1
|
Lv R, Li F, Liu Y, Song M, Yuan J, Zhang G, Sun M, Zhang Y, Su X, Zhao Y, Dong J, Shi Y, Zhao L. Molecularly imprinted nanoparticles hitchhiking on neutrophils for precise treatment of ischemic stroke. J Colloid Interface Sci 2025; 689:137246. [PMID: 40056670 DOI: 10.1016/j.jcis.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Ischemic stroke (IS), the most prevalent type of stroke worldwide, is associated with a variety of complex processes, including oxidative stress, apoptosis, and ferroptosis. Recent findings indicate that inhibiting iron overload as a key regulatory mechanism of ferroptosis profoundly influences the pathogenesis and treatment of IS. In addition, enhanced blood-brain barrier (BBB) penetration and precise targeting of the ischaemic site contribute to improved therapeutic outcomes in IS. In this study, we developed FeSO4 templated-molecularly imprinted nanoparticles (MINPs) with high-affinity recognition of ferrous ions (Fe2+). MINPs exhibited physicochemical properties that perfectly match the polarity and condensed structure of Fe2+, resulting in the effective and specific clearance of Fe2+ through efficient and selective adsorption both in vivo and in vitro. Moreover, MINPs hitchhiked circulating neutrophils, thereby facilitating their penetration through BBB and enhancing targeted delivery to the ischemic brain. Our results, supported by transcriptomic analysis, further elucidated the molecular mechanisms by which MINPs significantly inhibit ferroptosis while concurrently regulating apoptosis and inflammation, thereby conferring marked neuroprotection against IS.
Collapse
Affiliation(s)
- Ruizhen Lv
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Fang Li
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Mingzhu Song
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jiayu Yuan
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Ge Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Mengdi Sun
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yifei Zhang
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Xiangchen Su
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yuting Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Jia Dong
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China.
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, China; Collaborative Innovation Center for Age-related Disease, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
2
|
Yang P, Wang S, Sun T, Jiang T, Cui Y, Liu G, Guo Y, Liu Y, Hu L, Shi J, Zhang Q, Yin Y, Cai Y, Jiang G. Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20457-20467. [PMID: 39513731 DOI: 10.1021/acs.est.4c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150-500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60-75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.
Collapse
Affiliation(s)
- Peijie Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianran Sun
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yifan Cui
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Shi W, Zhang C, Zhao H, Zhang B, Tang H, Liu Y, Zhang B. Picolinic acid-mediated Mn(II) activated periodate for ultrafast and selective degradation of emerging contaminants: Key role of high-valent Mn-oxo species. WATER RESEARCH 2024; 266:122428. [PMID: 39265211 DOI: 10.1016/j.watres.2024.122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The utilization of periodate (PI, IO4-) in metal-based advanced oxidation processes (AOPs) for the elimination of emerging contaminants (ECs) have garnered significant attention. However, the commonly used homogeneous metal catalyst Mn(II) performs inadequately in activating PI. Herein, we exploited a novel AOP technology by employing the complex of Mn(II) with the biodegradable picolinic acid (PICA) to activate PI for the degradation of electron-rich pollutants. The performance of the Mn(II)-PICA complex surpassed that of ligand-free Mn(II) and other Mn(II) complexes with common aminopolycarboxylate ligands. Through scavenger, sulfoxide-probe transformation, and 18O isotope-labeling experiments, we confirmed that the dominant reactive oxidant generated in the Mn(II)-PICA/PI system was high-valent manganese-oxo species (Mn(V)=O). Due to its reliance on Mn(V)=O, the Mn(II)-PICA/PI process exhibited remarkable selectivity and strong anti-interference during EC oxidation in complex water matrices. Nine structurally diverse pollutants were selected for evaluation, and their lnkobs values in the Mn(II)-PICA/PI system correlated well with their electrophilic/nucleophilic indexes, EHOMO, and vertical IP (R2 = 0.79-0.94). Additionally, IO4- was converted into non-toxic iodate (IO3-) without producing undesired iodine species such as HOI, I2, and I3-. This study provides a novel protocol for metal-based AOPs using PI in combination with chelating agents and high-valent metal-oxo species formation during water purification.
Collapse
Affiliation(s)
- Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - He Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Heli Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 200051, China
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China.
| |
Collapse
|
4
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
5
|
Luo L, Zheng M, Du E, Wang J, Guan X, Guo H. Development of a New Permanganate/Chlorite Process for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16578-16588. [PMID: 39219237 DOI: 10.1021/acs.est.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity. This paved a new way for triggering reactions in water decontamination. By utilizing sulfamethoxazole (SMX) as a typical pollutant, we proposed coupled pathways involving electron transfer across hydrogen bonds (TEHB) and oxidation by reactive manganese species. The results indicated that a hydrogen bonding complex, SMX-ClO2-*, formed through chlorite binding the amino group of SMX initially in the TEHB route; such a complex exhibited a stronger reduction capability toward Mn(VII). Chlorite, in the hydrogen bonding complex SMX-ClO2-*, can then complex with Mn(VII). Consequently, a new reactive center (SMX-ClO2--Mn(VII)*) was formed, initiating the transfer of electrons across hydrogen bonds and the preliminary degradation of SMX. This is followed by the involvement of the generated Mn(V)-ClO2-/Mn(III) in the reduction process of Mn(VII). Such a process showed pH-dependent degradation, with a removal ratio ranging from 80% to near-stagnation as pH increased from 4.8 to 7. Combining with pKa analysis showed that the predominant forms of contaminants were crucial for the removal efficiency of pollutants by the Mn(VII)/chlorite process. The impact of the water matrix was demonstrated to have few adverse or even beneficial effects. With satisfactory performance against numerous contaminants, this study introduced a novel Mn(VII) synergistic strategy, and a new reactivity pattern focused on reducing the reduction potential of the contaminant, as opposed to increasing the oxidation potential of oxidants.
Collapse
Affiliation(s)
- Liping Luo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jingquan Wang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Shi Y, Xiao S, Qian Y, Huang CH, Chen J, Li N, Liu T, Zhang Y, Zhou X. Revisiting the synergistic oxidation of peracetic acid and permanganate(Ⅶ) towards micropollutants: The enhanced electron transfer mechanism of reactive manganese species. WATER RESEARCH 2024; 262:122105. [PMID: 39032336 DOI: 10.1016/j.watres.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Zhang J, Xu X, Liang J, Huang W, Zhao L, Qiu H, Cao X. Natural Attenuation of 2,4-Dichlorophenol in Fe-Rich Soil during Redox Oscillations: Anoxic-Oxic Coupling Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39028924 DOI: 10.1021/acs.est.4c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Natural attenuation of organic contaminants can occur under anoxic or oxic conditions. However, the effect of the coupling anoxic-oxic process, which often happens in subsurface soil, on contaminant transformation remains poorly understood. Here, we investigated 2,4-dichlorophenol (2,4-DCP) transformation in Fe-rich soil under anoxic-oxic alternation. The anoxic and oxic periods in the alternating system showed faster 2,4-DCP transformation than the corresponding control single anoxic and oxic systems; therefore, a higher transformation rate (63.4%) was obtained in the alternating system relative to control systems (27.9-42.4%). Compared to stable pH in the alternating system, the control systems presented clear OH- accumulation, caused by more Fe(II) regeneration in the control anoxic system and longer oxygenation in the control oxic system. Since 2,4-DCP was transformed by ion exchangeable Fe(II) in soil via direct reduction in the anoxic process and induced ·OH oxidation in the oxic process, OH- accumulation was unbeneficial because it competed for proton with direct reduction and inhibited •OH generation via complexing with Fe(II). However, the alternating system exhibited OH--buffering capacity via anoxic-oxic coupling processes because the subsequent oxic periods intercepted Fe(II) regeneration in anoxic periods, while shorter exposure to O2 in oxic periods avoided excessive OH- generation. These findings highlight the significant role of anoxic-oxic alternation in contaminant attenuation persistently.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Liang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- National Field Observation and Research Station of Erhai Lake Ecosystem, Yunnan 671000, China
| |
Collapse
|
8
|
Zheng R, Xu Z, Qiu Q, Sun S, Li J, Qiu L. Iron-doped carbon nanotubes with magnetic enhanced Fe(VI) degradation of arsanilic acid and inorganic arsenic: Role of intermediate iron species and electron transfer. ENVIRONMENTAL RESEARCH 2024; 244:117849. [PMID: 38061591 DOI: 10.1016/j.envres.2023.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Arsanilic acid (p-AsA), a prevalently used feed additive, is frequently detected in environment posing a great threat to humans. Potassium ferrate (Fe(VI)) was an efficient way to tackle arsenic contamination under acid and neutral conditions. However, Fe(VI) showed a noneffective removal of p-AsA under alkaline conditions due to its oxidation capacity attenuation. Herein, a magnetic iron-doped carbon nanotubes (F-CNT) was successfully prepared and further catalyzed Fe(VI) to remove p-AsA and total As species. The Fe(VI)/F-CNT system showed an excellent capability to oxidize p-AsA and adsorb total As species over an environment-related pH range of 6-9. The high-valent iron intermediates Fe(V)/Fe(IV) and the mediated electron-transfer played a significant part in the degradation of p-AsA according to the probes/scavengers experiments and galvanic oxidation process. Moreover, the situ formed iron hydroxide oxide and F-CNT significantly improved the adsorption capacity for total As species. The electron-donating groups (semiquinone and hydroquinone) and high graphitization of F-CNT were responsible for activating Fe(VI) based on the analysis of X-ray photoelectron spectroscopy (XPS). Density functional theory calculations and the detected degradation products both indicated that the amino group and the C-As bond of p-AsA were main reactive sites. Notably, Fe(VI)/F-CNT system was resistant to the interference from Cl-, SO42-, and HCO3-, and could effectively remove p-AsA and total As species even in the presence of complex water matrix. In summary, this work proposed an efficient method to use Fe(VI) for degrading pollutants under alkaline conditions and explore a new technology for livestock wastewater advanced treatment.
Collapse
Affiliation(s)
- Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jialong Li
- School of Rehabilitation Medicine, Weifang Medical University, Jinan, 261053, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|