1
|
Yue S, Zhao Z, Zhang T, Li F, Wang P, Zhan S. Photoreforming of Plastic Waste to Sustainable Fuels and Chemicals: Waste to Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22865-22879. [PMID: 39688576 DOI: 10.1021/acs.est.4c06688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The extensive accumulation of plastic waste has given rise to severe environmental pollution issues. Contemporary conventional recycling methods, such as incineration and landfilling, contribute significantly to pollutant emissions and carbon footprints, against the principles of sustainable development. Leveraging renewable solar energy to transform plastics into high-value chemicals and green fuels offers a more promising and sustainable approach to managing plastic waste resources. This comprehensive review centers on the recent advancements in plastic photoreforming, categorizing them based on the types of end products. Particular emphasis is placed on the evolving research landscape surrounding the conversion of plastics into high-value chemicals through photoreforming, as well as the economic considerations for large-scale photoreforming production. The analysis conducted here reveals key pathways and emerging trends that are poised to shape the trajectory of enhanced photoconversion, ultimately influencing the realization of a carbon-neutral future.
Collapse
Affiliation(s)
- Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
2
|
Xu Q, Wang Q, Yang J, Liu W, Wang A. Recovering Valuable Chemicals from Polypropylene Waste via a Mild Catalyst-Free Hydrothermal Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16611-16620. [PMID: 39215385 DOI: 10.1021/acs.est.4c04449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Waste polypropylene (PP) presents a significant environmental challenge, owing to its refractory nature and inert C-C backbone. In this study, we introduce a practical chemical recovery strategy from PP waste using a mild catalyst-free hydrothermal treatment (HT). The treatment converts 64.1% of the processed PP into dissolved organic products within 2 h in an air atmosphere at 160 °C. Higher temperatures increase the PP conversion efficiency. Distinct electron absorption and emission characteristics of the products are identified by spectral analysis. Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS) reveals the oxidative cracking of PP into shorter-chain homologues (10-50 carbon atoms) containing carboxylic and carbonyl groups. Density functional theory (DFT) calculations support a reaction pathway involving thermal C-H oxidation at the tertiary carbon sites in the polymer chain. The addition of 1% H2O2 further enhances the oxidation reaction to produce valuable short-chain acetic acids, enabling gram-scale recycling of both pure PP and disposable surgical masks from the real world. Techno-economic analysis (TEA) and environmental life cycle costing (E-LCC) analysis suggest that this hydrothermal oxidation recovery technology is financially viable, which shows significant potential in tackling the ongoing plastic pollution crisis and advancing plastic treatment methodologies toward a circular economy paradigm.
Collapse
Affiliation(s)
- Qiongying Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Qiandi Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jiaqi Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
3
|
Li L, Zhou T, Cao L, Zhou J, Liu Z, Dong Z. Characterization of emissions from rubber modified asphalt and their impact on environmental burden: Insights into composition variability and hazard assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135336. [PMID: 39079295 DOI: 10.1016/j.jhazmat.2024.135336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Rubber modified asphalt (RMA) is a promising avenue for recycling waste tires but faces concerns over hazardous fumes emission during production and construction. This study employs a specialized apparatus to analyze RMA's emission behavior, focusing on crumb rubber size variations under thermal conditions. Ozone Formation Potential (OFP) and Secondary Organic Aerosol Formation Potential (SOAFP) were quantified to evaluate the environmental burden. Results indicate distinct periods of emission behavior for different pollutants, with H2S emissions primarily occurring within the initial 150 min while volatile organic compounds (VOCs) dominate within the first 270 min. The size of rubber particles and thermal exposure duration influence the VOCs microscopic emission characteristics and environmental burdens. Polycyclic aromatic hydrocarbons (PAHs) emerge as the primary contributors to OFP and SOAFP, accounting for nearly 65 % and 25 %-60 %, respectively. High molecular weight aliphatic hydrocarbons (ALHs) also significantly contribute to SOAFP, with PAHs dominating throughout, while ALHs peak during the middle stage. H2S emissions likely stem from rubber, while early VOC emissions originate from rubber, transitioning to petroleum asphalt during the middle and late stages. Asphalt fractions influence emission behavior and property evolution. These findings inform emission suppression strategies and highlight the need for tailored approaches to mitigate emissions effectively.
Collapse
Affiliation(s)
- Lingwen Li
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Tao Zhou
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Liping Cao
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Jie Zhou
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| | - Zhiyang Liu
- School of Civil Engineering and Transportation, Northeast Forestry University, Harbin, Heilongjiang 150001, China.
| | - Zejiao Dong
- School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
4
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Zhao X, You F. Microplastic Human Dietary Uptake from 1990 to 2018 Grew across 109 Major Developing and Industrialized Countries but Can Be Halved by Plastic Debris Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8709-8723. [PMID: 38656828 PMCID: PMC11112738 DOI: 10.1021/acs.est.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs), plastic particles smaller than 5 mm, are now a growing environmental and public health issue, as they are detected pervasively in freshwater and marine environments, ingested by organisms, and then enter the human body. Industrial development drives this environmental burden caused by MP formation and human uptake by elevating plastic pollution levels and shaping the domestic dietary structure. We map the MP human uptake across 109 global countries on five continents from 1990 to 2018, focusing on the world's major coastlines that are affected by plastic pollution that affects the United Nations' Sustainable Development Goals (SDGs): SDG 6 (Clean Water and Sanitation), SDG 14 (Life Below Water), and SDG 15 (Life on Land). Amid rapid industrial growth, Indonesia tops the global per capita MP dietary intake at 15 g monthly. In Asian, African, and American countries, including China and the United States, airborne and dietary MP uptake increased over 6-fold from 1990 to 2018. Eradicating 90% of global aquatic plastic debris can help decrease MP uptake by more than 48% in Southeast Asian countries that peak MP uptake. To reduce MP uptake and potential public health risks, governments in developing and industrialized countries in Asia, Europe, Africa, and North and South America should incentivize the removal of free plastic debris from freshwater and saltwater environments through advanced water treatment and effective solid waste management practices.
Collapse
Affiliation(s)
- Xiang Zhao
- Systems
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fengqi You
- Systems
Engineering, Cornell University, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Atkinson Center for Sustainability, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Dong L, Zhi W, Li W, Li J. Parameters optimization for decontamination and fine physical regeneration pathways of polypropylene plastics from waste lunchboxes. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134247. [PMID: 38603912 DOI: 10.1016/j.jhazmat.2024.134247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Due to the development of the food delivery industry, a large amount of waste lunchboxes made of homo polypropylene (PP) plastic have been generated. This study developed a new technological strategy to effectively regenerate PP from waste lunchboxes. Through response surface curve analysis, it was found that under the optimal process conditions of hot alkali washing at 80 ℃, 30 min, and pH 13, the optimal contact angle was 65.55°, indicating a good oil stain removal effect. By identifying and analyzing the characteristics of impurities in waste lunchboxes, a physical sorting and granulation regeneration process was constructed. And through large-scale statistical analysis and data collection, it was further verified that recycled PP plastics maintained their physical stability and excellent processing performance. The quality stability of recycled PP plastics in terms of impurities content was also verified. By designing different formulations specifically, recycled PP was mixed with different virgin PP and antioxidants in appropriate proportions, and extruded into particles under 150-300 mesh filtration conditions to obtain modified recycled PP. Modified recycled PP was applied in textiles, clothing, and injection molded products. In conclusion, we achieve the up-cylcing of waste PP lunchboxes instead of down-cylcing.
Collapse
Affiliation(s)
- Lipeng Dong
- GER Institute of Polymer Materials Recycling, Yichun, Jiangxi 331100, China; National Engineering Research Center of WEEE Recycling, Jingmen, Hubeiṭ 448124, China.
| | - Wenwu Zhi
- Wenzhou Environmental Development and Urban Solid Waste Comprehensive Disposal Research Center, Wenzhou, Zhejiang 325000, China
| | - Weijun Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jiahui Li
- Hunan Provincial Institute of Land and Resources Planning, Changsha, Hunan 410000, China
| |
Collapse
|
7
|
Sun B, Zhou C, Zhu M, Wang S, Zhang L, Yi C, Ling H, Xiang M, Yu Y. Leaching kinetics and bioaccumulation potential of additive-derived organophosphate esters in microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123671. [PMID: 38442824 DOI: 10.1016/j.envpol.2024.123671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/10/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Considerable research has been conducted to evaluate microplastics (MPs) as vehicles for the transfer of hazardous pollutants in organisms. However, little effort has been devoted to the chemical release of hazardous additive-derived pollutants from MPs in gut simulations. This study looked at the leaching kinetics of organophosphate esters (OPFRs) from polypropylene (PP) and polystyrene (PS) MPs in the presence of gut surfactants, specifically sodium taurocholate, at two biologically relevant temperatures for marine organisms. Diffusion coefficients of OPFRs ranged from 1.71 × 10-20 to 4.04 × 10-18 m2 s-1 in PP and 2.91 × 10-18 to 1.51 × 10-15 m2 s-1 in PS. The accumulation factors for OPFRs in biota-plastic and biota-sediment interactions ranged from 1.52 × 10-3-69.1 and 0.02-0.7, respectively. Based on B3LYP/6-31G (d,p) calculations, the biodynamic model analysis revealed a slight increase in the bioaccumulation of OPFRs at a minor dose of 0.05% MPs. However, at higher concentrations (0.5% and 5% MPs), there was a decrease in bioaccumulation compared to the lower concentration for most OPFR compounds. In general, the ingestion of PE MPs notably contributed to the bioaccumulation of OPFRs in lugworms, whereas the contribution of PP and PS MPs was minimal. This could vary among sites exhibiting varying levels of MP concentrations or MPs displaying stronger affinities towards chemicals.
Collapse
Affiliation(s)
- Bingbing Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Chang Zhou
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Ming Zhu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Siqi Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Liuyi Zhang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - Chuan Yi
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Academy of Ecological and Environmental Sciences, Wuhan, 430072, China
| | - Haibo Ling
- Hubei Key Laboratory of Pollution Damage Assessment and Environmental Health Risk Prevention and Control, Hubei Academy of Ecological and Environmental Sciences, Wuhan, 430072, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China.
| |
Collapse
|