1
|
Li S, Li J, Wu Y, Liu X, Zhang L. Bayesian benchmark dose assessment of per- and polyfluorinated substances exposure-associated thyroid function disruption during pregnancy. Food Chem Toxicol 2025; 201:115456. [PMID: 40239834 DOI: 10.1016/j.fct.2025.115456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/26/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Epidemiological evidence on maternal thyroid function disruption by prenatal exposure to perfluorinated and polyfluorinated substances (PFASs) is limited and inconsistent. The study examined the effects of PFASs exposure during early pregnancy on maternal thyroid function [free thyroxine (FT4), thyroid stimulating hormone (TSH), thyroid peroxidase antibodies (TPOAb) and FT4/TSH ratio]. The associations were evaluated using both single and mixed pollutant models, statistical analyses were further utilized in benchmark dose (BMD) estimations to offer critical references for human health risk assessment. Linear regression was used and then Bonferroni correction adjustment was set up to correct for multiple comparisons. The results revealed a significant association between PFHxS exposure and TSH (β = 0.473; 95 % CI: 0.180, 0.767). According to BKMR mixed-effects models, PFHxS was significantly positively correlated with TSH at the 25th percentile. PFASs were associated with the FT4/TSH ratio at the 25th to 40th percentile. The BMD value of the increasing FT4 effect induced by PFBA and PFPeA in pregnant women were 6.68 ng/mL and 1.37 ng/mL, respectively. The BMDs were obtained for TSH in the case of PFBA (0.33 ng/mL), PFHxS (0.28 ng/mL). Although BMDL10 is higher than observed for maternal TSH elevation in animal studies, both studies agree that thyroid homeostasis is the sensitive target. The fact that BMD results at this stage are lower than current exposure levels to PFHxS underscores the urgency of prioritizing endocrine end points in PFASs risk assessment.
Collapse
Affiliation(s)
- Shiwen Li
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China
| | - Jingguang Li
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100010, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100010, China
| | - Yongning Wu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100010, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100010, China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, Hubei, 430023, China.
| | - Lei Zhang
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100010, China; NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100010, China.
| |
Collapse
|
2
|
Li SP, Zhao WH, Zhang J, Jiang WT, Zhu JY, Luo YX, Xiang P, Bloom M, Jalava P, Dong GH, Zeng XW. Effects of early-life F-53B exposure on thyroid function in juvenile rats: The role of the cAMP signaling pathway. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137751. [PMID: 40015048 DOI: 10.1016/j.jhazmat.2025.137751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Chlorinated polyfluoroalkyl ether sulfonate (F-53B), a substitute for perfluorooctane sulfonate (PFOS), exerts a stronger effect on neonatal thyroid hormone (TH) than PFOS. However, limited data on its thyrotoxicity complicates early-life risk assessment. Here, Sprague-Dawley rats were gavaged with F-53B (0, 8, 80, 800 μg/kg/d) for 63 days, from two weeks pre-pregnancy to two weeks post-weaning. The results showed F-53B accumulated in the juvenile rats thyroids, causing thyroid follicle colloid rupture and dysgenesis, marked by reduced thyroid transcription factor 1 and elevated paired box gene 8 expression. Furthermore, F-53B affects TH synthesis by decreasing the expression of thyroid peroxidase and thyroid-stimulating hormone receptor, and increasing type II deiodinase activity. In plasma, F-53B raised total thyroxine (TT4), suppressed free triiodothyronine and free thyroxine (FT4) levels, and lowered the FT4/TT4 ratio. Mechanistically, F-53B binds to the ligand-binding pockets of key downregulated genes (Calcitonin-related polypeptide alpha and Somatostatin) in the cyclic adenosine monophosphate (cAMP) pathway. This promoted the lower expressions of protein kinase A in the thyroid follicular cytoplasm and phosphorylated cAMP response element-binding protein (p-CREB1-S133) in the nucleus, potentially weakening TH synthesis genes transcription. Overall, this work provides pioneering insights into the thyrotoxicity mechanisms of F-53B, laying a foundation for endocrine risk assessment.
Collapse
Affiliation(s)
- Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Hui Zhao
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen-Ting Jiang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jia-Yi Zhu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi-Xin Luo
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Michael Bloom
- Department of Global and Community Health, George Mason University, Fairfax, VA 22030, USA
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Gaillard L, Barouki R, Blanc E, Coumoul X, Andréau K. Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends Endocrinol Metab 2025; 36:249-261. [PMID: 39181731 DOI: 10.1016/j.tem.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024]
Abstract
The widespread use of per- and polyfluoroalkyl substances (PFASs), and their resistance to degradation, renders human exposure to them inevitable. PFAS exposure disturbs endocrine function, potentially affecting cognitive development in newborns through thyroid dysfunction during pregnancy. Recent studies reveal varying male and female reproductive toxicity across PFAS classes, with alternative analogs affecting sperm parameters and legacy PFASs correlating with conditions like endometriosis. Metabolically, PFASs exposure is linked to metabolic disorders, including obesity, type 2 diabetes mellitus (T2DM), dyslipidemia, and liver toxicity, particularly in early childhood. This review focuses on the endocrine-disrupting impact of PFASs, particularly on fertility, thyroid, and metabolic functions. We highlight the complexity of the PFAS issue, given the large number of molecules and their extremely diverse mixed effects.
Collapse
Affiliation(s)
- Lucas Gaillard
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Robert Barouki
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Etienne Blanc
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Xavier Coumoul
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France.
| | - Karine Andréau
- Université Paris Cité - INSERM UMR 1124 T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
4
|
He L, Zhang X, Xu P, Sheng J, Lou X, Chen Z, Wu L, Xiang J, Cheng P, Xu D, Chen Y, Chen G, Wang X. Associations of per- and polyfluoroalkyl substances and alternatives with subclinical hypothyroidism in children: A cross-sectional study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177809. [PMID: 39616925 DOI: 10.1016/j.scitotenv.2024.177809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
There is growing experimental and epidemiological evidence linking perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure to thyroid dysfunction; however, the association between PFAS and their alternatives to subclinical hypothyroidism in children remains to be elucidated. This study investigated the association between 30 PFASs and thyroid function using serum samples from 194 children (aged 3-17 years) who participated in the Zhejiang Human Biomonitoring Program. Various thyroid function indicators, including free triiodothyronine, free thyroxine (FT4), and thyrotropin, were tested, and subclinical hypothyroidism was diagnosed. Linear regression was employed to examine the associations between individual PFASs and thyroid hormone levels, and logistic regression was applied to assess their associations with subclinical hypothyroidism. The quantile g-computation (qgcomp) method was used to examine the combined and individual effects of PFAS mixtures on thyroid function. Both PFASs and their alternatives were associated with altered thyroid hormone levels and subclinical hypothyroidism. A higher level of perfluorohexanoic acid (PFHpA) was associated with decreased FT4 with a reduction of -0.028 pmol/L (95 % confidence interval [95 % CI]: -0.047, -0.008) per unit increase as well as increased odds of subclinical hypothyroidism (odds ratio [OR] = 1.95; 95 % CI: 1.11, 3.53). Moreover, a higher PFAS mixture was associated with elevated odds of subclinical hypothyroidism (OR = 3.72; 95 % CI: 1.08, 12.85), in which PFHpA, in conjunction with 6:2 chlorinated perfluoroalkyl ether sulfonic acid, accounted for the greatest proportion of the variance. These findings augment our understanding of the adverse effects of PFASs and their alternatives on thyroid homeostasis, underscoring the need for further epidemiological research.
Collapse
Affiliation(s)
- Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Xinhan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Jinghao Sheng
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Lizhi Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Guangdi Chen
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China.
| |
Collapse
|
5
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
6
|
Zhang R, Tu L, Lin Y, Liu J, Liang T, Lu W, Chen B, Luan T. Effective strategies alleviate mitochondrial toxicity of perfluorooctanoic acid: Modification of functional head group and inhibition of toxic target. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135733. [PMID: 39236541 DOI: 10.1016/j.jhazmat.2024.135733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Minimizing the detrimental impacts of perfluorooctanoic acid (PFOA) on human health is a daunting task. Here, we aimed to propose effective strategies for reducing PFOA-induced mitochondrial toxicity in human liver and intestinal cells. PFOA could occupy the fatty acid-binding pockets of human peroxisome proliferator-activated receptor alpha (hPPARα). PFOA not only could structurally interact with hPPARα, but also substantially upregulated the expression levels of PPARα and its downstream gene (i.e., pyruvate dehydrogenase kinase (PDK4)). The increased expression of PDK4 was associated with the mitochondrial toxicity of PFOA, and inhibition of PDK4 or knock-down of PDK4 could effectively attenuate the mitochondrial toxicity of PFOA. Moreover, modification of carboxyl group via an esterification of PFOA into methyl perfluorooctanoate (MePFOA) decreased the affinity to hPPARα, resulting in the loss of upregulated expressions of PPARα and PDK4. Lower mitochondrial toxicity and cytotoxicity were found in the MePFOA-treated cells compared to PFOA exposure. Our study supported that the carboxyl group of PFOA (as functional head group) was required for inducing its mitochondrial toxicity. Two strategies, including modification of functional head group and inhibition of toxic target of PFOA, are feasible to ameliorate mitochondrial toxicity of PFOA.
Collapse
Affiliation(s)
- Ruijia Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Lanyin Tu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yingshi Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tong Liang
- Intensive Care Unit, Guangzhou Eighth People's Hospital, Guangzhou 510440, China
| | - Wenhua Lu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
7
|
Zhang J, Li SP, Li QQ, Zhang YT, Dong GH, Canchola A, Zeng X, Chou WC. Development of a Physiologically Based Pharmacokinetic (PBPK) Model for F-53B in Pregnant Mice and Its Extrapolation to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18928-18939. [PMID: 39394996 PMCID: PMC11500426 DOI: 10.1021/acs.est.4c05405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024]
Abstract
Chlorinated polyfluorinated ether sulfonic acid (F-53B), a commonly utilized alternative for perfluorooctane sulfonate, was detected in pregnant women and cord blood recently. However, the lack of detailed toxicokinetic information poses a significant challenge in assessing the human risk assessment for F-53B exposure. Our study aimed to develop a physiologically based pharmacokinetic (PBPK) model for pregnant mice, based on toxicokinetic experiments, and extrapolating it to humans. Pregnant mice were administered 80 μg/kg F-53B orally and intravenously on gestational day 13. F-53B concentrations in biological samples were analyzed via ultraperformance liquid chromatography-mass spectrometry. Results showed the highest F-53B accumulation in the brain, followed by the placenta, amniotic fluid, and liver in fetal mice. These toxicokinetic data were applied to F-53B PBPK model development and evaluation, and Monte Carlo simulations were used to characterize the variability and uncertainty in the human population. Most of the predictive values were within a 2-fold range of experimental data (>72%) and had a coefficient of determination (R2) greater than 0.68. The developed mouse model was then extrapolated to the human and evaluated with human biomonitoring data. Our study provides an important step toward improving the understanding of toxicokinetics of F-53B and enhancing the quantitative risk assessments in sensitive populations, particularly in pregnant women and fetuses.
Collapse
Affiliation(s)
- Jing Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Qing Li
- Acacia
Lab for Implementation Science, Institute for Global Health, Dermatology Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yun-Ting Zhang
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Alexa Canchola
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Xiaowen Zeng
- Joint
International Research Laboratory of Environment and Health, Ministry
of Education, Guangdong Provincial Engineering Technology Research
Center of Environmental Pollution and Health Risk Assessment, Department
of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Britton KN, Judson RS, Hill BN, Jarema KA, Olin JK, Knapp BR, Lowery M, Feshuk M, Brown J, Padilla S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:501. [PMID: 39058153 PMCID: PMC11281043 DOI: 10.3390/toxics12070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.
Collapse
Affiliation(s)
- Katy N. Britton
- Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA;
| | - Bridgett N. Hill
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Morgan Lowery
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jason Brown
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| |
Collapse
|
9
|
Liu X, Xiang Q, Zhang L, Li J, Wu Y. Occurrence of rare earth elements in umbilical cord serum and association with thyroid hormones and birth outcomes in newborns. CHEMOSPHERE 2024; 359:142321. [PMID: 38754495 DOI: 10.1016/j.chemosphere.2024.142321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/13/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Rare earth elements (REEs) are emerging contaminants that are increasingly used in high technology products. However, limited information is available regarding exposure to REEs and associated health effects in neonates. This study aimed to investigate the association between REE concentrations and thyroid hormone levels, as well as birth outcomes in 109 newborns in Beijing, China. We measured the concentrations of 16 REEs and thyroid hormones in umbilical cord serum. To assess the impact of exposure to individual REEs and REE mixtures on thyroid hormone levels and birth outcomes, we employed univariate linear regression, least absolute shrinkage and selection operator (LASSO), and weighted quantile sum (WQS) models. We detected 14 REEs at high rates (92.6%-100%), with yttrium exhibiting the highest median (interquartile range) concentration [43.94 (0.33-172.55) ng/mL], followed by scandium [3.64 (0.46-11.15) ng/mL]. Univariate analyses showed that per logarithmic (ln)-unit change of neodymium (Nd) and samarium (Sm) was associated with 0.039 [95% confidence interval (CI): 0.001, 0.007] and 0.031 (95% CI: 0.003, 0.060) increases in free thyroxine (FT4) levels, respectively. Moreover, 14 REEs exhibited significant associations with triiodothyronine (T3) levels, resulting in increases ranging from 0.066 to 0.307. Elevated concentrations of terbium (Tb) [per ln-unit change: -0.021 (95% CI: -0.041, -0.01)] and lutetium (Lu) [-0.023 (95% CI: -0.043, -0.002)] were inversely correlated with birth length in newborns. A further multiple exposure analysis employing the LASSO model identified Sm, Nd, Y, Sc, and Lu as critical factors influencing FT4 and T3 levels. Additionally, WQS analyses showed positive associations between exposure to a mixture of 14 REEs and FT4 (P = 0.046), T3 (P < 0.001), and birth length (P = 0.049). These findings suggest that in utero exposure to REEs might disrupt thyroid hormone homeostasis and impact intrauterine growth. Further studies are warranted to validate these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Liu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian Xiang
- Healthcare-associated Infection Control Center, Sichuan Academy of Medical Sciences, Sichuan People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhang
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China.
| | - Jingguang Li
- Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Yongning Wu
- College of Food Science and Engineering, Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan, 430023, China; Department of Nutrition and Food Safety, Peking Union Medical College, Research Unit of Food Safety, Chinese Academy of Medical Sciences, Beijing, 100021, China; NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| |
Collapse
|
10
|
Jeong Y, Mok S, Park KJ, Moon HB. Accumulation features and temporal trends (2002-2015) for legacy and emerging per- and polyfluoroalkyl substances (PFASs) in finless porpoises bycaught off Korean coasts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123925. [PMID: 38593937 DOI: 10.1016/j.envpol.2024.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Legacy and emerging per- and polyfluoroalkyl substances (PFASs) were measured in livers of finless porpoises (Neophocaena asiaeorientalis; n = 167) collected in Korean waters from 2002 to 2015 to investigate their occurrence, bioaccumulation feature, temporal trends, and ecotoxicological implications. Perfulorooctane sulfonate (PFOS), perfluoroundecanoate (PFUnDA), and perfluorotridecanoate (PFTrDA) were the predominant PFASs found in the porpoises. The concentration of 6:2 chlorinated polyfluoroalkyl ether sulfonate (F-53B), an alternative to PFOS, was comparable to that of PFTrDA. Perfluorooctane sulfonamide (FOSA), a precursor of PFOS, was also detected in all the porpoises examined. All PFASs, including F-53B, accumulated to higher concentrations in immature porpoises compared with mature specimens, implying substantial maternal transfer and limited metabolizing capacity for PFASs. A significant correlation was observed between PFOS and F-53B concentrations, indicating similar bioaccumulation processes. Based on prenatal exposure and toxicity, F-53B is an emerging contaminant in marine ecosystems. Significantly increasing trends were observed in the concentrations of sulfonates, carboxylates, and F-53B between 2002/2003 and 2010, whereas the FOSA concentration significantly decreased. During 2010-2015, decreasing trends were observed in the concentrations of FOSA and sulfonates, whereas concentrations of carboxylate and F-53B increased without statistical significance, likely due to a gap for the implementation of regulatory actions between sulfonates and carboxylates. Although PFOS and PFOA were found to pose little health risk to porpoises, the combined toxicological effects of other contaminants should be considered to protect populations and to mitigate PFAS contamination in marine ecosystems.
Collapse
Affiliation(s)
- Yunsun Jeong
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sori Mok
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyum Joon Park
- Cetacean Research Institute, National Institute of Fisheries Science, Ulsan, 44780, Republic of Korea.
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
11
|
Lin H, Gao W, Li J, Zhao N, Zhang H, Wei J, Wei X, Wang B, Lin Y, Zheng Y. Exploring Prenatal Exposure to Halogenated Compounds and Its Relationship with Birth Outcomes Using Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6890-6899. [PMID: 38606954 DOI: 10.1021/acs.est.3c09534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Halogenated organic compounds (HOCs) are a class of contaminants showing high toxicity, low biodegradability, and high bioaccumulation potential, especially chlorinated and brominated HOCs (Cl/Br-HOCs). Knowledge gaps exist on whether novel Cl/Br-HOCs could penetrate the placental barrier and cause adverse birth outcomes. Herein, 326 cord blood samples were collected in a hospital in Jinan, Shandong Province from February 2017 to January 2022, and 44 Cl/Br-HOCs were identified with communicating confidence level above 4 based on a nontarget approach, covering veterinary drugs, pesticides, and their transformation products, pharmaceutical and personal care products, disinfection byproducts, and so on. To our knowledge, the presence of closantel, bromoxynil, 4-hydroxy-2,5,6-trichloroisophthalonitrile, 2,6-dibromo-4-nitrophenol, and related components in cord blood samples was reported for the first time. Both multiple linear regression (MLR) and Bayesian kernel machine regression (BKMR) models were applied to evaluate the relationships of newborn birth outcomes (birth weight, length, and ponderal index) with individual Cl/Br-HOC and Cl/Br-HOCs mixture exposure, respectively. A significantly negative association was observed between pentachlorophenol exposure and newborn birth length, but the significance vanished after the false discovery rate correction. The BKMR analysis showed that Cl/Br-HOCs mixture exposure was significantly associated with reduced newborn birth length, indicating higher risks of fetal growth restriction. Our findings offer an overview of Cl/Br-HOCs exposome during the early life stage and enhance the understanding of its exposure risks.
Collapse
Affiliation(s)
- Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wei Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Jingjing Li
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hongna Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Juntong Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoran Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Bing Wang
- Biomedical Centre, Qingdao University, Qingdao 266071, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|