1
|
Soliman H, Ismaeil M, Soussa H, El-Sayed WS. Unveiling organohalide respiration potential in River Nile sediments via 16S rRNA gene amplicon sequencing of endogenous bacterial communities. BMC Microbiol 2025; 25:186. [PMID: 40165092 PMCID: PMC11956321 DOI: 10.1186/s12866-025-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Industrial waste, agricultural runoff and untreated sewage contaminate the Nile, leaving a toxic legacy in its sediments. Organohalides-polluted sediment in particular poses serious public health risks and detrimental effects on aquatic life. Sediment microbiomes may harbor bacterial strains that could be utilized in bioremediation of such toxic pollutants. MATERIAL AND METHODS Two microbiomes from polluted River Nile sediments were analyzed by using 16S rRNA gene amplicon sequencing. In addition, PICRUSt analysis based on 16S rRNA data was used to explore the organohalide respiring bacteria (OHRB) genera and their corresponding organohalide respiration (OHR) activity. Microcosm studies were performed to validate the potential for dechlorination activity of River Nile sediment. Dechlorination of the parent chloroethenes into daughter end product were detected by gas chromatography coupled with flame ionization detection analysis. RESULTS Analysis of 16S rRNA gene amplicon sequences using the EZ-biocloud server identified Proteobacteria as the dominant phylum in both microbiomes, with Bacteroidetes and Chloroflexi prevalent in RNS1 sediment and Chlorobi in RNS2 sediment. EZ-biocloud and PCR analyses detected several potential OHRB genera, including Dehalococcoides, Dehalogenimonas, Desulfomonile, Desulfovibrio, and Geobacter, suggesting potential OHR activity. Further evidence for potential OHR activity was provided by PICRUSt functional prediction analysis, which suggested the presence of reductive dehalogenases as functional biomarkers associated with OHR in the sediment samples. Specifically, PICRUSt analysis predicted the presence of potential genes of tetrachloroethene reductive dehalogenase and 3-chloro-4-hydroxyphenylacetate reductive dehalogenase, previously linked to OHR. Microcosm studies confirmed the dechlorination potential of tetrachloroethene to dichloroethene. CONCLUSION This study demonstrates that River Nile sediment in industrialized area harbors distinct microbiomes enclosing various OHRB genera, providing substantial evidence for potential reductive dechlorination activity. It also provides potential functional biomarkers for OHR activity.
Collapse
Affiliation(s)
- Hwayda Soliman
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ismaeil
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Hoda Soussa
- Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University, Cairo, Egypt
| | - Wael S El-Sayed
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Picott KJ, Edwards EA. Contrasting Kinetics of Highly Similar Chloroalkane Reductive Dehalogenases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22235-22244. [PMID: 39626078 DOI: 10.1021/acs.est.4c07149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chloroform and trichloroethanes are pervasive groundwater contaminants for which bioremediation has been an effective treatment strategy. Reductive dehalogenase (RDase) enzymes from organohalide-respiring bacteria are essential for their remediation under anaerobic conditions. RDases are responsible for dehalogenating these chlorinated solvents, leading to their removal. This work explores the kinetic characteristics of three closely related Dehalobacter chloroalkane-reductases─TmrA, CfrA, and AcdA─and identifies differences between their activity on chloroform (CF), 1,1,1-trichloroethane (TCA), and 1,1,2-TCA. The side-by-side comparison of these enzymes has emphasized that TmrA and AcdA are specialized toward CF with both having a 4-fold higher maximum specific activity (Vmax) on CF than 1,1,1-TCA, whereas CfrA has very similar rates on both CF and 1,1,1-TCA. AcdA is the most sensitive to substrate inhibition by CF and 1,1,2-TCA and inhibition by a common cocontaminant trichloroethene. Finally, the reduction of 1,1,2-TCA, which can produce both 1,2-dichloroethane and vinyl chloride, was assessed for each enzyme. Interestingly, each enzyme has a distinct preference for the major product it produces, indicating a favored reaction pathway. Despite over 95% sequence identity, TmrA, CfrA, and AcdA exhibit substantial differences in kinetic behavior, highlighting the importance of understanding such nuances for informed bioremediation strategies.
Collapse
Affiliation(s)
- Katherine J Picott
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
3
|
Lu CW, Kao CM, Yao CL, Chen SC. Analyzing Dehalochip: A functional DNA microarray for reductive dichlorination in chloroethene-contaminated sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125096. [PMID: 39389249 DOI: 10.1016/j.envpol.2024.125096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/15/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Interpreting high-throughput transcriptomic and metagenomic data from non-model microorganisms presents a challenge due to the significant number of genes with unknown functions and sequences. In this study, we applied an innovative microarray, Dehalochip, for detecting the expression of genes in various microorganisms, particularly focusing on genes involved in chloroethene degradation. Our results demonstrated that this approach can effectively identify dechlorination genes, such as 16S rRNA, tceA, bvcA, and vcrA, in Dehalococcoides mccartyi from samples of groundwater contaminated with chloroethene. Noticeably, the sensitivity and specificity of our Dehalochip are comparable to that of quantitative PCR. However, it stands out as a more viable option for in-situ applications due to its greater capacity to infer potential dechlorination genes. Consequently, we believe our dechlorination microarray offers valuable insights into the role of known microorganisms and their associated functional genes in chloroethene-contaminated environments. This contributes to a deeper understanding of the in-situ reductive dechlorination process.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan; Research and Development Department, Overchlorine Corporation, Taoyuan, 32001, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
4
|
Xu G, Zhao S, Rogers MJ, Chen C, He J. Global prevalence of organohalide-respiring bacteria dechlorinating polychlorinated biphenyls in sewage sludge. MICROBIOME 2024; 12:54. [PMID: 38491554 PMCID: PMC10943849 DOI: 10.1186/s40168-024-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore.
| |
Collapse
|
5
|
Zhao S, Rogers MJ, Ding C, Xu G, He J. Interspecies Mobility of Organohalide Respiration Gene Clusters Enables Genetic Bioaugmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4214-4225. [PMID: 38373236 DOI: 10.1021/acs.est.3c09171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Anthropogenic organohalide pollutants pose a severe threat to public health and ecosystems. In situ bioremediation using organohalide respiring bacteria (OHRB) offers an environmentally friendly and cost-efficient strategy for decontaminating organohalide-polluted sites. The genomic structures of many OHRB suggest that dehalogenation traits can be horizontally transferred among microbial populations, but their occurrence among anaerobic OHRB has not yet been demonstrated experimentally. This study isolates and characterizes a novel tetrachloroethene (PCE)-dechlorinating Sulfurospirillum sp. strain SP, distinguishing itself among anaerobic OHRB by showcasing a mechanism essential for horizontal dissemination of reductive dehalogenation capabilities within microbial populations. Its genetic characterization identifies a unique plasmid (pSULSP), harboring reductive dehalogenase and de novo corrinoid biosynthesis operons, functions critical to organohalide respiration, flanked by mobile elements. The active mobility of these elements was demonstrated through genetic analyses of spontaneously emerging nondehalogenating variants of strain SP. More importantly, bioaugmentation of nondehalogenating microcosms with pSULSP DNA triggered anaerobic PCE dechlorination in taxonomically diverse bacterial populations. Our results directly support the hypothesis that exposure to anthropogenic organohalide pollutants can drive the emergence of dehalogenating microbial populations via horizontal gene transfer and demonstrate a mechanism by which genetic bioaugmentation for remediation of organohalide pollutants could be achieved in anaerobic environments.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chang Ding
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research─UFZ, Permoserstraße, 15, Leipzig 04318, Germany
| | - Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|