Donnan exclusion, amplifying Mg2+ leakage. Higher current densities enhance the Donnan potential across the solution-membrane interface and ameliorate the selectivity degradation with hypersaline brines. However, a steep trade-off between counterion selectivity and thermodynamic efficiency governs ED's performance: a 6.25 times enhancement in Li+/Mg2+ selectivity is accompanied by a 71.6% increase in the SEC. Lastly, our analysis suggests that an industrial-scale ED module can meet existing salt-lake production capacities, while being powered by a photovoltaic farm that utilizes <1% of the salt-flat area.
Collapse
Affiliation(s)
- Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John B Thomas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samuel M Heath
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jason A Garcia
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Wang R, Alghanayem R, Lin S. Multipass Nanofiltration for Lithium Separation with High Selectivity and Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14464-14471. [PMID: 37706485 DOI: 10.1021/acs.est.3c04220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Nanofiltration (NF) is a promising and sustainable process to extract Li+ from brine lakes with high Mg2+/Li+ mass ratios. However, a trade-off between Li/Mg selectivity and Li recovery exists at the process scale, and the Li/Mg selectivity of commercially and lab-made NF membranes in a single-pass NF process is insufficient to achieve the industrially required Li purity. To overcome this challenge, we propose a multipass NF process with brine recirculation to achieve high selectivity without sacrificing Li recovery. We experimentally demonstrate that Li/Mg selectivity of a three-pass NF process with a commercial NF membrane can exceed 1000, despite the compromised Li recovery as a result of co-existing cations. Our theoretical analysis further predicts that a four-pass NF process with brine recirculation can simultaneously achieve an ultrahigh Li/Mg selectivity of over 4500 and a Li recovery of over 95%. This proposed process could potentially facilitate efficient NF-based solute-solute separations of all kinds and contribute to the development of novel membrane-based separation technologies.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Rayan Alghanayem
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
17
|
Rehman D, Sheriff F, Lienhard JH. Quantifying uncertainty in nanofiltration transport models for enhanced metals recovery. WATER RESEARCH 2023; 243:120325. [PMID: 37487358 DOI: 10.1016/j.watres.2023.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
To decarbonize our global energy system, sustainably harvesting metals from diverse sourcewaters is essential. Membrane-based processes have recently shown great promise in meeting these needs by achieving high metal ion selectivities with relatively low water and energy use. An example is nanofiltration, which harnesses steric, dielectric, and Donnan exclusion mechanisms to perform size- and charge-based fractionation of metal ions. To further optimize nanofiltration systems, multicomponent models are needed; however, conventional methods necessitate large amounts of data for model calibration, introduce substantial uncertainty into the characterization process, and often yield poor results when extrapolated. In this work, we develop a new computational architecture to alleviate these concerns. Specifically, we develop a framework that: (1) reduces the data requirement for model calibration to only charged species measurements; (2) eliminates uncertainty propagation problems present in conventional characterization processes; (3) enables exploration of pH optimization for enhancing metal ion selectivities; and (4) enables uncertainty quantification to assess the sensitivity of partition coefficients and ion driving forces to learned pore size distributions. Our framework captures eight independent datasets comprising over 500 measurements to within ±15%. Our studies also suggest that the expectation-maximization algorithm can effectively learn pore size distributions and that optimizing pH can improve metal ion selectivities by a factor of 3-10×. Our findings also reveal that image charges appear to play a less pronounced role in dielectric exclusion under the studied conditions and that ion driving forces are more sensitive to pore size distributions than partition coefficients.
Collapse
Affiliation(s)
- Danyal Rehman
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA; Centre for Computational Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Fareed Sheriff
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - John H Lienhard
- Rohsenow Kendall Heat Transfer Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
| |
Collapse
|