1
|
Luo S, Shi Z. Comment on "Computing accurate bond dissociation energies of emerging per- and polyfluoroalkyl substances: Achieving chemical accuracy using connectivity-based hierarchy schemes". JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137900. [PMID: 40107100 DOI: 10.1016/j.jhazmat.2025.137900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Affiliation(s)
- Shuang Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark.
| | - Zhen Shi
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| |
Collapse
|
2
|
Cao J, Feng S, Dolatabad AA, Zhi Y, Deng B, Liu C, Lyu X, Christensen CSQ, Pignatello JJ, Ni P, Lin S, Wei Z, Xiao F. PFAS removal from reverse osmosis and nanofiltration brine by granular activated carbon: Thermodynamic insights into salinity effects. WATER RESEARCH 2025; 282:123758. [PMID: 40359825 DOI: 10.1016/j.watres.2025.123758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/10/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025]
Abstract
We explored an underexplored area in water treatment by examining the removal of per- and polyfluoroalkyl substances (PFAS) from reverse osmosis/nanofiltration (RO/NF) brine. We first compared multiple RO/NF membranes, revealing that DK and NF270 showed sub-optimal removal (<90 %) of C4-C8 PFAS, SW30 had low flux (<15 L/m2/h at 8 bar), and NFX exhibited significant adsorption of perfluorosulfonic acids (e.g., 8 µmol/m2). To address the PFAS-enriched brine generated from membrane treatment, we further evaluated activated carbon (GAC) and anion-exchange (AIX) resin, both of which efficiently removed moderate- and long-chain PFAS from brine. Although AIX outperformed GAC, the ion exchange contribution was small for short-chain PFAS like perfluorobutanoic acid (PFBA, C4) but increased with chain length, driven by the hydrophobic effect facilitating the migration to near-surface regions of resins. Equilibrium batch experiments and thermodynamic modeling revealed a disproportionate salinity impact on PFAS adsorption by GAC, with short-chain PFAS (e.g., PFBA) experiencing more pronounced adsorption reduction than longer-chained homologs as NaCl concentrations increased. This reduction was driven by a significant change in a free energy component unrelated to the hydrophobic or electrostatic interactions, likely due to the competitive adsorption of Cl- ions and short-chain PFAS anions or the formation of hydration shells around Na+ and Cl- ions, obstructing the pathways for weakly hydrophobic PFAS (e.g., PFBA) within the GAC pore network. The salting-out effect was found to be unimportant. This study provides new insights into salinity-dependent sorptive removal of PFAS from high-ionic-strength water such as RO/NF brine.
Collapse
Affiliation(s)
- Jiefei Cao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Siyuan Feng
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, United States
| | - Alireza Arhami Dolatabad
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States
| | - Caihong Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Charlotte S Q Christensen
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark; Department of Environmental Sciences and Forestry, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT 06511, United States
| | - Joseph J Pignatello
- Department of Environmental Sciences and Forestry, The Connecticut Agricultural Experiment Station, 123 Huntington St, New Haven, CT 06511, United States
| | - Pan Ni
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, United States; Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, United States
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
3
|
Luo S, Wei Z. Correspondence on "Unveiling the Contribution of Hydrogen Radicals to Per- and Polyfluoroalkyl Substances (PFASs) Defluorination: Applicability and Degradation Mechanisms". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7791-7793. [PMID: 40209719 DOI: 10.1021/acs.est.5c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Shuang Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan 410128, P. R. China
- Centre for Water Technology (WATEC) and Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC) and Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Allé 3, Aarhus 8000, Denmark
| |
Collapse
|
4
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
5
|
Mekureyaw MF, Junker AL, Bai L, Zhang Y, Wei Z, Guo Z. Laccase based per- and polyfluoroalkyl substances degradation: Status and future perspectives. WATER RESEARCH 2025; 271:122888. [PMID: 39637694 DOI: 10.1016/j.watres.2024.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/07/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) with stable carbon-fluorine bonds are used in a wide range of industrial and commercial applications. Due to their extreme environmental persistence, PFAS have the potential to bioaccumulate, cause adverse effects, and present challenges regarding remediation. Recently, microbial and enzymatic reactions for sustainable degradation of PFAS have gained attention from researchers, although biological decomposition of PFAS remains challenging. Surprisingly, laccases, the multi-copper oxidases produced by various organisms, showed potential for PFAS degradation. Mediators play key roles in initiating laccase induced PFAS degradation and defluorination reactions. The laccase-catalyzed PFAS degradation reactions are relatively slower than normal biocatalytic reactions and the low activity of native laccases constrains their capacity to complete defluorination. With their low redox potential and narrow substrate scope, an innovative remediation strategy must be taken to accelerate this reaction. In this review we have summarized the status, challenges, and future perspectives of enzymatic PFAS degradation. The knowledge of laccase-based defluorination and the molecular basis of the reaction mechanisms overviewed in this study could inform future applications of laccases for sustainable PFAS remediation.
Collapse
Affiliation(s)
- Mengistu F Mekureyaw
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Allyson Leigh Junker
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Lu Bai
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark
| | - Yan Zhang
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C, 8000, Denmark.
| | - Zheng Guo
- Section of Industrial Biotechnology, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, Aarhus C, 8000, Denmark.
| |
Collapse
|
6
|
Xu MG, Huang C, Zhao L, Rappé AK, Kennedy EM, Stockenhuber M, Mackie JC, Weber NH, Lucas JA, Ahmed M, Blotevogel J, Lu W. Direct measurement of fluorocarbon radicals in the thermal destruction of perfluorohexanoic acid using photoionization mass spectrometry. SCIENCE ADVANCES 2025; 11:eadt3363. [PMID: 40020071 PMCID: PMC11870085 DOI: 10.1126/sciadv.adt3363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025]
Abstract
Thermal destruction is a critical cornerstone of addressing the rampant contamination of natural resources with per- and polyfluoroalkyl substances (PFAS). However, grave concerns associated with stack emissions from incineration exist because mechanistic studies have thus far relied on ex situ analyses of end products and theoretical calculations. Here, we used synchrotron-based vacuum ultraviolet photoionization mass spectrometry to study the pyrolysis of a representative PFAS-perfluorohexanoic acid-and provide direct evidence of fluorocarbon radicals and intermediates. A key reaction pathway from perfluorocarboxylic acids to ketenes via acyl fluorides is proposed. We furthermore propose CF2/CF3 radical-centered pyrolysis mechanisms and explain their roles in the formation of other products that may form in full-scale incinerators. These results have not only unveiled the role of radicals and intermediates in thermal PFAS decomposition and recombination mechanisms but also provide unique insight into improving the safety and viability of industrial PFAS incineration.
Collapse
Affiliation(s)
- Ming-Gao Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Chen Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Long Zhao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Anthony K. Rappé
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Eric M. Kennedy
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Michael Stockenhuber
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - John C. Mackie
- Discipline of Chemical Engineering, School of Engineering, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Nathan H. Weber
- Oak Ridge Institute for Science and Education, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - John A. Lucas
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
- Veolia Environmental Services, Australia & New Zealand, Southbank, Victoria 3006, Australia
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jens Blotevogel
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia
| | - Wenchao Lu
- CSIRO Environment, Waite Campus, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
7
|
Paultre CB, Mebel AM, O'Shea KE. Computational Study of the Gas-Phase Thermal Degradation and the Reaction Rate Coefficients of Perfluoroalkyl Ether Carboxylic Acids. J Phys Chem A 2025; 129:1856-1868. [PMID: 39919206 DOI: 10.1021/acs.jpca.4c06808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Perfluoroalkyl ether carboxylic acids (PFECA), which are replacements for legacy per- and polyfluorinated alkyl substances (PFAS), exhibit undesirable properties and often require thermal remediation. Detailed kinetic evaluation of the pyrolysis of PFECA was achieved computationally using density functional ωB97xD/6-311+G (d,p) to establish homolytic bond dissociation energies for the carboxylic acid and carboxylate forms of ∼90-100 kcal/mol and as low as 65 ± 3 kcal/mol, respectively. The negatively charged oxygenated radical products collapse with activation energies (Ea) of Ea(β-scission) ∼ 12-42 kcal/mol, Ea(1,2-F-shift) ∼ 24-47 kcal/mol, and Ea(oxygen atom-shift) ∼ 33-35 kcal/mol and enthalpies (ΔH) of ΔH(F-loss) ∼ 56-71 kcal/mol. The perfluoroalkoxyl radical intermediates transform via Ea(β scission) ∼ 2-9 kcal/mol and Ea(F-loss) ∼ 25-43 kcal/mol. The radical intermediates have lifetimes in the microsecond-to-nanosecond range at 1000 K and 1 atm, with some radicals stable for hours or even days with respect to the unimolecular processes. The results provide new fundamental thermodynamic and kinetic parameters for the partitioning of the degradation pathways of PFECA and establish specific structure-activity relationships of intermediates, leading to the final degradation products. These results are critical for modeling the thermal treatment of PFECA and related PFAS.
Collapse
Affiliation(s)
- Claude-Bernard Paultre
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Alexander M Mebel
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
8
|
Sun R, Bhat AP, Arnold WA, Xiao F. Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1756-1768. [PMID: 39792993 PMCID: PMC11781311 DOI: 10.1021/acs.est.4c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA). Sixteen reactions involving chlorine with N-AP-FHxSA and its quaternary ammonium analog were investigated; seven were confirmed, while the remainder were either disproved or found to be insignificant. The quaternary ammonium moiety did not determine a polyfluoroalkyl substance's reactivity toward chlorine. For example, while 6:2 fluorotelomer sulfonamide betaine transformed rapidly to PFHxA, other quaternary-ammonium-containing polyfluoroalkyl substances, such as 5:1:2 and 5:3 fluorotelomer betaines, showed significant resistance to chlorination. Further investigation identified potential sites for electrophilic attacks near the amine region by examining the highest occupied molecular orbitals of the polyfluoroalkyl substances. Visualization techniques helped pinpoint electron-deficient and electron-rich sites as potential targets for nucleophilic and electrophilic attacks, respectively. Increasing the solution pH from 6 to 10 did not diminish the apparent degradation of the studied polyfluoroalkyl substances, likely due to the greater reactivity of the deprotonated forms compared to the conjugate acids. Finally, we also examined the hydrolysis of polyfluoroalkyl substances at pH 6 to 11 in the absence of chlorine.
Collapse
Affiliation(s)
- Runze Sun
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Akash P. Bhat
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Missouri
Water Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Litvanová K, Klemetsrud B, Xiao F, Kubátová A. Investigation of Real-Time Gaseous Thermal Decomposition Products of Representative Per- and Polyfluoroalkyl Substances (PFAS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:108-118. [PMID: 39667807 DOI: 10.1021/jasms.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The thermal decomposition of per- and poly fluoroalkyl substances (PFAS) is poorly understood. Here, we present an innovative, comprehensive analytical method to investigate their thermal decomposition, including perfluorocarboxylic acids (PFCAs), alcohol, sulfonates, and GenX (acid dimer), focusing on identifying their breakdown products. In this study, evolved gas analysis-mass spectrometry (EGA-MS) was used for fast real-time screening to determine the significant temperatures to be investigated with the thermal desorption-pyrolysis coupled with gas chromatography-mass spectrometry (TD-Py-GC-MS), which provided detailed information about evolved PFAS and their breakdown products. This approach enabled a systematic study of perfluorocarboxylic acids (PFCAs) ranging from C3 to C9 and GenX showing volatilization, followed by degradation and formation of respective perfluorinated-1-alkenes and C5F10O perfluorinated ether (from GenX). At elevated temperatures (e.g., 600 °C), the products observed included perfluorinated butene and higher molecular-weight products, likely formed by pyrolytic polymerization of perfluorinated radicals. 1H,1H,2H,2H-perfluoro-1-decanol, i.e., 8:2 FTOH, volatilized at 100 °C; however, at higher temperatures, several novel decomposition products were observed, including perfluoro-1-decene and perfluorinated compounds suggesting the presence of the hydroxylic group. Our method offers an alternative approach to studying the thermal behavior of currently regulated and emerging PFAS with a focus on application to a wide range of matrices (laboratory grade standards or environmental samples).
Collapse
Affiliation(s)
- Kateřina Litvanová
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Bethany Klemetsrud
- Department of Chemical Engineering, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
10
|
Sun R, Alinezhad A, Altarawneh M, Ateia M, Blotevogel J, Mai J, Naidu R, Pignatello J, Rappe A, Zhang X, Xiao F. New Insights into Thermal Degradation Products of Long-Chain Per- and Polyfluoroalkyl Substances (PFAS) and Their Mineralization Enhancement Using Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22417-22430. [PMID: 39626076 DOI: 10.1021/acs.est.4c05782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The products of incomplete destruction (PIDs) of per- and polyfluoroalkyl substances (PFAS) represent a substantial ambiguity when employing thermal treatments to remediate PFAS-contaminated materials. In this study, we present new information on PIDs produced in both inert and oxidative environments from five long-chain PFAS, including three now regulated under the U.S. Safe Drinking Water Act, one cationic precursor compound, and one C10 PFAS. The data did not support the generation of tetrafluoromethane from any of the studied PFAS, and carbonyl fluoride was found only from potassium perfluorooctanesulfonate (K-PFOS) when heated in air in a narrow temperature range. Oxidative conditions (air) were observed to facilitate PFAS thermal degradation and accelerate the mineralization of K-PFOS. Spectroscopic data suggest that PFAS thermal degradation is initiated by the cleavage of bonds that form perfluoroalkyl radicals, leading to organofluorine PIDs (e.g., perfluoroalkenes). In air, perfluoroalkyl radicals react with oxygen to form oxygen-containing PIDs. The mineralization of PFAS was enhanced by adding solid additives, which were categorized as highly effective (e.g., granular activated carbon (GAC) and certain noble metals), moderately effective, and noneffective. Remarkably, simply by adding GAC, we achieved >90% mineralization of perfluorooctanoic acid at 300 °C and ∼1.9 atm within just 60 min without using water or solvents.
Collapse
Affiliation(s)
- Runze Sun
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Ali Alinezhad
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jens Blotevogel
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Waite Campus, Urrbrae 5064, Australia
| | - Jiamin Mai
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan 2308, Australia
| | - Joseph Pignatello
- Department of Environmental Sciences and Forestry, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, Connecticut 06511, United States
| | - Anthony Rappe
- Department of Chemistry Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xuejia Zhang
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, Missouri 65211, United States
- Missouri Water Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Zhi Y, Lu X, Munoz G, Yeung LWY, De Silva AO, Hao S, He H, Jia Y, Higgins CP, Zhang C. Environmental Occurrence and Biotic Concentrations of Ultrashort-Chain Perfluoroalkyl Acids: Overlooked Global Organofluorine Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21393-21410. [PMID: 39535433 DOI: 10.1021/acs.est.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large group of anthropogenic fluorinated chemicals. Ultrashort-chain perfluoroalkyl acids (PFAAs) have recently gained attention due to their prevalence in the environment and increasing environmental concerns. In this review, we established a literature database from 1990 to 2024, encompassing environmental and biological concentrations (>3,500 concentration records) of five historically overlooked ultrashort-chain PFAAs (perfluoroalkyl carboxylic and sulfonic acids with less than 4 carbons): trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), trifluoromethanesulfonic acid (TFMS), perfluoroethanesulfonate (PFEtS), and perfluoropropanesulfonate (PFPrS). Our data mining and analysis reveal that (1) ultrashort-chain PFAAs are globally distributed in various environments including water bodies, solid matrices, and air, with concentrations usually higher than those of longer-chain compounds; (2) TFA, the most extensively studied ultrashort-chain PFAA, shows a consistent upward trend in concentrations in surface water, rainwater, and air over the past three decades; and (3) ultrashort-chain PFAAs are present in various organisms, including plants, wildlife, and human blood, serum, and urine, with concentrations sometimes similar to those of longer-chain compounds. The current state of knowledge regarding the sources and fate of TFA and other ultrashort-chain PFAAs is also reviewed. Amid the global urgency to regulate PFASs, particularly as countries worldwide have intensified such efforts, this critical review will inform scientific research and regulatory policies.
Collapse
Affiliation(s)
- Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xiongwei Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Gabriel Munoz
- Centre d'expertise en analyse environnementale du Québec (CEAEQ), Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Leo W Y Yeung
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro 701 82, Sweden
| | - Amila O De Silva
- Aquatic Contaminants Research Division, Environment Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Shilai Hao
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yonghui Jia
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Chuhui Zhang
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100084, China
| |
Collapse
|
12
|
Winchell LJ, Cullen J, Ross JJ, Seidel A, Romero ML, Kakar F, Bronstad E, Wells MJM, Klinghoffer NB, Berruti F, Miot A, Bell KY. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11149. [PMID: 39533490 PMCID: PMC11578938 DOI: 10.1002/wer.11149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Pyrolysis has been identified as a possible thermal treatment process for reducing perfluoroalkyl and polyfluoroalkyl substances (PFAS) from wastewater solids, though off-gas from the pyrolysis unit can still be a source of PFAS emissions. In this work, the fate of PFAS through a laboratory-scale pyrolysis unit coupled with a thermal oxidizer for treatment of off-gasses is documented. Between 91.5% and >99.9% reduction was observed through the entire system for specific compounds based on targeted analyses. Overall, the pyrolysis and thermal oxidizer system removed 99.4% of the PFAS moles introduced. Furthermore, shorter chain variants comprised the majority of reportable PFAS in the thermal oxidizer flue gas, indicating the longer chain compounds present in the dried biosolids fed to pyrolyzer decompose through the system. PRACTITIONER POINTS: Thermal oxidation is a promising treatment technology for exhaust systems associated with thermal biosolids treatments. Thermal oxidation demonstrated significant degradation capabilities, with gas phase emissions comprising only 0.200% of initial PFAS concentrations to the system. Short-chain PFAS made up a higher percent of thermal oxidizer emissions, ranging between 54.4% and 79.5% of PFAS in the exhaust on a molar basis. The possibility of recombinant PFAS formation and partial thermal decomposition of PFAS in thermal oxidation is a needed area of research.
Collapse
Affiliation(s)
| | - Joshua Cullen
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | | | | | | | | | | - Naomi B. Klinghoffer
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | - Franco Berruti
- Department of Chemical and Biochemical Engineering, Institute for Chemicals and Fuels from Alternative Resources (ICFAR)Western UniversityLondonOntarioCanada
| | | | | |
Collapse
|
13
|
Ali MA, Lyu X, Ersan MS, Xiao F. Critical evaluation of hyperspectral imaging technology for detection and quantification of microplastics in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135041. [PMID: 38941829 DOI: 10.1016/j.jhazmat.2024.135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
In this study, we critically evaluated the performance of an emerging technology, hyperspectral imaging (HSI), for detecting microplastics (MPs) in soil. We examined the technology's robustness against varying environmental conditions in five groups of experiments. Our findings show that near-infrared (NIR) hyperspectral imaging (HSI) effectively detects microplastics (MPs) in soil, though detection efficacy is influenced by factors such as MP concentration, color, and soil moisture. We found a generally linear relationship between the levels of MPs in various soils and their spectral responses in the NIR HSI imaging spectrum. However, effectiveness is reduced for certain MPs, like polyethylene, in kaolinite clay. Furthermore, we showed that soil moisture considerably influenced the detection of MPs, leading to nonlinearities in quantification and adding complexities to spectral analysis. The varied responses of MPs of different sizes and colors to NIR HSI present further challenges in detection and quantification. The research suggests pre-grouping of MPs based on size before analysis and proposes further investigation into the interaction between soil moisture and MP detectability to enhance HSI's application in MP monitoring and quantification. To our knowledge, this study is the first to comprehensively evaluate this technology for detecting and quantifying microplastics.
Collapse
Affiliation(s)
- Mansurat A Ali
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Xueyan Lyu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mahmut S Ersan
- Department of Civil & Environmental Engineering, University of North Dakota, Grand Forks, ND 58202-8115, United States
| | - Feng Xiao
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, United States; Missouri Water Center, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
14
|
Weitz K, Kantner D, Kessler A, Key H, Larson J, Bodnar W, Parvathikar S, Davis L, Robey N, Taylor P, De la Cruz F, Tolaymat T, Weber N, Linak W, Krug J, Phelps L. Review of per- and poly-fluoroalkyl treatment in combustion-based thermal waste systems in the United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172658. [PMID: 38657813 DOI: 10.1016/j.scitotenv.2024.172658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a class of synthetic chemicals known for their widespread presence and environmental persistence. Carbon-fluorine (C-F) bonds are major components among PFAS and among the strongest organic bonds, thus destroying PFAS may present significant challenge. Thermal treatment such as incineration is an effective and approved method for destroying many halogenated organic chemicals. Here, we present the results of existing studies and testing at combustion-based thermal treatment facilities and summarize what is known regarding PFAS destruction and mineralization at such units. Available results suggest the temperature and residence times reached by some thermal treatment systems are generally favorable to the destruction of PFAS, but the possibility for PFAS or fluorinated organic byproducts to escape destruction and adequate mineralization and be released into the air cannot be ruled out. Few studies have been conducted at full-scale operating facilities, and none to date have attempted to characterize possible fluorinated organic products of incomplete combustion (PICs). Further, the ability of existing air pollution control (APC) systems, designed primarily for particulate and acid gas control, to reduce PFAS air emissions has not been determined. These data gaps remain primarily due to the previous lack of available methods to characterize PFAS destruction and PIC concentrations in facility air emissions. However, newly developed stack testing methods offer an improved understanding of the extent to which thermal waste treatment technologies successfully destroy and mineralize PFAS in these waste streams.
Collapse
Affiliation(s)
- Keith Weitz
- RTI International, Research Triangle Park, NC, USA
| | | | | | - Haley Key
- RTI International, Research Triangle Park, NC, USA
| | - Judd Larson
- RTI International, Research Triangle Park, NC, USA
| | - Wanda Bodnar
- RTI International, Research Triangle Park, NC, USA
| | | | - Lynn Davis
- RTI International, Research Triangle Park, NC, USA
| | - Nicole Robey
- Innovative Technical Solutions, Gainesville, FL, USA
| | | | - Florentino De la Cruz
- College of Computing, Engineering and Construction, University of North Florida, Jacksonville, FL, USA
| | - Thabet Tolaymat
- Center for Environmental Solutions and Emergency Management, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Nathan Weber
- Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William Linak
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jonathan Krug
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lara Phelps
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
15
|
Abeywardane K, Goldsmith CF. Accurate Enthalpies of Formation for PFAS from First-Principles: Combining Different Levels of Theory in a Generalized Thermochemical Hierarchy. ACS PHYSICAL CHEMISTRY AU 2024; 4:247-258. [PMID: 38800729 PMCID: PMC11117692 DOI: 10.1021/acsphyschemau.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 05/29/2024]
Abstract
The enthalpies of formation are computed for a large number of per- and poly fluoroalkyl substances (PFAS) using a connectivity-based hierarchy (CBH) approach. A combination of different electronic structure methods are used to provide the reference data in a hierarchical manner. The ANL0 method, in conjunction with the active thermochemical tables, provides enthalpies of formation for smaller species with subchemical accuracy. Coupled-cluster theory with explicit correlations are used to compute enthalpies of formation for intermediate species, based upon the ANL0 results. For the largest PFAS, including perfluorooctanoic acid (PFOA) and heptafluoropropylene oxide dimer acid (GenX), coupled-cluster theory with local correlations is used. The sequence of homodesmotic reactions proposed by the CBH are determined automatically by a new open-source code, AutoCBH. The results are the first reported enthalpies of formation for the majority of the species. A convergence analysis and global uncertainty quantification confirm that the enthalpies of formation at 0 K should be accurate to within ±5 kJ/mol. This new approach is not limited to PFAS, but can be applied to many chemical systems.
Collapse
Affiliation(s)
- Kento Abeywardane
- Chemical Engineering Group, School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - C. Franklin Goldsmith
- Chemical Engineering Group, School
of Engineering, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
16
|
Xia D, Zhang H, Ju Y, Xie HB, Su L, Ma F, Jiang J, Chen J, Francisco JS. Spontaneous Degradation of the "Forever Chemicals" Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) on Water Droplet Surfaces. J Am Chem Soc 2024. [PMID: 38584396 DOI: 10.1021/jacs.4c00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Because of their innate chemical stability, the ubiquitous perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been dubbed "forever chemicals" and have attracted considerable attention. However, their stability under environmental conditions has not been widely verified. Herein, perfluorooctanoic acid (PFOA), a widely used and detected PFAS, was found to be spontaneously degraded in aqueous microdroplets under room temperature and atmospheric pressure conditions. This unexpected fast degradation occurred via a unique multicycle redox reaction of PFOA with interfacial reactive species on the droplet surface. Similar degradation was observed for other PFASs. This study extends the current understanding of the environmental fate and chemistry of PFASs and provides insight into aid in the development of effective methods for removing PFASs.
Collapse
Affiliation(s)
- Deming Xia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Hong Zhang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Yun Ju
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Lihao Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jie Jiang
- School of Marin Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| |
Collapse
|
17
|
Winchell LJ, Wells MJM, Ross JJ, Kakar F, Teymouri A, Gonzalez DJ, Dangtran K, Bessler SM, Carlson S, Almansa XF, Norton JW, Bell KY. Fate of perfluoroalkyl and polyfluoroalkyl substances (PFAS) through two full-scale wastewater sludge incinerators. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11009. [PMID: 38444297 DOI: 10.1002/wer.11009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are an emerging issue in wastewater treatment. High-temperature thermal processes, incineration being time-tested, offer the opportunity to destroy and change the composition of PFAS. The fate of PFAS has been documented through wastewater sludge incinerators, including a multiple hearth furnace (MHF) and a fluidized bed furnace (FBF). The dewatered wastewater sludge feedstock averaged 247- and 1280-μmol targeted PFAS per sample run in MHF and FBF feed, respectively. Stack emissions (reportable for all targeted PFAS from MHF only) averaged 5% of that value with shorter alkyl chain compounds comprising the majority of the targeted PFAS. Wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust with an average of 0.740- and 0.114-mol F- per sample run, for the MHF and FBF, respectively. Simple alkane PFAS measured at the stack represented 0.5%-4.5% of the total estimated facility greenhouse gas emissions. PRACTITIONER POINTS: The MHF emitted six short chain PFAS from the stack, which were shorter alkyl chain compounds compared with sludge PFAS. The FBF did not consistently emit reportable PFAS from the stack, but contamination complicated the assessment. Five percent of the MHF sludge molar PFAS load was reported in the stack. MHF and FBF wet scrubber water streams accumulated nonpolar fluorinated organics from the furnace exhaust. Ultra-short volatile alkane PFAS measured at the stack represented 0.5%-4.5% of the estimated facility greenhouse gas emissions.
Collapse
Affiliation(s)
| | | | - John J Ross
- Brown and Caldwell, Walnut Creek, California, USA
| | - Farokh Kakar
- Brown and Caldwell, Walnut Creek, California, USA
| | - Ali Teymouri
- Brown and Caldwell, Walnut Creek, California, USA
| | | | - Ky Dangtran
- Dangtran Combustion Consulting, Katy, Texas, USA
| | - Scott M Bessler
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio, USA
| | - Shane Carlson
- Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio, USA
| | - Xavier Fonoll Almansa
- Great Lakes Water Authority, Detroit, Michigan, USA
- Maseeh Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas, USA
| | | | | |
Collapse
|
18
|
Sun R, Babalol S, Ni R, Dolatabad AA, Cao J, Xiao F. Efficient and fast remediation of soil contaminated by per- and polyfluoroalkyl substances (PFAS) by high-frequency heating. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132660. [PMID: 37898088 DOI: 10.1016/j.jhazmat.2023.132660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 09/26/2023] [Indexed: 10/30/2023]
Abstract
This study presents a novel thermal technology (high-frequency heating, HFH) for the decontamination of soil containing per- and polyfluoroalkyl substances (PFAS) and aqueous film-forming foams (AFFFs). Ultra-fast degradation of short-chain PFAS, long-chain homologs, precursors, legacy PFAS, emerging PFAS was achieved in a matter of minutes. The concentrations of PFAS and the soil type had a negligible impact on degradation efficiency, possibly due to the ultra-fast degradation rate overwhelming potential differences. Under the current HFH experiment setup, we achieved near-complete degradation (e.g., >99.9%) after 1 min for perfluoroalkyl carboxylic acids and perfluoroalkyl ether carboxylic acids and 2 min for perfluoroalkanesulfonic acids. Polyfluoroalkyl precursors in AFFFs were found to degrade completely within 1 min of HFH; no residual cationic, zwitterionic, anionic, or non-ionic intermediate products were detected following the treatment. The gaseous byproducts were considered. Most of gaseous organofluorine products of PFAS at low-and-moderate temperatures disappeared when temperatures reached 890 °C, which is in the temperature zone of HFH. For the first time, we demonstrated minimal loss of PFAS in water during the boiling process, indicating a low risk of PFAS entering the atmosphere with the water vapor. The findings highlight HFH its potential as a promising remediation tool for PFAS-contaminated soils.
Collapse
Affiliation(s)
- Runze Sun
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Samuel Babalol
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Ruichong Ni
- Department of Petroleum Engineering, University of North Dakota, 243 Centennial Drive Stop 8155, Grand Forks, ND 58202, USA
| | - Alireza Arhami Dolatabad
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Jiefei Cao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA
| | - Feng Xiao
- Department of Civil and Environmental Engineering, The University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Skedung L, Savvidou E, Schellenberger S, Reimann A, Cousins IT, Benskin JP. Identification and quantification of fluorinated polymers in consumer products by combustion ion chromatography and pyrolysis-gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:82-93. [PMID: 38099738 DOI: 10.1039/d3em00438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Total fluorine was determined in 45 consumer product samples from the Swedish market which were either suspected or known to contain fluorinated polymers. Product categories included cookware (70-550 000 ppm F), textiles (10-1600 ppm F), electronics (20-2100 ppm F), and personal care products (10-630 000 ppm F). To confirm that the fluorine was organic in nature, and deduce structure, a qualitative pyrolysis-gas chromatography-mass spectrometry (pyr-GC/MS) method was validated using a suite of reference materials. When applied to samples with unknown PFAS content, the method was successful at identifying polytetrafluoroethylene (PTFE) in cookware, dental products, and electronics at concentrations as low as 0.1-0.2 wt%. It was also possible to distinguish between 3 different side-chain fluorinated polymers in textiles. Several products appeared to contain high levels of inorganic fluorine. This is one of the few studies to quantify fluorine in a wide range of consumer plastics and provides important data on the concentration of fluorine in materials which may be intended for recycling, along with insights into the application of pyr-GC/MS for structural elucidation of fluorinated polymers in consumer products.
Collapse
Affiliation(s)
- Lisa Skedung
- RISE Research Institutes of Sweden, Department Materials and Surface Design, Stockholm, Sweden.
| | - Eleni Savvidou
- Stockholm University, Department of Environmental Science, Stockholm, Sweden.
| | - Steffen Schellenberger
- RISE Research Institutes of Sweden, Unit Environment and Sustainable Chemistry, Stockholm, Sweden
| | - Anders Reimann
- RISE Research Institutes of Sweden, Department Materials and Surface Design, Stockholm, Sweden.
| | - Ian T Cousins
- Stockholm University, Department of Environmental Science, Stockholm, Sweden.
| | - Jonathan P Benskin
- Stockholm University, Department of Environmental Science, Stockholm, Sweden.
| |
Collapse
|