1
|
Li Y, Zhu D, Hong L, Dai J, Wu L. Perspectives on adhesion and irreversible fouling to delineate mitigation effects of autoinducer-2 mediated quorum quenching on biofouling. BIORESOURCE TECHNOLOGY 2025; 426:132380. [PMID: 40074090 DOI: 10.1016/j.biortech.2025.132380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
This study systematically investigated the effect of interfering with autoinducer-2 (AI-2) signaling system on controlling initial fouling attachment and irreversible components. Exposure of bacteria to the inhibitor significantly reduced the expression of the luxS gene, which resulted in a 37.3% reduction of AI-2 signaling molecule synthesis. Expression of flagellin and kinesin, which determine bacteria adhesion properties, and virulence genes was significantly down-regulated. AI-2 quorum quenching (QQ) significantly suppressed the initial biofilm growth and inhibition efficiency was positively correlated with bacteria concentration. Extracellular polymeric substances accumulation decreased by 40.8% in QQ experiment relative to the control, thus mitigating the flux decline. Polysaccharides, which constitute irreversible components, were significantly reduced by 69.3% with presence of inhibitor. AI-2 QQ altered protein and peptide structure of fouling layer, which converted irreversible fouling into reversible fouling. These findings contributed to the understanding of QQ susceptibility to initial fouling, providing a theoretical basis for engineering applications.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Danchen Zhu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Linmeng Hong
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jixiang Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
2
|
Zhao Y, Yang F, Jiang H, Gao G. Piezoceramic membrane with built-in ultrasound for reactive oxygen species generation and synergistic vibration anti-fouling. Nat Commun 2024; 15:4845. [PMID: 38844530 PMCID: PMC11156986 DOI: 10.1038/s41467-024-49266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Piezoceramic membranes have emerged as a prominent solution for membrane fouling control. However, the prevalent use of toxic lead and limitations of vibration-based anti-fouling mechanism impede their wider adoption in water treatment. This study introduces a Mn/BaTiO3 piezoceramic membrane, demonstrating a promising in-situ anti-fouling efficacy and mechanism insights. When applied to an Alternating Current at a resonant frequency of 20 V, 265 kHz, the membrane achieves optimal vibration, effectively mitigating various foulants such as high-concentration oil (2500 ppm, including real industrial oil wastewater), bacteria and different charged inorganic colloidal particles, showing advantages over other reported piezoceramic membranes. Importantly, our findings suggest that the built-in ultrasonic vibration of piezoceramic membranes can generate reactive oxygen species. This offers profound insights into the distinct anti-fouling processes for organic and inorganic wastewater, supplementing and unifying the traditional singular vibrational anti-fouling mechanism of piezoceramic membranes, and potentially propelling the development of piezoelectric catalytic membranes.
Collapse
Affiliation(s)
- Yang Zhao
- School of Energy and Environment, Southeast University, Nanjing, 210096, China.
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China.
| | - Feng Yang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Han Jiang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China
- State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Li Y, Dai J, Ma Y, Yao Y, Yu D, Shen J, Wu L. The mitigation potential of synergistic quorum quenching and antibacterial properties for biofilm proliferation and membrane biofouling. WATER RESEARCH 2024; 255:121462. [PMID: 38493743 DOI: 10.1016/j.watres.2024.121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Biofouling has been a persistent problem hindering the application of membranes in water treatment, and quorum quenching has been identified as an effective method for mitigating biofouling, but surface accumulation of live bacteria still induces biofilm secretion, which poses a significant challenge for sustained prevention of membrane biofouling. In this study, we utilized quercetin, a typical flavonoid with the dual functions of quorum quenching and bacterial inactivation, to evaluate its role in preventing biofilm proliferation and against biofouling. Quercetin exhibited excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the decreased bioactivity was positively correlated with the quercetin concentration, with inhibition rates of 53.1 % and 57.4 %, respectively, at the experimental concentrations. The RT-qPCR results demonstrated that quercetin inhibited AI-2 of E. coli and AGR of S. aureus mediated quorum sensing system, and reduced the expression of genes such as adhesion, virulence, biofilm secretion, and key regulatory proteases. As a result, the bacterial growth cycle was retarded and the biomass and biofilm maturation cycles were alleviated with the synergistic effect of quorum quenching and antibacterial activity. In addition, membrane biofouling was significantly declined in the dynamic operation experiments, dead cells in the biofilm overwhelmingly dominated, and the final normalized water fluxes were increased by more than 49.9 % and 34.5 % for E. coli and S. aureus, respectively. This work demonstrates the potential for mitigating biofouling using protocols that quorum quenching and inactivate bacteria, also provides a unique and long-lasting strategy to alleviate membrane fouling.
Collapse
Affiliation(s)
- Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Jixiang Dai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dayang Yu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
4
|
Hu W, Zhang F, Tan X, Tu Y, Nie S. Antibacterial PVDF Coral-Like Hierarchical Structure Composite Film Fabrication for Self-Cleaning and Radiative Cooling Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19828-19837. [PMID: 38567790 DOI: 10.1021/acsami.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Passive radiative cooling (PRC) is a zero-energy-consumption technology that reflects sunlight and radiates heat to cold outer space. In this work, a porous poly(vinylidene fluoride)-poly(methyl methacrylate) (PVDF-PMMA) composite film is fabricated by decorating zinc-imidazolate metal-organic framework (MOF) (ZIF-8) particles obtained by phase inversion. Due to the competent scattering via the coral-like hierarchical structures and the vibration excitations of specific functional groups, the prepared film exhibits good solar reflectance (92.6%) and intermediate infrared emittance (99.1%), with an average sub-ambient cooling of 10.4 °C under a solar radiation intensity of 0.6 AM1.5. Additionally, poly(vinylidene fluoride) has a low surface energy, while the ZIF-8 particles and coral-like hierarchical structures enhance the surface roughness, endowing the surface with significant superhydrophobicity characterized by a water contact angle (WCA) of 157.5° and a sliding angle (SA) of 2°. These films exhibit excellent antibacterial properties. When the content of ZIF-8 particles in the film is 300 mg·L-1, the antibacterial rate reaches 100% after 1 h of treatment. Thus, the ZIF-8 porous poly(vinylidene fluoride)-poly(methyl methacrylate) composite (ZPPP) film has potential application prospects in areas with high health and environmental requirements, such as cold chain transportation and public spaces.
Collapse
Affiliation(s)
- Weiwei Hu
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Fatao Zhang
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Xinyu Tan
- College of Science and College of Materials and Chemical Engineering, Solar Energy High Value Utilization and Green Conversion Hubei Provincial Engineering Research Center, China Three Gorges University, Hubei, Yichang 443000, China
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials (CTGU), China Three Gorges University, Hubei, Yichang 443000, China
| | - Yiteng Tu
- State Grid Yichang Electric Power Supply Company, Yichang 443000, China
| | - Shijin Nie
- Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
5
|
Yao Y, Mu J, Li Y, Ma Y, Xu J, Shi Y, Liao J, Shen Z, Shen J. Rechargeable Multifunctional Anti-Bacterial AEMs for Electrodialysis: Improving Anti-Biological Performance via Synergistic Antibacterial Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303588. [PMID: 37697634 PMCID: PMC10602572 DOI: 10.1002/advs.202303588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Constructing a functional layer on the surface of commercial membrane (as a substrate) to inhibit the formation of biofilms is an efficient strategy to prepare an antibacterial anion exchange membrane (AEM). Herein, a rechargeable multifunctional anti-biological system is reported by utilizing the mussel-inspired L-dopa connection function on commercial AEMs. Cobalt nanoparticles (Co NPs) and N-chloramine compounds are deposited on the AEM surface by a two-step modification procedure. The anti-biofouling abilities of the membranes are qualitatively and quantitatively analyzed by adopting common Gram-negative (E. coli) and Gram-positive (S. aureus & Bacillus) bacteria as model biofouling organisms. The optimized membrane exhibits a high stability concerning the NaCl solution separation performance within 240 min. Meantime, the mechanism of the anti-adhesion is un-veiled at an atomic level and molecular dynamics (MD) simulation are conducted to measure the interaction, adsorption energy and average loading by using lipopolysaccharide (LPS) of E. coli. In view of the superior performance of antibacterial surfaces, it is believed that this work could provide a valuable guideline for the design of membrane materials with resistance to biological contamination.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Junjie Mu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Jingwen Xu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuna Shi
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310014China
| | - Junbin Liao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Zhenlu Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Jiangnan Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|