1
|
Timmermann T, Yip C, Yang Y, Wemmer KA, Chowdhury A, Dores D, Takayama T, Nademanee S, Traag BA, Zamanian K, González B, Breecker DO, Fierer N, Slessarev EW, Fuenzalida‐Meriz GA. Harnessing Microbes to Weather Native Silicates in Agricultural Soils for Scalable Carbon Dioxide Removal. GLOBAL CHANGE BIOLOGY 2025; 31:e70216. [PMID: 40317991 PMCID: PMC12046632 DOI: 10.1111/gcb.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/09/2025] [Accepted: 04/12/2025] [Indexed: 05/07/2025]
Abstract
Anthropogenic carbon emissions contribute significantly to the greenhouse effect, resulting in global warming and climate change. Thus, addressing this critical issue requires innovative and comprehensive solutions. Silicate weathering moderates atmospheric CO2 levels over geological time, but it occurs too slowly to counteract anthropogenic emissions effectively. Here, we show that the microorganism Bacillus subtilis strain MP1 promotes silicate weathering across different experimental setups with various levels of complexity. First, we found that MP1 was able to form a robust biofilm in the presence of feldspar and significantly increased (p < 0.05) silicate dissolution rates, pH, and calcium carbonate formation in culture experiments. Second, in mesocosm experiments, we found that MP1 enhanced the silicate weathering rate in soil by more than six times compared to the untreated control. In addition, soil inorganic carbon increased by 20%, and the concentrations of ions, including calcium, magnesium, and iron, were also elevated under the MP1 treatment. More importantly, when applied as a seed treatment on eight soybean fields, we found that MP1 significantly (p < 0.05) boosted soil inorganic carbon, leading to a gross accrual of 2.02 tonnes of inorganic carbon per hectare annually. Our findings highlight the potential of enhancing native silicate weathering with microorganisms in agricultural fields to increase soil inorganic carbon, contributing to climate change mitigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kazem Zamanian
- Institute of Earth System Sciences, Section Soil ScienceLeibniz University of HannoverHannoverGermany
| | - Bernardo González
- Laboratorio de Bioingeniería, Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezSantiagoChile
| | - Daniel O. Breecker
- Department of Geological SciencesUniversity of Texas at AustinAustinTexasUSA
| | - Noah Fierer
- Department of Ecology and Evolutionary BiologyUniversity of Colorado BoulderBoulderColoradoUSA
- Cooperative Institute for Research in Environmental SciencesUniversity of Colorado BoulderBoulderColoradoUSA
| | - Eric W. Slessarev
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA
- Yale Center for Natural Carbon CaptureYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
2
|
Chen Y, Kanan MW. Thermal Ca 2+/Mg 2+ exchange reactions to synthesize CO 2 removal materials. Nature 2025; 638:972-979. [PMID: 39972128 DOI: 10.1038/s41586-024-08499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2024] [Indexed: 02/21/2025]
Abstract
Most current strategies for carbon management require CO2 removal (CDR) from the atmosphere on the multi-hundred gigatonne (Gt) scale by 2100 (refs. 1-5). Mg-rich silicate minerals can remove >105 Gt CO2 and sequester it as stable and innocuous carbonate minerals or dissolved bicarbonate ions3,6,7. However, the reaction rates of these minerals under ambient conditions are far too slow for practical use. Here we show that CaCO3 and CaSO4 react quantitatively with diverse Mg-rich silicates (for example, olivine, serpentine and augite) under thermochemical conditions to form Ca2SiO4 and MgO. On exposure to ambient air under wet conditions, Ca2SiO4 is converted to CaCO3 and silicic acid, and MgO is partially converted into a Mg carbonate within weeks, whereas the input Mg silicate shows no reactivity over 6 months. Alternatively, Ca2SiO4 and MgO can be completely carbonated to CaCO3 and Mg(HCO3)2 under 1 atm CO2 at ambient temperature within hours. Using CaCO3 as the Ca source, this chemistry enables a CDR process in which the output Ca2SiO4/MgO material is used to remove CO2 from air or soil and the CO2 process emissions are sequestered. Analysis of the energy requirements indicates that this process could require less than 1 MWh per tonne CO2 removed, approximately half the energy of CO2 capture with leading direct air capture technologies. The chemistry described here could unlock Mg-rich silicates as a vast resource for safe and permanent CDR.
Collapse
Affiliation(s)
- Yuxuan Chen
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Niron H, Vienne A, Frings P, Poetra R, Vicca S. Exploring the synergy of enhanced weathering and Bacillus subtilis: A promising strategy for sustainable agriculture. GLOBAL CHANGE BIOLOGY 2024; 30:e17511. [PMID: 39295254 DOI: 10.1111/gcb.17511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024]
Abstract
Climate change is one of the most urgent environmental challenges that humanity faces. In addition to the reduction of greenhouse gas emissions, safe and robust carbon dioxide removal (CDR) technologies that capture atmospheric CO2 and ensure long-term sequestration are required. Among CDR technologies, enhanced silicate weathering (ESW) has been suggested as a promising option. While ESW has been demonstrated to depend strongly on pH, water, and temperature, recent studies suggest that biota may accelerate mineral weathering rates. Bacillus subtilis is a plant growth-promoting rhizobacterium that can facilitate weathering to obtain mineral nutrients. It is a promising agricultural biofertilizer, as it helps plants acquire nutrients and protects them from environmental stresses. Given that croplands are optimal implementation fields for ESW, any synergy between ESW and B. subtilis can hold great potential for further practice. B. subtilis was reported to enhance weathering under laboratory conditions, but there is a lack of data for soil applications. In a soil-mesocosm experiment, we examined the effect of B. subtilis on basalt weathering. B. subtilis-basalt interaction stimulated basalt weathering and increased soil extractable Fe. The combined application displayed higher CDR potential compared to basalt-only application (3.7 vs. 2.3 tons CO2 ha-1) taking solid and liquid cation pools into account. However, the cumulative CO2 efflux decreased by approximately 2 tons CO2 ha-1 with basalt-only treatment, while the combined application did not affect the CO2 efflux. We found limited mobilization of cations to the liquid phase as most were retained in the soil. Additionally, we found substantial mobilization of basalt-originated Mg, Fe, and Al to oxide- and organic-bound soil fractions. We, therefore, conclude that basalt addition showed relatively low inorganic CDR potential but a high capacity for SOM stabilization. The outcomes indicated the importance of weathering rate-GHG emission integration and the high potential of SOM stabilization in ESW studies.
Collapse
Affiliation(s)
- Harun Niron
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Arthur Vienne
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Patrick Frings
- GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Reinaldy Poetra
- Institute for Geology, Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
| | - Sara Vicca
- Biobased Sustainability Engineering (SUSTAIN), Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
4
|
Epihov DZ, Banwart SA, McGrath SP, Martin DP, Steeley IL, Cobbold V, Kantola IB, Masters MD, DeLucia EH, Beerling DJ. Iron Chelation in Soil: Scalable Biotechnology for Accelerating Carbon Dioxide Removal by Enhanced Rock Weathering. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11970-11987. [PMID: 38913808 PMCID: PMC11238546 DOI: 10.1021/acs.est.3c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Enhanced rock weathering (EW) is an emerging atmospheric carbon dioxide removal (CDR) strategy being scaled up by the commercial sector. Here, we combine multiomics analyses of belowground microbiomes, laboratory-based dissolution studies, and incubation investigations of soils from field EW trials to build the case for manipulating iron chelators in soil to increase EW efficiency and lower costs. Microbial siderophores are high-affinity, highly selective iron (Fe) chelators that enhance the uptake of Fe from soil minerals into cells. Applying RNA-seq metatranscriptomics and shotgun metagenomics to soils and basalt grains from EW field trials revealed that microbial communities on basalt grains significantly upregulate siderophore biosynthesis gene expression relative to microbiomes of the surrounding soil. Separate in vitro laboratory incubation studies showed that micromolar solutions of siderophores and high-affinity synthetic chelator (ethylenediamine-N,N'-bis-2-hydroxyphenylacetic acid, EDDHA) accelerate EW to increase CDR rates. Building on these findings, we develop a potential biotechnology pathway for accelerating EW using the synthetic Fe-chelator EDDHA that is commonly used in agronomy to alleviate the Fe deficiency in high pH soils. Incubation of EW field trial soils with potassium-EDDHA solutions increased potential CDR rates by up to 2.5-fold by promoting the abiotic dissolution of basalt and upregulating microbial siderophore production to further accelerate weathering reactions. Moreover, EDDHA may alleviate potential Fe limitation of crops due to rising soil pH with EW over time. Initial cost-benefit analysis suggests potassium-EDDHA could lower EW-CDR costs by up to U.S. $77 t CO2 ha-1 to improve EW's competitiveness relative to other CDR strategies.
Collapse
Affiliation(s)
- Dimitar Z Epihov
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Steven A Banwart
- Global Food and Environment Institute, University of Leeds, Leeds LS2 9JT, U.K
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, U.K
| | - Steve P McGrath
- Sustainable Soils and Crops, Rothamsted Research, Harpenden AL5 2JQ, U.K
| | - David P Martin
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Isabella L Steeley
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Vicky Cobbold
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Ilsa B Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael D Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Evan H DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David J Beerling
- Levehulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
5
|
Abdalqadir M, Hughes D, Rezaei Gomari S, Rafiq U. A state of the art of review on factors affecting the enhanced weathering in agricultural soil: strategies for carbon sequestration and climate mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19047-19070. [PMID: 38372917 DOI: 10.1007/s11356-024-32498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
As the urgency to address climate change intensifies, the exploration of sustainable negative emission technologies becomes imperative. Enhanced weathering (EW) represents an approach by leveraging the natural process of rock weathering to sequester atmospheric carbon dioxide (CO2) in agricultural lands. This review synthesizes current research on EW, focusing on its mechanisms, influencing factors, and pathways for successful integration into agricultural practices. It evaluates key factors such as material suitability, particle size, application rates, soil properties, and climate, which are crucial for optimizing EW's efficacy. The study highlights the multifaceted benefits of EW, including soil fertility improvement, pH regulation, and enhanced water retention, which collectively contribute to increased agricultural productivity and climate change mitigation. Furthermore, the review introduces Monitoring, Reporting, and Verification (MRV) and Carbon Dioxide Removal (CDR) verification frameworks as essential components for assessing and enhancing EW's effectiveness and credibility. By examining the current state of research and proposing avenues for future investigation, this review aims to deepen the understanding of EW's role in sustainable agriculture and climate change mitigation strategies.
Collapse
Affiliation(s)
- Mardin Abdalqadir
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK.
| | - David Hughes
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| | - Sina Rezaei Gomari
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| | - Ubaid Rafiq
- Department of Engineering, School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
6
|
Beerling DJ, Epihov DZ, Kantola IB, Masters MD, Reershemius T, Planavsky NJ, Reinhard CT, Jordan JS, Thorne SJ, Weber J, Val Martin M, Freckleton RP, Hartley SE, James RH, Pearce CR, DeLucia EH, Banwart SA. Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proc Natl Acad Sci U S A 2024; 121:e2319436121. [PMID: 38386712 PMCID: PMC10907306 DOI: 10.1073/pnas.2319436121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.
Collapse
Affiliation(s)
- David J. Beerling
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Dimitar Z. Epihov
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Ilsa B. Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael D. Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tom Reershemius
- Yale Center for Natural Carbon Capture, Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511
| | - Noah J. Planavsky
- Yale Center for Natural Carbon Capture, Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Sarah J. Thorne
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - James Weber
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Maria Val Martin
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Robert P. Freckleton
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Sue E. Hartley
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Rachael H. James
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Evan H. DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven A. Banwart
- Global Food and Environment Institute, University of Leeds, LeedsLS2 9JT, United Kingdom
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
7
|
Reershemius T, Suhrhoff TJ. On error, uncertainty, and assumptions in calculating carbon dioxide removal rates by enhanced rock weathering in Kantola et al., 2023. GLOBAL CHANGE BIOLOGY 2024; 30:e17025. [PMID: 37986693 DOI: 10.1111/gcb.17025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Tom Reershemius
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
| | - T Jesper Suhrhoff
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Yale Center for Natural Carbon Capture, Yale University, New Haven, Connecticut, USA
| |
Collapse
|