1
|
Yu YT, Zhang S, Xiang S, Wu Y. Socioeconomic Inequalities in PM 2.5 Exposure and Local Source Contributions at Community Scales Using Hyper-Localized Taxi-Based Mobile Monitoring in Xi'an, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7222-7234. [PMID: 40072015 DOI: 10.1021/acs.est.4c11385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The relationship between the socioeconomic status (SES) and PM2.5 exposure is rather inconclusive. We employed taxi-based measurements with 30 m resolution to characterize PM2.5 exposure with local source contribution (PM2.5 adjusted concentration) discerned for 2019 winter and 2020 summer, in Xi'an. A big data set comprising ∼6 × 106 hourly PM2.5 measurements and SES data from ∼5000 communities was utilized to examine the socioeconomic inequalities in community-level PM2.5 exposure. Our results indicate that the inhabitants with lower SES are more likely to be disproportionately exposed compared to those with higher SES. At least 92% of disproportionately exposed inhabitants in rural regions reside in low SES areas, whereas a relatively smaller proportion (69-78%) reside in urban regions. The local source has a more profound impact on PM2.5 exposure during summer than winter. The inhabitants in polluted areas and low PM2.5 adjusted concentration areas accounted for 22% and 26% of total PM2.5 exposure during the winter. However, inhabitants residing in low-concentration areas contributed only 12% of total exposure during summer while those polluted areas contributed 30%. These findings provide valuable insights into the relationship between community-level PM2.5 exposure and SES, highlighting the need for more sophisticated air quality policies to alleviate socioeconomic inequalities in PM2.5 exposure.
Collapse
Affiliation(s)
- Yu Ting Yu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
| | - Shaojun Zhang
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
- Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| | - Sheng Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Ye Wu
- School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, P. R. China
- State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, P. R. China
- Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Wang Q, Chen Q, Lin H, Ding J, Sha T, Han Y. Investigation of the Mechanism of Oxidative Potential Increase in Atmospheric Particulate Matter during Photoaging: Important Role of Aromatic Nitrogenous Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19818-19831. [PMID: 39436324 DOI: 10.1021/acs.est.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Particulate matter (PM) undergoing various aging processes in the atmosphere changes its toxicity. However, the mechanism of toxicity evolution is not fully clarified currently. This study demonstrates that photoaging promotes an increase in the oxidative potential (OP) of atmospheric PM by about 30%, and the increased OP is mainly attributed to the production of secondary organic compounds, while water-soluble metal ions contribute only 11%. The OP of nonextractable matters (NEMs) of atmospheric PM was mostly increased after photoaging, followed by water-soluble matters (WSMs). NEM can produce quinone-like functional groups and secondary persistent free radicals during photoaging, which are most likely to produce reactive oxygen species (ROS). For WSM, the conversion of low-oxidation humic-like substances (HULIS) to high-oxidation HULIS is the main reason for the increase in OP. Quinones, nitrophenols, and N-containing heterocycles are the OP contributors produced during the conversion process. Among them, quinones are the main secondary oxidizing active compounds, while nitro-phenolic compounds and N-containing heterocyclic compounds may play a catalyst-like role, facilitating the production of oxidizing active compounds and ROS in the newly converted high-oxidation HULIS. This study clarifies the secondary OP generation mechanism and provides new insights into the uncertainty of PM toxicity during atmospheric aging.
Collapse
Affiliation(s)
- Qingwen Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hao Lin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiale Ding
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Tong Sha
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuemei Han
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
3
|
Yan Q, Liu X, Kong S, Zhang W, Gao Q, Zhang Y, Li H, Wang H, Xiao T, Li J. Hourly emission amounts and concentration of water-soluble ions in primary particles from residential coal burning in rural northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124641. [PMID: 39122172 DOI: 10.1016/j.envpol.2024.124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Residential coal burning (RCB) stands as an important contributor to ambient pollutants in China. For the effective execution of air pollution control policies, it is essential to maintain precise emission inventories of RCB. The absence of hourly emission factors (EFs) combined with the inaccuracies in the spatial-temporal distribution of activity data, constrained the quality of residential coal combustion emission inventories, thereby impeding the estimation of air pollutant emissions. This study revised the hourly EFs for PM2.5 and water-soluble ions (WSIs) emitted from RCB in China. The hourly emission inventories for PM2.5 and WSIs derived from RCB illustrate the diurnal fluctuations in emission patterns. This study found that the emissions of PM2.5, NH4+, Cl-, and SO42- showed similar emission features with emission of 106.8 Gg, 1417.6, 356.8, and 5868.5 ton in erupt period. The results provide basic data for evaluating RCB emission reduction policies, simulating particles, and preventing air pollution in both sub-regions and time periods. The spatial emission and simulated concentration distribution of PM2.5 and WSIs indicated that emission hotspot shifted from North China Plain (NCP) to Northeast region in China. The emissions in China were well-controlled in '2 + 26' region (R28) priority region, with hotspots decreasing by 99.6% in BTH region. The RCB became the dominant contributor to ambient PM2.5 with a ratio in the range of 16.2-23.7% in non-priority region.
Collapse
Affiliation(s)
- Qin Yan
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan, China
| | - Xi Liu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China.
| | - Wenjie Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Qingxian Gao
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuzhe Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hui Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Han Wang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Tingyu Xiao
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Junhong Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
4
|
Wang X, Chen X, Zhou Z, Teng M, Xiang Y, Peng C, Huang C, Peng C. Dynamic patterns of particulate matter concentration and size distribution in urban street canyons: insights into diurnal and short-term seasonal variations. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:953. [PMID: 39298077 DOI: 10.1007/s10661-024-13104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/06/2024] [Indexed: 10/20/2024]
Abstract
Time-varying characteristics of particulate matter (PM) pollution play a crucial role in shaping atmospheric dynamics, which impact the health and welfare of urban commuters. Previously published studies on the diurnal patterns of PMs are not consistent, especially in the context of field experiments in central China, and most field studies have only focused on particles with a single particle size. This study conducted regional-scale studies across 72 street canyon sets in Wuhan, China, investigated diurnal and seasonal PM concentration variations while also evaluating various PM size and the key driving factors. During summer (July, August, and September), evergreen tree-lined street canyons maintained a stable linear trend for smaller dp particulates (i.e., PM1, PM2.5, and PM4), while deciduous street canyons exhibited a bimodal distribution. In winter (January and February), fine particulates (i.e., PM1 and PM2.5) remained a linear trend in evergreen street canyons, while deciduous street canyons show a slightly wavy fluctuating pattern. Meanwhile, it exhibited quadrimodal-peak and triple-trough patterns in both PM7, PM10, and TSP concentrations. The lowest PM concentrations were observed between 14:00 and 16:00 for all particle sizes, with decreased summer pollution (7.81% lower in PM2.5, 53.47% lower in PM10, and 50.3% lower in TSP) noted in our seasonal analysis. Among the various meteorological factors, relative humidity (RH) was identified as the dominant influencing PM factor in both summer and winter. Results from this study will help us better understand field-based air pollutant dispersion processes within pedestrian spaces while laying the groundwork for future research into street PM experiments.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- School of Environmental Art, Hubei Institute of Fine Arts, Wuhan, 430202, China
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, 2098 Rue Kimberley, Montreal, QC, H3C 3P8, Canada
| | - Xiaoping Chen
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Zhixiang Zhou
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingjun Teng
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Xiang
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Architecture, National University of Singapore, Singapore, Singapore
| | - Chucai Peng
- College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Architecture, National University of Singapore, Singapore, Singapore
| | - Chunbo Huang
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, 2098 Rue Kimberley, Montreal, QC, H3C 3P8, Canada
- State Key Laboratory of Biogeology and Environmental Geology, School of Geography and Information Engineering, China University of Geosciences, Wuhan, 430074, China
| | - Changhui Peng
- Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, 2098 Rue Kimberley, Montreal, QC, H3C 3P8, Canada.
- School of Geographic Sciences, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
5
|
Xiao X, Lei Y, Yao T, Huang T, Yan P, Cao L, Cao Y. PM 10 exposure induces bronchial hyperresponsiveness by upreguating acetylcholine muscarinic 3 receptor. Toxicol Appl Pharmacol 2024; 490:117035. [PMID: 39019094 DOI: 10.1016/j.taap.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Exposure to particulate matter (PM10) can induce respiratory diseases that are closely related to bronchial hyperresponsiveness. However, the involved mechanism remains to be fully elucidated. This study aimed to demonstrate the effects of PM10 on the acetylcholine muscarinic 3 receptor (CHRM3) expression and the role of the ERK1/2 pathway in rat bronchial smooth muscle. A whole-body PM10 exposure system was used to stimulate bronchial hyperresponsiveness in rats for 2 and 4 months, accompanied by MEK1/2 inhibitor U0126 injection. The whole-body plethysmography system and myography were used to detect the pulmonary and bronchoconstrictor function, respectively. The mRNA and protein levels were determined by Western blotting, qPCR, and immunofluorescence. Enzyme-linked immunosorbent assay was used to detect the inflammatory cytokines. Compared with the filtered air group, 4 months of PM10 exposure significantly increased CHRM3-mediated pulmonary function and bronchial constriction, elevated CHRM3 mRNA and protein expression levels on bronchial smooth muscle, then induced bronchial hyperreactivity. Additionally, 4 months of PM10 exposure caused an increase in ERK1/2 phosphorylation and increased the secretion of inflammatory factors in bronchoalveolar lavage fluid. Treatment with the MEK1/2 inhibitor, U0126 inhibited the PM10 exposure-induced phosphorylation of the ERK1/2 pathway, thereby reducing the PM10 exposure-induced upregulation of CHRM3 in bronchial smooth muscle and CHRM3-mediated bronchoconstriction. U0126 could rescue PM10 exposure-induced pathological changes in the bronchus. In conclusion, PM10 exposure can induce bronchial hyperresponsiveness in rats by upregulating CHRM3, and the ERK1/2 pathway may be involved in this process. These findings could reveal a potential therapeutic target for air pollution induced respiratory diseases.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Yali Lei
- Shanghai Environmental Monitoring Center, Shanghai 200232, China
| | - Tong Yao
- Precision Medical Institute, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, 710004, China
| | - Tingting Huang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Pingping Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China
| | - Lei Cao
- Precision Medical Institute, the Second Affiliated Hospital of Xi'an Jiaotong University, 157 West 5th Road, 710004, China.
| | - Yongxiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
6
|
Jia SM, Chen MH, Yang PF, Wang L, Wang GY, Liu LY, Ma WL. Seasonal variations and sources of atmospheric EPFRs in a megacity in severe cold region: Implications for the influence of strong coal and biomass combustion. ENVIRONMENTAL RESEARCH 2024; 252:119067. [PMID: 38704002 DOI: 10.1016/j.envres.2024.119067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Environmentally persistent free radicals (EPFRs) can pose exposure risks by inducing the generation of reactive oxygen species. As a new class of pollutants, EPFRs have been frequently detected in atmospheric particulate matters. In this study, the seasonal variations and sources of EPFRs in a severe cold region in Northeastern China were comprehensively investigated, especially for the high pollution events. The geomean concentration of EPFRs in the total suspended particle was 6.58 × 1013 spins/m3 and the mean level in winter was one order of magnitude higher than summer and autumn. The correlation network analysis showed that EPFRs had significantly positive correlation with carbon component, K+ and PAHs, indicating that EPFRs were primarily emitted from combustion and pyrolysis process. The source appointment by the Positive Matrix Factorization (PMF) model indicated that the dominant sources in the heating season were coal combustion (48.4%), vehicle emission (23.1%) and biomass burning (19.4%), while the top three sources in the non-heating season were others (41.4%), coal combustion (23.7%) and vehicle emissions (21.2%). It was found that the high EPFRs in cold season can be ascribed to the extensive use of fossil fuel for heating demand; while the high EPFRs occurred in early spring were caused by the large-scale opening combustion of biomass. In summary, this study provided important basic information for better understanding the pollution characteristics of EPFRs, which suggested that the implementation of energy transformation and straw utilization was benefit for the control of EPFRs in severe cold region.
Collapse
Affiliation(s)
- Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Mei-Hong Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Guo-Ying Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin, 150090, China.
| |
Collapse
|
7
|
Luo Z, Feng C, Yang J, Dai Q, Dai T, Zhang Y, Liang D, Feng Y. Assessing emission-driven changes in health risk of source-specific PM 2.5-bound heavy metals by adjusting meteorological covariates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172038. [PMID: 38552967 DOI: 10.1016/j.scitotenv.2024.172038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
Heavy metals (HMs) in PM2.5 gain much attention for their toxicity and carcinogenic risk. This study evaluates the health risks of PM2.5-bound HMs, focusing on how meteorological conditions affect these risks against the backdrop of PM2.5 reduction trends in China. By applying a receptor model with a meteorological normalization technique, followed by health risk assessment, this work reveals emission-driven changes in health risk of source-specific HMs in the outskirt of Tianjin during the implementation of China' second Clean Air Action (2018-2020). Sources of PM2.5-bound HMs were identified, with significant contributions from vehicular emissions (on average, 33.4 %), coal combustion (26.3 %), biomass burning (14.1 %), dust (11.7 %), industrial boilers (9.7 %), and shipping emission and sea salt (4.7 %). The source-specific emission-driven health risk can be enlarged or dwarfed by the changing meteorological conditions over time, demonstrating that the actual risks from these source emissions for a given time period may be higher or smaller than those estimated by traditional assessments. Meteorology contributed on average 56.1 % to the interannual changes in source-specific carcinogenic risk of HMs from 2018 to 2019, and 5.6 % from 2019 to 2020. For the source-specific noncarcinogenic risk changes, the contributions were 38.3 % and 46.4 % for the respective periods. Meteorology exerts a more profound impact on daily risk (short-term trends) than on annual risk (long-term trends). Such meteorological impacts differ among emission sources in both sign and magnitude. Reduced health risks of HMs were largely from targeted regulatory measures on sources. Therefore, the meteorological covariates should be considered to better evaluate the health benefits attributable to pollution control measures in health risk assessment frameworks.
Collapse
Affiliation(s)
- Zhongwei Luo
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Chengliang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Jingyi Yang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Qili Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tianjiao Dai
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yufen Zhang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Danni Liang
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; China Meteorological Administration-Nankai University (CMA-NKU) Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin 300350, China; Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Li J, Hua C, Ma L, Chen K, Zheng F, Chen Q, Bao X, Sun J, Xie R, Bianchi F, Kerminen VM, Petäjä T, Kulmala M, Liu Y. Key drivers of the oxidative potential of PM 2.5 in Beijing in the context of air quality improvement from 2018 to 2022. ENVIRONMENT INTERNATIONAL 2024; 187:108724. [PMID: 38735076 DOI: 10.1016/j.envint.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been continuously decreasing in the Beijing-Tianjin-Hebei region. However, health endpoints do not exhibit a linear correlation with PM mass concentrations. Thus, it is urgent to clarify the prior toxicological components of PM to further improve air quality. In this study, we analyzed the long-term oxidative potential (OP) of water-soluble PM2.5, which is generally considered more effective in assessing hazardous exposure to PM in Beijing from 2018 to 2022 based on the dithiothreitol assay and identified the crucial drivers of the OP of PM2.5 based on online monitoring of air pollutants, receptor model, and random forest (RF) model. Our results indicate that dust, traffic, and biomass combustion are the main sources of the OP of PM2.5 in Beijing. The complex interactions of dust particles, black carbon, and gaseous pollutants (nitrogen dioxide and sulfur dioxide) are the main factors driving the OP evolution, in particular, leading to the abnormal rise of OP in Beijing in 2022. Our data shows that a higher OP is observed in winter and spring compared to summer and autumn. The diurnal variation of the OP is characterized by a declining trend from 0:00 to 14:00 and an increasing trend from 14:00 to 23:00. The spatial variation in OP of PM2.5 was observed as the OP in Beijing is lower than that in Shijiazhuang, while it is higher than that in Zhenjiang and Haikou, which is primarily influenced by the distribution of black carbon. Our results are of significance in identifying the key drivers influencing the OP of PM2.5 and provide new insights for advancing air quality improvement efforts with a focus on safeguarding human health in Beijing.
Collapse
Affiliation(s)
- Jinwen Li
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenjie Hua
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li Ma
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kaiyun Chen
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feixue Zheng
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingcai Chen
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaolei Bao
- Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, China
| | - Juan Sun
- Jiangsu Nanjing Environmental Monitoring Center, Nanjing 210019, China
| | - Rongfu Xie
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Veli-Matti Kerminen
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Markku Kulmala
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Yongchun Liu
- Aerosol and Haze Laboratory, Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Tang J, Li J, Zhao S, Zhong G, Mo Y, Jiang H, Jiang B, Chen Y, Tang J, Tian C, Zong Z, Hussain Syed J, Song J, Zhang G. Molecular signatures and formation mechanisms of water-soluble chromophores in particulate matter from Karachi in Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169890. [PMID: 38190909 DOI: 10.1016/j.scitotenv.2024.169890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/30/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
Excitation-emission matrix (EEM) fluorescence spectroscopy is a widely-used method for characterizing the chemical components of brown carbon (BrC). However, the molecular basics and formation mechanisms of chromophores, which are decomposed by parallel factor (PARAFAC) analysis, are not yet fully understood. In this study, we characterized the water-soluble organic carbon (WSOC) in aerosols collected from Karachi, Pakistan, using EEM spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We identified three PARAFAC components, including two humic-like components (C1 and C2) and one phenolic-like species (C3). We determined the molecular families associated with each component by performing Spearman correlation analysis between FT-ICR MS peaks and PARAFAC component intensities. We found that the C1 and C2 components were associated with nitrogen-enriched compounds, where C2 with the longest emission wavelength exhibited a higher level of aromaticity, N content, and oxygenation than C1. The C3 associated formulas have fewer nitrogen-containing species, a lower unsaturation degree, and a lower oxidation state. An oxidation pathway was identified as an important process in the formation of C1 and C2 components at the molecular level, particularly for the assigned CHON compounds associated with the gas-phase oxidation process, despite their diverse precursor types. Numerous C2 formulas were found in the "potential BrC" region and overlapped with the BrC-associated formulas. It can be inferred that the compounds that fluoresce C2 contributed considerably to the light absorption of BrC. These findings are essential for future studies utilizing the EEM-PARAFAC method to explore the sources, processes, and compositions of atmospheric BrC.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongxing Jiang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianhui Tang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chongguo Tian
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zheng Zong
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
10
|
Yang Y, Ma Z, Zhuang Y, Long X, Yu Y. Development of multi-generation lower respiratory tract model and insights into the transport and deposition characteristics of inhalable particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166725. [PMID: 37657539 DOI: 10.1016/j.scitotenv.2023.166725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Airborne particles can spread quickly and enter human respiratory system via inhalation, causing chronic diseases, even cancer. Although recent studies have informed of toxicity of various pollutants, understanding the transport and deposition characteristics of particles in lower respiratory tract is still challenging. The current study proposes a novel model to simulate flow field change from the entrance of lower respiratory tract to pulmonary acinus, while studying particle transport and deposition characteristics. This model for lower respiratory tract with several bronchial extensions containing virtual pulmonary acinus is calculated using computational fluid dynamics and dynamics mesh. The results showed that in the first 10 generations of the lower respiratory tract, vortices and gravity interfered with particles' trajectory, affecting particle deposition distribution. For the first to the tenth-generation respiratory tract, coarse particles were deposited throughout almost the whole respiratory tract model. In contrast, ultrafine particles did not deposit in the higher-generation respiratory tract. The particle enrichment ability of various lobes was uneven with three particle deposition fraction variation patterns. Virtual pulmonary acinus influenced particle deposition and distribution because of vortex ring's trapped ability during expansion and contraction. This new attempt to build a virtual pulmonary acinus model to simulate particle deposition effects in human respiratory system may provide a reference for studying the toxicities of inhalable particles in the exposed human body.
Collapse
Affiliation(s)
- Yan Yang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China
| | - Zijian Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Yijie Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiaoao Long
- Neurosurgery Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, Guangdong, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou 515041, Guangdong, China.
| |
Collapse
|