1
|
Xu R, Li L, Ke Y, An Z, Duan W, Guo M, Tan Z, Liu X, Liu Y, Guo H. The role of pyroptosis in environmental pollutants-induced multisystem toxicities. Life Sci 2025; 372:123632. [PMID: 40220954 DOI: 10.1016/j.lfs.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The global ecosystem is adversely affected by environmental pollutants, which have numerous deleterious consequences on both the environment and human health. A multitude of human organs and systems, including the neurological, digestive, cardiovascular, reproductive, and respiratory systems, can be adversely affected by these pollutants. Pyroptosis is a form of programmed cell death, primarily involving the Caspase-1/Gasdermin D (GSDMD) classical inflammasome pathway, Caspase-4/5/11/GSDMD non-classical inflammasome pathway, Caspase-3/8 pathway, and other signaling pathways, which induce cell death and regulate the occurrence of inflammatory responses. Pyroptosis plays an important role in a range of diseases, including cancer, neurodegenerative diseases and cardiovascular disease. Evidence has emerged in recent years indicating that environmental pollutants exert various toxic effects by modulating pyroptosis. In this review, we examine hepatotoxicity, cardiovascular toxicity, nephrotoxicity, neurotoxicity, pulmonary toxicity, reproductive toxicity and the related mechanisms caused by environmental pollutants through the regulation of pyroptosis. We aim to provide theoretical references for future toxicity research on environmental pollutants.
Collapse
Affiliation(s)
- Rui Xu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Longfei Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yijia Ke
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zhenzhen Tan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xuehui Liu
- Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
2
|
Guo P, Luo J, Zhang J, Bonde JP, Struciński P, Ohniev V, Arah OA, Deziel NC, Warren JL, Toft G, Liew Z. Paternal and Maternal Exposures to Per- and Polyfluoroalkyl Substances and Child Behavioral Difficulties: A Parental Comparison Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5973-5982. [PMID: 40104843 DOI: 10.1021/acs.est.4c13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental pollutants with documented developmental toxicity. Prior research of prenatal PFAS exposure and offspring neurodevelopment did not consider the possible influence from paternal exposure. Using the INUENDO cohort, we studied 334 father-mother-singleton triads enrolled from antenatal clinics in Greenland, Poland, and Ukraine. We measured five PFAS in parental serum samples collected around the 31 weeks of gestation. We assessed child behavioral difficulties at ages 5-9 years by the parent-rated Strength and Difficulties Questionnaire using country- and sex-specific cut-offs (≥90th percentile). We performed analyses stratified by child's sex, coadjusting for maternal or paternal PFAS and other confounders and estimating PFAS mixture effects using quantile g-computation. In male children, multiple maternal PFAS, modeled as individual chemicals or a mixture, were associated with externalizing difficulties. Maternal perfluorononanoic acid (PFNA) was associated with internalizing difficulties in female children. In contrast, paternal exposure to individual PFAS or PFAS mixture was not associated with behavioral difficulties in children of either sex. In summary, maternal prenatal exposure to PFAS, but not paternal PFAS, was associated with mid-childhood behavioral difficulties in a sex-specific manner. Comparing the parent-specific PFAS associations strengthened evidence against confounding shared in the family.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510, United States
| | - Jiajun Luo
- Department of Surgery, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Population and Precision Health, University of Chicago, Chicago, Illinois 60637, United States
| | - Jie Zhang
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg-Frederiksberg University Hospital, Copenhagen 2400, Denmark
| | - Paweł Struciński
- Department of Toxicology and Health Risk Assessment, National Institute of Public Health NIH - National Research Institute, Warsaw 00791, Poland
| | - Viktor Ohniev
- Department of Public Health and Healthcare Management, Kharkiv National Medical University, Kharkiv 61022, Ukraine
| | - Onyebuchi A Arah
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Department of Statistics and Data Science, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Practical Causal Inference Lab, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus 8000, Denmark
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510, United States
| | - Joshua L Warren
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut 06510, United States
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06510, United States
- Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, Connecticut 06510, United States
| |
Collapse
|
3
|
Johnson T, Adelman S, Najari BB, Robinson JF, Kahn LG, Abrahamsson D. Non-Targeted Analysis of Environmental Contaminants and Their Associations with Semen Health Factors in Men from New York City. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:164-176. [PMID: 40012870 PMCID: PMC11851215 DOI: 10.1021/envhealth.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 02/28/2025]
Abstract
Characterizing the chemical composition of semen can provide valuable insights into the exposome and environmental factors that directly affect seminal and overall health. In this study, we compared molecular profiles of 45 donated semen samples from general population New York City participants and examined the correlation between the chemical profiles in semen and fertility parameters, i.e., sperm concentration, sperm motility, sperm morphology, and semen volume. Samples were prepared using a protein precipitation procedure and analyzed using liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS). Non-targeted analysis (NTA) revealed 18 chemicals not previously reported in human exposome studies, with 3-hydroxyoctanedioic acid, a cosmetic additive, emerging as a plausible candidate found to be at higher levels in cases vs controls (p < 0.01) and associated with adverse sperm motility and morphology. Four level 1 identified compounds were found to have associations with semen health parameters; dibutyl phthalate and 2-aminophenol negatively impacted motility, 4-nitrophenol was associated with low morphology, while palmitic acid was found to be associated with both low morphology and low volume. This study aims to utilize NTA to understand the association of contaminants of emerging concern (CECs) along with a full chemical profile to find trends separating poor and normal semen health parameters from each other chemically. Our results suggest that the collective effects of many CECs could adversely affect semen quality.
Collapse
Affiliation(s)
- Trevor
A. Johnson
- New
York University, Grossman School of Medicine, Department of Pediatrics, New York, New York 10016, United States
| | - Sarah Adelman
- New
York University, Grossman School of Medicine, Department of Pediatrics, New York, New York 10016, United States
| | - Bobby B. Najari
- New
York University, Grossman School of Medicine, Department of Urology, New York, New York 10016, United States
| | - Joshua F. Robinson
- University
of California San Francisco, Department
of Obstetrics, Gynecology, and Reproductive Sciences, San Francisco, California 94143, United States
| | - Linda G. Kahn
- New
York University, Grossman School of Medicine, Department of Pediatrics, New York, New York 10016, United States
| | - Dimitri Abrahamsson
- New
York University, Grossman School of Medicine, Department of Pediatrics, New York, New York 10016, United States
- University
of California San Francisco, Department
of Obstetrics, Gynecology, and Reproductive Sciences, San Francisco, California 94143, United States
| |
Collapse
|
4
|
Sun F, Lin Y, Pan A, Meng TQ, Xiong CL, Wang YX, Liu X, Chen D. Per- and Polyfluoroalkyl Substances in Semen Associated with Repeated Measures of Semen Quality in Healthy Adult Men. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:256-267. [PMID: 39745179 DOI: 10.1021/acs.est.4c10425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Although epidemiological studies have explored the association between poly- and perfluoroalkyl substances (PFAS) concentrations and semen quality, existing findings are often inconsistent. Our work aimed to explore the association of PFAS in plasma and semen with repeated measures of semen quality parameters in healthy adults. Plasma was collected at the initial recruitment and semen was collected at least once within five predetermined intervals during an approximately 3-month period. Semen volume, concentration, motility, and total sperm count were measured in each semen specimen. PFAS was measured in individual plasma samples (n = 1252) and pooled semen samples (n = 1019) from multiple collections (or in a single semen sample if no multiple collection was available). The results reveal seminal perfluorooctanoic acid, perfluorooctanesulfonic acid, perfluorohexanesulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate were significantly associated with decreased sperm progressive motility and total motility, while multiple seminal PFAS were positively associated with sperm concentration and total sperm count. By contrast, null associations were observed between plasma PFAS and semen quality. Our study provides epidemiological evidence that PFAS exposure may affect male fertility and seminal PFAS should be measured for precise assessment of the impact of PFAS on male reproductive performances.
Collapse
Affiliation(s)
- Fengjiang Sun
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
- School of Public Health, Anhui University of Science and Technology, Hefei 230041, China
| | - Yuzhe Lin
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | - Yi-Xin Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Xiaotu Liu
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- College of Environment and Climate, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Carneiro RB, Nika MC, Gil-Solsona R, Diamanti KS, Thomaidis NS, Corominas L, Gago-Ferrero P. A critical review of wastewater-based epidemiology as a tool to evaluate the unintentional human exposure to potentially harmful chemicals. Anal Bioanal Chem 2025; 417:495-511. [PMID: 39422714 PMCID: PMC11700037 DOI: 10.1007/s00216-024-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool to gather epidemiological insights at the community level, providing objective data on population exposure to harmful substances. A considerable portion of the human exposure to these potentially harmful chemicals occurs unintentionally, unlike substances such as pharmaceuticals, illicit drugs, or alcohol. In this context, this comprehensive review analyzes WBE studies focused on classes of organic chemicals to which humans are unintentionally exposed, namely organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFAS), benzotriazoles and benzothiazoles, phthalates and terephthalates, benzophenones, pesticides, bisphenols, and parabens. The review highlights some advantages of WBE for public health surveillance, e.g., non-invasive analysis, predictive capability, nearly real-time data, population-wide insights, no ethical approval, and unbiased sampling. It also discusses challenges and future research directions in WBE regarding exposure to harmful chemicals from various sources. The review emphasizes the critical role of wastewater sampling, sample preparation, quality control, and instrumental analysis in achieving accurate and reliable results. Furthermore, it examines the selection of human biomarkers for WBE studies and explores strategies to link WBE with human biomonitoring (HBM), which together enhance both the precision and effectiveness of exposure assessments.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography, São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Maria-Christina Nika
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Rubén Gil-Solsona
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantina S Diamanti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA-CERCA), Emili Grahit 101, 17003, Girona, Catalonia, Spain
- University of Girona, Plaça de Sant Domènec 3, 17004, Girona, Catalonia, Spain
| | - Pablo Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
6
|
Kee KH, Seo JI, Kim SM, Shiea J, Yoo HH. Per- and polyfluoroalkyl substances (PFAS): Trends in mass spectrometric analysis for human biomonitoring and exposure patterns from recent global cohort studies. ENVIRONMENT INTERNATIONAL 2024; 194:109117. [PMID: 39612744 DOI: 10.1016/j.envint.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread environmental contaminants that have been shown to contribute to human exposure, thereby raising a range of health concerns. In this context, human biomonitoring is essential for linking exposure levels of PFAS with their potential health risks. Mass spectrometry-based analytical techniques have been extensively adopted for the evaluation of PFAS levels across various cohorts. However, challenges arising from the use of biological samples (e.g., plasma, serum, urine, etc.) necessitate ongoing research and refinement of analytical methodologies. This review provides an overview of current trends in mass spectrometry-based approaches for human biomonitoring of PFAS, including sample collection and preparation, and instrumental techniques. We also explore analytical strategies to overcome challenges in obtaining PFAS-free blank matrices and address the risk of background contamination. Moreover, this review examines differing PFAS exposure patterns across regions by analyzing recent international cohort studies, specifically those conducted in the US and China over the past five years. Accordingly, several key research gaps in biomonitoring studies that need to be addressed moving forward are highlighted.
Collapse
Affiliation(s)
- Kyung Hwa Kee
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea; Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jeong In Seo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jentaie Shiea
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
7
|
Marchiandi J, Dagnino S, Zander-Fox D, Green MP, Clarke BO. Characterization of Chemical Exposome in A Paired Human Preconception Pilot Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20352-20365. [PMID: 39508786 DOI: 10.1021/acs.est.4c04356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Parental preconception exposure to synthetic chemicals may have critical influences on fertility and reproduction. Here, we present a robust LC-MS/MS method covering up to 95 diverse xenobiotics in human urine, serum, seminal and follicular fluids to support exposome-wide assessment in reproductive health outcomes. Extraction recoveries of validated analytes ranged from 62% to 137% and limits of quantification from 0.01 to 6.0 ng/mL in all biofluids. We applied the validated method to a preconception cohort of Australian couples (n = 30) receiving fertility treatment. In total, 36 and 38 xenobiotics were detected across the paired biofluids of males and females, respectively, including PFAS, parabens, organic UV-filters, plastic additives, antimicrobials, and other industrial chemicals. Results showed 39% of analytes in males and 37% in females were equally detected in paired serum, urine, and reproductive fluids. The first detection of the sunscreen ingredient avobenzone and the industrial chemical 4-nitrophenol in follicular and seminal fluids suggests they can cross both blood-follicle/testis barriers, indicating potential risks for fertility. Further, the blood-follicle transfer of perfluorobutanoic acid, PFOA, PFHxS, PFOS, and oxybenzone corroborate that serum concentrations can be reliable proxies for assessing exposure within the ovarian microenvironment. In conclusion, we observed significant preconception exposure to multiple endocrine disruptors in couples and identified potential xenobiotics relevant to male and female fertility impairments.
Collapse
Affiliation(s)
- Jaye Marchiandi
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| | - Sonia Dagnino
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), School of Medicine, Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), 28 Avenue de Valombrose, 06107 Nice, France
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W12 7TA London, U.K
| | - Deirdre Zander-Fox
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- Department of Obstetrics & Gynaecology, Monash University, Clayton, Melbourne, Victoria 3168, Australia
| | - Mark P Green
- Monash IVF Group Pty, Cremorne, Melbourne, Victoria 3121, Australia
- School of BioSciences, University of Melbourne, Victoria 3010, Australia
| | - Bradley O Clarke
- Australian Laboratory for Emerging Contaminants, School of Chemistry, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
8
|
Cheng X, Gao L, Cao X, Zhang Y, Ai Q, Weng J, Liu Y, Li J, Zhang L, Lyu B, Wu Y, Zheng M. Identification and Prioritization of Organic Pollutants in Human Milk from the Yangtze River Delta, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11935-11944. [PMID: 38913859 DOI: 10.1021/acs.est.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Pollutants in human milk are critical for evaluating maternal internal exposure and infant external exposure. However, most studies have focused on a limited range of pollutants. Here, 15 pooled samples (prepared from 467 individual samples) of human milk from three areas of the Yangtze River Delta (YRD) in China were analyzed by gas chromatography quadrupole time-of-flight mass spectrometry. In total, 171 compounds of nine types were preliminarily identified. Among these, 16 compounds, including 2,5-di-tert-butylhydroquinone and 2-tert-butyl-1,4-benzoquinone, were detected in human milk for the first time. Partial least-squares discriminant analysis identified ten area-specific pollutants, including 2-naphthylamine, 9-fluorenone, 2-isopropylthianthrone, and benzo[a]pyrene, among pooled human milk samples from Shanghai (n = 3), Jiangsu Province (n = 6), and Zhejiang Province (n = 6). Risk index (RI) values were calculated and indicated that legacy polycyclic aromatic hydrocarbons (PAHs) contributed only 20% of the total RIs for the identified PAHs and derivatives, indicating that more attention should be paid to PAHs with various functional groups. Nine priority pollutants in human milk from the YRD were identified. The most important were 4-tert-amylphenol, caffeine, and 2,6-di-tert-butyl-p-benzoquinone, which are associated with apoptosis, oxidative stress, and other health hazards. The results improve our ability to assess the health risks posed by pollutants in human milk.
Collapse
Affiliation(s)
- Xin Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiaoying Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaofeng Ai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Lei Zhang
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Bing Lyu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Yongning Wu
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing 100022, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
9
|
Jeseta M, Kalina J, Franzova K, Fialkova S, Hosek J, Mekinova L, Crha I, Kempisty B, Ventruba P, Navratilova J. Cross sectional study on exposure to BPA and its analogues and semen parameters in Czech men. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123445. [PMID: 38325504 DOI: 10.1016/j.envpol.2024.123445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Exposure to bisphenols has been found to have adverse effects on male reproductive function in animals. Human exposure to bisphenols is widespread. Bisphenol A (BPA) and its analogues, including bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) are utilized in various consumer products such as food contact materials and dental resins. The effects of these compounds on male fertility and spermatogenesis are unclear and findings from human studies are inconsistent. In this cross-sectional study, we evaluated the influence of BPA, BPS, BPF, BPAF (BPs) measured in semen on number of spermatozoa, total motility, progressive motility, morphology, and DNA fragmentation. We also examined the association of bisphenols (BPs) exposure with patients' occupation. A total of 358 patients aged 17-62 years with BMI 18-42 were included in the study from 2019 to 2021. BPs were extracted using solvent extraction followed by preconcentration step and determined by high-performance liquid chromatography and tandem mass spectrometry (LC/MSMS). Bisphenols were detected in 343 from 349 analysed samples (98.3% of all the samples). In 6 samples, the concentration of all BPs was under the limit of detection and in 20 samples under the limit of quantification. We did not find a statistically significant relationship between occupation and BPs. However, we observed significant correlations between the concentration of BPA and a lower motility and normal morphology. For BPS, a significant correlation with a lower ejaculate volume and a lower total sperm count was found. BPF and BPAF were detected only in 14.3% and 23.9% of samples, respectively. For BPF and BPAF, no significant correlations with spermiogram parameters were observed. Our results show that BPs are widespread in the male population (more than 90% of analysed samples), independently of an occupation and in case of BPA and BPS having a negative impact on spermiogram parameters.
Collapse
Affiliation(s)
- Michal Jeseta
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Czech Republic.
| | - Jiri Kalina
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katerina Franzova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sandra Fialkova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Hosek
- Veterinary Research Institute, Hudcova 70, Brno, Czech Republic; Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Lenka Mekinova
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Crha
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic; Department of Health Sciences, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Bartosz Kempisty
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland; Department of Human Morphology and Embryology, Wroclaw Medical University, Poland; Physiology Graduate Faculty, North Carolina State University, Raleigh NC, USA
| | - Pavel Ventruba
- Department of Gynecology and Obstetrics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Navratilova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Gao C, Sun N, Xie J, Li J, Tao L, Guo L, Shi L, He X, Shen X, Wang H, Yang P, Covaci A, Huang Y. Co-exposure to 55 endocrine-disrupting chemicals linking diminished sperm quality: Mixture effect, and the role of seminal plasma docosapentaenoic acid. ENVIRONMENT INTERNATIONAL 2024; 185:108571. [PMID: 38471262 DOI: 10.1016/j.envint.2024.108571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Isolated effects of single endocrine-disrupting chemicals (EDCs) on male reproductive health have been studied extensively, but their mixture effect remains unelucidated. Previous research has suggested that consuming diet enriched in omega-3 polyunsaturated fatty acids (PUFA) might be beneficial for reproductive health, whether omega-3 PUFA could moderate the effect of EDCs mixture on semen quality remains to be explored. In this study of 155 male recruited from a reproductive health center in China, we used targeted-exposomics to simultaneously measure 55 EDCs in the urine for exposure burden. Regression analyses were restricted to highly detected EDCs (≥55%, n = 34), and those with consistently elevated risk were further screened and brought into mixture effect models (Bisphenol A, ethyl paraben, methyl paraben [MeP], benzophenone-1 [BP1], benzophenone-3, mono(3-carboxypropyl) phthalate [MCPP]). Bayesian Kernel Machine Regression (BKMR) and quantile-based g-computation (QGC) models demonstrated that co-exposure to top-ranked EDCs was related to reduced sperm total (β = -0.18, 95%CI: -0.29 - -0.07, P = 0.002) and progressive motility (β = -0.27, 95%CI: -0.43 - -0.10, P = 0.002), but not to lower semen volume. BP1, MeP and MCPP were identified as the main effect driver for deteriorated sperm motion parameters using mixture model analyses. Seminal plasma fatty acid profiling showed that high omega-3 PUFA status, notably elevated docosapentaenoic acid (DPA, C22:5n-3) status, moderated the association between MCPP and sperm motion parameters (total motility: β = 0.26, 95%CI: 0.01 - -0.51, Pinteraction = 0.047; progressive motility: β = 0.64, 95%CI: 0.23 - 1.05, Pinteraction = 0.003). Co-exposure to a range of EDCs is mainly associated with deteriorated sperm quality, but to a lesser extent on sperm quantity, high seminal plasma DPA status might be protective against the effect. Our work emphasizes the importance of exposomic approach to assess chemical exposures and highlighted a new possible intervention target for mitigating the potential adverse effect of EDCs on semen quality.
Collapse
Affiliation(s)
- Chang Gao
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Nan Sun
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Jinying Xie
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Jiehao Li
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Lijuan Guo
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Lan Shi
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaojin He
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui Province, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou, China.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Wilrijk, Belgium
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, China; Clinical Research Center, Suzhou Hospital of Anhui Medical University, Anhui Medical University, Suzhou, China.
| |
Collapse
|