1
|
Zhang Q, Li Y, Li J, Ma J, Li M, Guo LH. A fluorescence biosensor with a dual-function DNA probe targeting the activated estrogen receptor for estrogenic activity evaluation. ENVIRONMENTAL RESEARCH 2025; 273:121163. [PMID: 40015432 DOI: 10.1016/j.envres.2025.121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Rapid screening and evaluation of endocrine disruption chemicals including environmental estrogens (EEs) is crucial for environmental safety and public health. Conventional methods such as animal tests and cell assays are costly, time consuming, and hardly reproducible. In this work, a fluorescence biosensor mimicking the molecular interactions in the estrogen receptor (ER) signaling pathway was developed for the rapid evaluation of estrogenic activity of environmental chemicals. The key element of the biosensor is a dual-function DNA probe composed of an ER binding sequence and a dye-binding sequence. The ER binding sequence is part of the estrogen response element in the ER signaling pathway and used to bind the activated ER. The dye-binding sequence consists of six thymine bases which the OliGreen fluorescent dye binds to selectively and thus labels non-covalently. In the presence of an estrogenic chemical, ER is activated and then complexed with the DNA, leading to a reduction in the fluorescence anisotropy of OliGreen. Detection of estradiol produced a dose-response curve with an EC50 of 3 nM and lower limit of 0.5 nM, whereas a known ER antagonist did not show any response. Five emerging contaminants including resorcinol bis(diphenyl) phosphate (RDP), triphenyl phosphate (TPHP), tris (2-chloroisopropyl) phosphate (TCIPP), perfluoro-nonenoxybenzene sulfonate (OBS) and perfluorooctanoic acid (PFOA) were evaluated by the biosensor, and the results were consistent with those of the cell assays. Detection of RDP, TPHP and OBS in spiked river water samples resulted in recovery rates of 103%, 93%, and 98%, respectively. The biosensor detection is significantly faster, more robust and easier to carry out than the cell assays, and may provide a new high throughput technique for the screening of estrogenic chemicals and environmental contaminants.
Collapse
Affiliation(s)
- Qi Zhang
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Yuewei Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jiali Li
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Jiateng Ma
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310018, China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
2
|
He R, Yang J, Yuan S, Chen L, Ren H, Wu B. A genetically encoded fluorescent whole-cell biosensor for real-time detecting estrogenic activities in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136903. [PMID: 39694001 DOI: 10.1016/j.jhazmat.2024.136903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Real-time monitoring of estrogenic activity in the aquatic environment is a challenging task. Current biosensors face difficulties due to their limited response speed and environmental tolerance, especially for detecting wastewater, the major source of estrogenic compounds in aquatic environments. To address these difficulties, this study developed a single fluorescent protein (FP) -based whole-cell bacterial biosensor named ER-Light, which was achieved by inserting the sensing domain of the estrogen receptor (ER) into the FP Citrine and expressing it in the periplasm of Escherichia coli. As designed, ER-Light enables the detection of net estrogenic activity in mixtures, represented by estradiol equivalent concentration (EEQ). ER-Light detects EEQ in 40 s with a detection limit of 4.55 × 10-7 μM and a maximum working range of 1.1 × 10-4 μM, demonstrating sufficient response speed, sensitivity, and working range. In addition, the ER-Light can survive and tolerate wastewater effluent. Satisfactory recoveries (91.0 % to 102.1 %) eliminated concerns about the matrix effect of wastewater. EEQs (Not detected-2.9 ×10-5 µM) measured by ER-Light from the effluent of 9 wastewater treatment plants validate its practicality in detecting wastewater. This is the first attempt to integrate ER into FP-based biosensors for environment monitoring. Our findings provide valuable design rules for real-time detection of bioactivity effects in the environment, contributing to the safeguarding of ecological and human health.
Collapse
Affiliation(s)
- Ruonan He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Junyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Shengjie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Li N, Liu X, Bian C, Ren C, Hu Q, Yang Z, Xiao L, Guan T. Biomimetic androgen receptor-based AIE biosensor for detecting bisphenol analogues: An integrating in silico topological analysis, molecular docking, and experimental validation study. Talanta 2025; 281:126827. [PMID: 39245003 DOI: 10.1016/j.talanta.2024.126827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Bisphenol analogues are the typical class of endocrine disrupting chemicals (EDCs) that interfere with binding of endogenous hormones to androgen receptor (AR). With the expansion of industrial activities and the intensification of environmental pollution, an increasing array of bisphenol analogues is being released into the environment and food chain. This highlights the urgency to develop sensitive methods for the detection of bisphenol analogues. Here, we propose a biomimetic AR-based biosensor platform for detecting bisphenol analogues (BPF, TBBPA, and TBBPS) by binding with Aggregation-Induced Emission (AIE) probes. Following a comparison of the PROSS and ABACUS methods, biomimetic AR was designed using the ABACUS approach and subsequently expressed in vitro via the E. coli expression system. Through molecular docking and the observation of fluorescence changes upon binding with biomimetic AR, BS-46006 was selected as the AIE probe for the biosensor. The biomimetic AR-based biosensor showed sensitive detections of BPF, TBBPA, and TBBPS within a range of 0-50 mM. To further elucidate the multi-residue recognition mechanism, molecular orbitals, Electron Localization Function (ELF), and Localized Orbital Locator (LOL) were systematically calculated in this study. Lowest unoccupied molecular orbital and highest occupied molecular orbital indicated the energy gap of BPF, TBBPA, and TBBPS, which correspond to 0.12812, 0.19689, and 0.18711 eV, respectively. ELF and LOL offered clearer perspective through heat maps to visually represent the electron delocalization in BPF, TBBPA, and TBBPS. The matrix effect analysis suggested that the responses of bisphenol analogues in soil matrices could be effectively mitigated through sample pretreatment. The analysis of spiked soil samples showed the acceptable recoveries ranged from 91 % to 105 %. Additionally, the biomimetic AR-based AIE biosensor, which combines multi-residue detection with Tolerable Daily Intakes, shows great promise for the risk assessment of bisphenol analogues. This research may present a viable approach for the analysis of environmental pollutants.
Collapse
Affiliation(s)
- Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Xiaoxiao Liu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Canfeng Bian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Chenxi Ren
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Qin Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| | - Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, China.
| |
Collapse
|
4
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Li R, Li J, Lu X, Meng F, Chen J. Ultrasensitive Electrochemical Biosensor for Rapid Screening of Chemicals with Estrogenic Effect. BIOSENSORS 2024; 14:436. [PMID: 39329811 PMCID: PMC11430529 DOI: 10.3390/bios14090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Estrogenic chemicals are widely distributed and structurally diverse. They primarily disrupt estrogen-related metabolism in animals or humans by mimicking the agonistic receptor effects of natural estrogens, thereby influencing the transcription of estrogen receptors to regulate their quantity and sensitivity. This disruption of estrogen-related metabolism can lead to estrogen-related effects, posing risks to biological health, emphasizing the urgent need for simple and effective methods to screen compounds with estrogenic effects. Herein, a new electrochemical biological effect biosensor based on human estrogen receptor α (hERα) is developed, which uses hERα as the biorecognition element and employs the electroactive horseradish peroxidase (HRP) labeled 17β-estradiol (E2) multifunctional conjugate HRP-E2 as the signal-boosting element and ligand competition agent. Based on the specific ligand-receptor interaction principle between the target and nuclear receptor, by allowing the test compound to compete with HRP-E2 conjugate for binding to hERα and testing the electrocatalytic signal of the conjugate that fails to bind to the hERα estrogen receptor, rapid screening and quantitative detection of chemical substances with estrogenic effect have been achieved. The biosensor shows a wide linear range of 40 pM to 40 nM with a detection limit of 17 pM (S/N = 3) for E2, and the detection limit is 2 orders of magnitude better than that of the previously reported sensors. The biosensor based on ligand-receptor binding can not only quantitatively analyze the typical estrogen E2, but also evaluate the relative estrogen effect strength of other estrogen compounds, which has good stability and selectivity. This electrochemical sensing platform displays its promising potential for rapid screening and quantitative detection of chemicals with estrogenic effects.
Collapse
Affiliation(s)
- Ruixin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jin Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China;
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Fanli Meng
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; (R.L.); (J.C.)
| |
Collapse
|
6
|
Zhu X, Tang J, Ouyang X, Liao Y, Feng H, Yu J, Chen L, Lu Y, Yi Y, Tang L. A versatile CuCo@PDA nanozyme-based aptamer-mediated lateral flow assay for highly sensitive, on-site and dual-readout detection of Aflatoxin B1. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133178. [PMID: 38064951 DOI: 10.1016/j.jhazmat.2023.133178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
Mycotoxin contaminations in food and environment seriously harms human health. Constructing sensitive and point-of-test early-warning tools for mycotoxin determination is in high demand. In this study, a CuCo@PDA nanozyme-based aptamer-mediated lateral flow assay (Apt-LFA) has been elaborately designed for on-site and sensitive determination of mycotoxin Aflatoxin B1 (AFB1). Benefiting from the rich functional groups and excellent peroxidase-like activity, the CuCo@PDA with original dark color can be conjugated with the specific recognition probe (i.e., aptamer), generating colorimetric signal on the test lines of Apt-LFA via a competitive sensing strategy. The signal can further be amplified in-situ by catalytic chromogenic reaction. Therefore, a visual and dual-readout detection of AFB1 has been realized. The developed Apt-LFA provides a flexible detection mode for qualitative and quantitative analysis of AFB1 by naked-eyes observation or smartphone readout. The smartphone-based LFA platform shows a reliable and ultrasensitive determination of AFB1 with the limit of detection (LOD) of 2.2 pg/mL. The recoveries in the real samples are in the range of 95.11-113.77% with coefficients of variations less than 9.84%. This study provides a new approach to realize point-of-test and sensitive detection of mycotoxins in food and environment using nanozyme-based Apt-LFAs.
Collapse
Affiliation(s)
- Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China; School of Environmental Science and Engineering, TianGong University, Tianjin 300387, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Jiangfang Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Li Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yating Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yuyang Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|