1
|
Wen J, Chen J, Nie R, Li Z, Zhang W, Cao J, Xie P, Zhang Q, Ning P, Hao J. Asymmetric Pt 1O 4-O v Dual Active Sites Induced by NbO x Clusters Promotes CO Synergistical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2295-2305. [PMID: 39847515 DOI: 10.1021/acs.est.4c11141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pt/CeO2 single-atom catalysts are attractive materials for CO oxidation but normally show poor activity below 150 °C mainly due to the unicity of the originally symmetric Pt1O4 structure. In this work, a highly active and stable Pt1/CeO2 single-site catalyst with only 0.1 wt % Pt loading, achieving a satisfied complete conversion of CO at 150 °C, can be obtained through fabricating asymmetric Pt1O4-oxygen vacancies (Ov) dual-active sites induced by well-dispersed NbOx clusters. Specifically, the formation of new Ce-O-Nb interactions weakened the strength of the original Pt-O-Ce bond, thus transferring the originally near-perfect square-planar Pt1O4 into the distorted square-planar one, along with forming abundant Ov around the Pt site. Hence, the promoted CO activation on the asymmetric Pt1O4 structure and the facilitated dissociation of the O2 on the neighboring Ov site synergistically improved the CO catalytic oxidation performance. The fabrication of such asymmetric Pt1O4-Ov double-active sites was also active for the oxidation of other typical hydrocarbons pollutants such as C7H8 and C3H6 from exhaust gases, shedding light on engineering high-efficiency Pt-based oxidation catalysts for low-temperature environmental catalysis.
Collapse
Affiliation(s)
- Junjie Wen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Rongbing Nie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhiyu Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Weihao Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinyan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Pengfei Xie
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Lan T, Yalavarthi R, Shen Y, Gao M, Wang F, Hu Q, Hu P, Beladi-Mousavi M, Chen X, Hu X, Yang H, Cortés E, Zhang D. Polyoxometalates-Mediated Selectivity in Pt Single-Atoms on Ceria for Environmental Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415786. [PMID: 39324519 DOI: 10.1002/anie.202415786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Optimizing the reactivity and selectivity of single-atom catalysts (SACs) remains a crucial yet challenging issue in heterogeneous catalysis. This study demonstrates selective catalysis facilitated by a polyoxometalates-mediated electronic interaction (PMEI) in a Pt single-atom catalyst supported on CeO2 modified with Keggin-type phosphotungstate acid (HPW), labeled as Pt1/CeO2-HPW. The PMEI effect originates from the unique arrangement of isolated Pt atoms and HPW clusters on the CeO2 support. Electrons are transferred from the ceria support to the electrophilic tungsten in HPW clusters, and subsequently, Pt atoms donate electrons to the now electron-deficient ceria. This phenomenon enhances the positive charge of Pt atoms, moderating O2 activation and limiting lattice oxygen mobility compared to the conventional Pt1/CeO2 catalyst. The resulting electronic structure of Pt combined with the strong and local acidic environment of HPW on Pt1/CeO2-HPW leads to improved efficiency and N2 selectivity in the degradation of NH3 and NO, as well as increased CO2 yield when inputting volatile organic compounds. This study sheds the light on the design of SACs with balanced reactivity and selectivity for environmental catalysis.
Collapse
Affiliation(s)
- Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Rambabu Yalavarthi
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Yongjie Shen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Min Gao
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Fuli Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qingmin Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Pengfei Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Mohsen Beladi-Mousavi
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Xin Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xiaonan Hu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Huiqian Yang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, München, 80539, Germany
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| |
Collapse
|
3
|
Jiang S, Shi Y, Sun Y, Zhu T, Li X. Transformation of Arsenic from Poison into Active Site by Construction of Unique AsO x/CeO 2 Interface for Stable NO x Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22312-22321. [PMID: 39633255 DOI: 10.1021/acs.est.4c09546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Arsenic in the flue gas has been widely reported as a common poison for SCR catalysts; however, an appropriate coping strategy is still lacking to improve the arsenic resistance performance. Herein, a unique AsOx/CeO2 interface is constructed to transform arsenic from poison into active site with balanced acid-redox property, successfully achieving efficient NOx removal. The optimized AsOx/CeO2 exhibits high NOx removal efficiency, four times that of the As-poisoned V2O5/TiO2 catalyst, and even comparable to the state-of-the-art SCR catalysts. It was found that the As-O-Ce interfacial sites in oxygen-bridged As dimers on CeO2 can provide both Lewis acid sites and active lattice oxygen species, enhancing the adsorption and activation of NH3 to form key -NH2 intermediates, thereby facilitating the NH3-SCR reaction. More surprisingly, a thin CeO2 layer on the top of V2O5/TiO2 can capture arsenic to protect catalysts from arsenic attacking, which improves the catalytic activity to 2.8 × 10-7 mol g-1 s-1, even higher than that of fresh V2O5/TiO2 (2.0 × 10-7 mol g-1 s-1). Therefore, this strategy provides new ideas not only for designing antipoisoning SCR catalysts but also a feasible solution for the stable operation of commercial SCR catalysts in arsenic-containing flue gas.
Collapse
Affiliation(s)
- Si Jiang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yanzhe Shi
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Ye Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Tianle Zhu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Zhang B, Yang J, Mu Y, Ji X, Cai Y, Jiang N, Xie S, Qian Q, Liu F, Tan W, Dong L. Fabrication of Highly Dispersed Ru Catalysts on CeO 2 for Efficient C 3H 6 Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19533-19544. [PMID: 39324746 DOI: 10.1021/acs.est.4c07159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Emissions of volatile organic compounds (VOCs) threaten both the environment and human health. To realize the elimination of VOCs, Ru/CeO2 catalysts have been intensively investigated and applied. Although it has been widely acknowledged that the catalytic performance of platinum group metal catalysts was highly determined by their dispersion and coordination environment, the most reactive structures on Ru/CeO2 catalysts for VOCs oxidation are still ambiguous. In this work, starting from Ce-BTC (BTC = 1,3,5-benzenetricarboxylic acid) materials, atomically dispersed Ru catalysts and agglomerated Ru catalysts were successfully created via one-step hydrothermal method (Ru-CeO2-BTC) and conventional incipient wetness impregnation method (Ru/CeO2-BTC), respectively. In a typical model reaction of C3H6 oxidation, atomically dispersed Ruδ+ species with the formation of abundant Ru-O-Ce linkages on Ru-CeO2-BTC were found to perform much better than agglomerated RuOx species on Ru/CeO2-BTC. Further characterizations and mechanism study disclosed that Ru-CeO2-BTC catalyst with atomically dispersed Ru ions and more superior low temperature redox performance compared to Ru/CeO2-BTC could better facilitate the adsorption/activation of C3H6 and the decomposition/desorption of intermediates, thus exhibiting superior C3H6 oxidation activity. This work elucidated the reactive sites on Ru/CeO2 catalysts in the C3H6 oxidation reaction and provided insightful guidance for designing efficient Ru/CeO2 catalysts to eliminate VOCs.
Collapse
Affiliation(s)
- Bifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yibo Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Zhang WP, Li YY, Zhao J, Wu K, Xiao H, Li JR. Pt-O-Ce interaction enhanced by Al substitution to promote the acetone degradation through accelerating the breaking of CC bond in acetic acid intermediate. J Colloid Interface Sci 2024; 671:611-620. [PMID: 38820845 DOI: 10.1016/j.jcis.2024.05.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
The reaction rate of volatile organic compounds (VOCs) oxidation is controlled by the rate-limiting step in the total reaction process. This study proposes a novel strategy, by which the rate-limiting step of acetone oxidation is accelerated by enhanced chemical bond interaction with more electrons transfer through Al-substituted CeO2 loaded Pt (Pt/Al-CeO2). Results indicate that the rate-limiting step in the process of acetone oxidation is the decomposition of acetic acid. Al substitution enhances the Pt-O-Ce interaction that transfers more electrons from Pt/Al-CeO2 to acetic acid, promoting the breaking of its CC bond with a lower free energy barrier. Attributing to these, the reaction rate of Pt/Al-CeO2 is 13 times as high as that of Pt/CeO2 and its TOFPt value is 11 times as high as that of Pt/CeO2 at 150 °C. Moreover, the CO2 selectivity of Pt/Al-CeO2 also increases by 22 %. This work establishes the relationship between Pt-O-Ce interaction and acetone oxidation that provides novel perspectives on the development of efficient materials for VOCs oxidation.
Collapse
Affiliation(s)
- Wan-Peng Zhang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ying-Ying Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Junyi Zhao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China
| | - Kun Wu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China
| | - Hang Xiao
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Jian-Rong Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
6
|
Ran M, Dong Y, Zhang X, Li W, Wang Z, Lin S, Yang Y, Song H, Wu W, Liu S, Zhu Y, Zheng C, Gao X. Unraveling the Mechanistic Origin of High N 2 Selectivity in Ammonia Selective Catalytic Oxidation on CuO-Based Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12249-12259. [PMID: 38935480 DOI: 10.1021/acs.est.4c02656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
NH3 emissions from industrial sources and possibly future energy production constitute a threat to human health because of their toxicity and participation in PM2.5 formation. Ammonia selective catalytic oxidation to N2 (NH3-SCO) is a promising route for NH3 emission control, but the mechanistic origin of achieving high N2 selectivity remains elusive. Here we constructed a highly N2-selective CuO/TiO2 catalyst and proposed a CuOx dimer active site based on the observation of a quadratic dependence of NH3-SCO reaction rate on CuOx loading, ac-STEM, and ab initio thermodynamic analysis. Combining this with the identification of a critical N2H4 intermediate by in situ DRIFTS characterization, a comprehensive N2H4-mediated reaction pathway was proposed by DFT calculations. The high N2 selectivity originated from the preference for NH2 coupling to generate N2H4 over NH2 dehydrogenation on the CuOx dimer active site. This work could pave the way for the rational design of efficient NH3-SCO catalysts.
Collapse
Affiliation(s)
- Mingchu Ran
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Yi Dong
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Xiao Zhang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China
- Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Weixian Li
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Zhi Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Saisai Lin
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Yang Yang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Hao Song
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Weihong Wu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenghang Zheng
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China
- Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection-Center for Coal-Fired Air Pollution Control, Key Laboratory of Clean Energy and Carbon Neutrality of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China
- Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
7
|
Tan W, Xie S, Zhang X, Ye K, Almousawi M, Kim D, Yu H, Cai Y, Xi H, Ma L, Ehrlich SN, Gao F, Dong L, Liu F. Fine-Tuning of Pt Dispersion on Al 2O 3 and Understanding the Nature of Active Pt Sites for Efficient CO and NH 3 Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:454-466. [PMID: 38147632 DOI: 10.1021/acsami.3c11897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Fine-tuning the dispersion of active metal species on widely used supports is a research hotspot in the catalysis community, which is vital for achieving a balance between the atomic utilization efficiency and the intrinsic activity of active sites. In this work, using bayerite Al(OH)3 as support directly or after precalcination at 200 or 550 °C, Pt/Al2O3 catalysts with distinct Pt dispersions from single atoms to clusters (ca. 2 nm) were prepared and evaluated for CO and NH3 removal. Richer surface hydroxyl groups on AlOx(OH)y support were proved to better facilitate the dispersion of Pt. However, Pt/Al2O3 with relatively lower Pt dispersion could exhibit better activity in CO/NH3 oxidation reactions. Further reaction mechanism study revealed that the Pt sites on Pt/Al2O3 with lower Pt dispersion could be activated to Pt0 species much easier under the CO oxidation condition, on which a higher CO adsorption capacity and more efficient O2 activation were achieved simultaneously. Compared to Pt single atoms, PtOx clusters could also better activate NH3 into -NH2 and -HNO species. The higher CO adsorption capacity and the more efficient NH3/O2 activation ability on Pt/Al2O3 with relatively lower Pt dispersion well explained its higher CO/NH3 oxidation activity. This study emphasizes the importance of avoiding a singular pursuit of single-atom catalyst synthesis and instead focusing on achieving the most effective Pt species on Al2O3 support for targeted reactions. This approach avoids unnecessary limitations and enables a more practical and efficient strategy for Pt catalyst fabrication in emission control applications.
Collapse
Affiliation(s)
- Wei Tan
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Xing Zhang
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Kailong Ye
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Murtadha Almousawi
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Daekun Kim
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| | - Haowei Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hanchen Xi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lu Ma
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Steven N Ehrlich
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|