1
|
Li Z, Li J, Hu Y, Yan Y, Tang S, Ma R, Li L. Evaluation of pharmaceutical consumption between urban and suburban catchments in China by wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2024; 250:118544. [PMID: 38408630 DOI: 10.1016/j.envres.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Wastewater-based epidemiology (WBE) is amply used for estimating human consumption of chemicals, yet information on regional variation of pharmaceuticals and their environmental fate are scarce. Thus, this study aims to estimate the consumption of three cardiovascular, four non-steroidal anti-inflammatory pharmaceuticals (NSAIDs), and four psychoactive pharmaceuticals between urban and suburban catchments in China by WBE, and to explore their removal efficiencies and ecological risks. Eleven analytes were detected in both influent and effluent samples. The estimated consumptions ranged from
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yongxia Hu
- West Center, Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yile Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liangzhong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Wang H, Gao R, Liang W, Zhou Y, Wang Z, Lan L, Chen J, Zeng F. Feasibility of sulfated BPA and BPS as wastewater-based epidemiology biomarkers: Insights from wastewater and reported human urine analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171870. [PMID: 38531444 DOI: 10.1016/j.scitotenv.2024.171870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
In wastewater-based epidemiology (WBE), the selection of appropriate biomarkers presents a significant challenge. Recently, sulfated bisphenols have garnered attention as potential WBE biomarkers due to their increased stability in wastewater compared to glucuronide conjugates. This study aims to comprehensively assess the feasibility of employing sulfated BPA and BPS as WBE biomarkers by analyzing both WBE and human biomonitoring data. To conduct this research, wastewater samples were collected from six domestic wastewater treatment plants in Guangzhou, China, and urinary concentration of BPA and BPS were obtained from peer-reviewed literature. The results revealed that mean urinary concentrations of BPA and BPS, calculated using Monte Carlo simulations, significantly exceeded those reported in human biomonitoring studies. Furthermore, the per capita mass load ratio of sulfated BPA and BPS in human urine to the mass load in wastewater was found to be below 10 %. This outcome suggests that the excretion of BPA-S and BPS-S in urine does not make a substantial contribution to wastewater, hinting at the existence of other notable sources. Consequently, our study concludes that sulfated BPA-S and BPS-S are not suitable candidates as WBE biomarkers. This work provides a referenceable analytical framework for evaluating the feasibility of WBE biomarkers and emphasizes the necessity for caution when utilizing WBE to assess human exposure to chemicals.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Zhuo Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275; Guangdong, China.
| |
Collapse
|
3
|
Wang Z, Zheng Q, O'Brien JW, Tscharke BJ, Chan G, Thomas KV, Mueller JF, Thai PK. Analysis of wastewater from 2013 to 2021 detected a recent increase in nicotine use in Queensland, Australia. WATER RESEARCH 2024; 250:121040. [PMID: 38154341 DOI: 10.1016/j.watres.2023.121040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Previous wastewater-based epidemiology (WBE) studies have reported decreasing trends of nicotine and tobacco use in Australia before 2017, but there is concern that increasing illicit use of nicotine in vaping products and illicit tobacco could reverse this progress. This study aimed to assess temporal trends of nicotine consumption and specifically tobacco consumption via wastewater analysis in a population in Australia between 2013 and 2021. One week of daily wastewater samples were analyzed every two months from February 2013 to December 2021 in a regional city serving ∼100,000 people. A total of 340 daily samples were analyzed for anabasine (tobacco specific biomarker) and nicotine metabolites, cotinine and hydroxycotinine, using direct injection method by liquid chromatography with tandem mass spectrometry. Daily consumption estimates were calculated from daily flow data, population estimates and previously reported excretion factors. Linear spline regression was performed to identify periods when significant change of slopes occurred and to evaluate the temporal trends. Tobacco use monitored using anabasine as a biomarker, showed a decreasing trend over the whole period with a higher rate of decrease during the first two years (2013-2014, 21 % decrease) compared to the later 7 years (2015-2021, 10 % decrease). Nicotine use, monitored using cotinine and hydroxycotinine, showed a downward trend between 2013 and 2018 (2013-2014: 18 % decrease, p < 0.05; 2015-2016: 6 % increase, p = 0.48; Feb-Dec 2017: 15 % decrease, p = 0.39) followed by a significant increase from 2018 to 2021 (40 % increase, p < 0.001). This finding suggests the increasing use of non-tobacco nicotine-based products. Additionally, the tobacco use estimate by wastewater analysis was higher than the tobacco sales data, which suggests the use of illicit tobacco in the catchment.
Collapse
Affiliation(s)
- Zhe Wang
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Gary Chan
- Center for Youth Substance Abuse Research, The university of Queensland, Brisbane, QLD 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
4
|
Duttagupta S, Nynas K, Richardot W, Salam SB, Pennington M, Wong J, Van De Werfhorst LC, Dodder NG, Novotny T, Sant K, Holden PA, Hoh E. Influence of tobacco product wastes in a protected coastal reserve adjacent to urbanization. MARINE POLLUTION BULLETIN 2024; 199:115929. [PMID: 38141586 DOI: 10.1016/j.marpolbul.2023.115929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The present study, conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, aimed to assess tobacco-related pollutants in urban waters, a topic with limited prior research. Across 26 events occurring between November 2019 and February 2022, encompassing both wet and dry seasons at two outfall sites (Noyes St. and Olney St.), water and sediment samples were subjected to analysis for nicotine and cotinine levels, with Noyes St. displaying wide variation in nicotine concentrations, reaching a peak of 50.75 ng/L in water samples, whereas Olney St. recorded a peak of 1.46 ng/L. Wet seasons consistently had higher nicotine levels in water, suggesting the possibility of tobacco litter entering the reserve through stormwater runoff. Cotinine was detected in both sites in both water and sediment samples; however, these levels were considerably lower in comparison to nicotine concentrations. Limited research assesses aquatic environmental pollution from tobacco use and disposal, especially in protected areas like urban natural reserves. This study was conducted at the Kendall-Frost Mission Bay Marsh Reserve in San Diego, California, to evaluate tobacco-related pollutants in San Diego's urban waters. Twenty-six sampling events between November 2019 and February 2022, spanning wet and dry seasons at two outfall sites, were conducted. Nicotine and cotinine, a major ingredient of tobacco and its metabolite, were analyzed in the collected water and sediment samples. Nicotine concentrations differed substantially between the outfall locations (Noyes St. and Olney St.), with Noyes St. displaying wide variations, averaging at 9.31 (±13.24) ng/L with a maximum concentration of 50.75 ng/L, and Olney St. at 0.53 (±0.41) ng/L with a maximum concentration of 1.46 ng/L in water samples. In both locations, the nicotine concentrations in water samples were higher during wet seasons than dry seasons, and this pattern was more significant at Noyes St. outfall than at Olney St. outfall, which received not only stormwater runoff but also was connected to Mission Bay. Although this pattern did not directly align with sediment nicotine levels at both sites, maximum nicotine concentration in Noyes St. sediments during wet seasons was approximately 120 times higher than in Olney St. sediments. Regarding cotinine, Noyes St. outfall water averaged 3.17 ng/L (±1.88), and Olney St. water averaged 1.09 ng/L (±1.06). Similar to nicotine, the cotinine concentrations were higher in Noyes St. water and sediment compared to Olney St., but overall, the cotinine concentrations in both water and sediment were much lower than the corresponding nicotine concentrations. The study identifies urban stormwater runoff as a potential source of nicotine and cotinine pollution in a protected reserve, implicating tobacco product litter and human tobacco use as contributing factors.
Collapse
Affiliation(s)
- Srimanti Duttagupta
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; Department of Geology, University of Georgia, Athens, GA 30602, USA
| | - Katelyn Nynas
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - William Richardot
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA
| | - Shahrin Binte Salam
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Melissa Pennington
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Jade Wong
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Nathan G Dodder
- School of Public Health, San Diego State University, San Diego, CA 92182, USA; San Diego State University Research Foundation, San Diego, CA 92182, USA
| | - Thomas Novotny
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Karilyn Sant
- School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|