1
|
Zhang Y, Chen Y, Yan C, Nie M. New insights into soil active substances enhance the biochar/periodate process for remediation of sulfadiazine: The changes of soil properties and toxicity. ENVIRONMENTAL RESEARCH 2025; 276:121481. [PMID: 40147519 DOI: 10.1016/j.envres.2025.121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
In recent years, periodate (SPI)-based advanced oxidation processes have been successfully applied in wastewater treatment. However, their application in soil pollution remediation remains limited. To our knowledge, this study represents the first attempt to utilize SPI catalyzed by the Eichhornia crassipes biochar (EBC) system for the remediation of sulfadiazine (SD)-contaminated soil. In the EBC/SPI system, the degradation performance of SD-spiked soils was significantly improved, achieving complete degradation within 60 min, which indicates a clear synergistic effect between SPI and EBC. Notably, our findings highlighted that active soil constituents play crucial roles in SPI activation. Specifically, free Fe-oxides in soil were essential for SPI activation to form reactive species (RS) compared to amorphous Fe-oxides and dissolved Fe, leading to superior SD degradation. Soil organic matter (SOM) also contributed to RS formation and conversion. Adding Fe3+, Cl-, and humic acid accelerated SD elimination, whereas Mn2+ and HCO3- inhibited it. Quenching experiments and electron paramagnetic resonance spectroscopy confirmed the formation of singlet oxygen, superoxide radicals, and iodate radicals, which actively degraded SD. Analysis of soil properties, including SOM content, total phosphorus, functional groups, crystal structure, and pH value, showed negligible changes after EBC/SPI treatment. Additionally, potential decomposition pathways of SD were proposed based on identified SD intermediates. Ecotoxicity analyses and phytotoxicity tests indicated a marked reduction in the toxicity of these intermediates compared to SD. These findings provide an efficient strategy for soil remediation and offer new insights into the role of inherent substances in the field of contaminated soil remediation.
Collapse
Affiliation(s)
- Yue Zhang
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University and Jiangxi Provincial Key Laboratory of Ecological Intelligent Monitoring and Comprehensive Treatment of Watershed, Nanchang, 330022, China
| | - Yabing Chen
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University and Jiangxi Provincial Key Laboratory of Ecological Intelligent Monitoring and Comprehensive Treatment of Watershed, Nanchang, 330022, China
| | - Caixia Yan
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University and Jiangxi Provincial Key Laboratory of Ecological Intelligent Monitoring and Comprehensive Treatment of Watershed, Nanchang, 330022, China.
| | - Minghua Nie
- School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University and Jiangxi Provincial Key Laboratory of Ecological Intelligent Monitoring and Comprehensive Treatment of Watershed, Nanchang, 330022, China.
| |
Collapse
|
2
|
Kong Q, Yao L, Zhou Y, Yang X. Overlooked Pathway of UV Filter Degradation in the UV/H 2O 2: The Important Role of Triplet State UV Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9344-9352. [PMID: 40293155 DOI: 10.1021/acs.est.5c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The large production and usage of UV filters resulted in pervasive contamination in the aquatic environment. UV/H2O2 is a widely used advanced oxidation process (AOP) to eliminate contaminants including UV filters relying on the generated HO•. In this study, the degradation of UV filters in the UV/H2O2 AOP was investigated by using benzophenone (BP) as a representative. A previously overlooked pathway for BP degradation and HO• formation was newly identified. The triplet state species generated from BP photosensitization (i.e., 3BP*) was found to react with H2O2 to produce HO•, and this pathway contributed to 31% of BP degradation. The second-order rate constant of 3BP* with H2O2 was determined to be 8.7(±1.0) × 107 M-1 s-1 at pH 7.0 by using a laser flash photolysis system. 3BP* acted as a reductant, and it was transformed into a radical cation (BP•+). The further hydrolysis of BP•+ produced hydroxylated BPs as products. This pathway can be barely influenced by pH and inorganic ions in the real water matrix. This work not only reported an unrecognized pathway for pollutant degradation in the UV/H2O2 AOP but also inspired ideas to develop novel technologies to abate pollutants by taking advantage of their triplet states.
Collapse
Affiliation(s)
- Qingqing Kong
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liaoliao Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Li S, Zou J, Wu J, He L, Tang C, Li F, Sun B, Zhao M, Li Q, Wang P, Huang L, Cheng Q, Tan H, Ma J. Removal of Sulfonamide Antibiotics in Peracetic Acid-Mediated Natural Polyphenol Systems via an Overlooked Polymerization Pathway: Role of ortho-Quinones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7747-7759. [PMID: 40223568 DOI: 10.1021/acs.est.4c13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Natural polyphenols can be oxidized into reactive quinones, which might play a key role in the removal of specific contaminants in natural polyphenol-related advanced oxidation processes (AOPs). In this study, peracetic acid (PAA) was employed in combination with natural protocatechuic acid (PCA) to remove sulfonamide antibiotics (SAs) from water. More than 95% removal of sulfamethoxazole (SMX) and other SAs was observed in the PCA/PAA system, and neutral pH conditions (5.0-8.0) were more conducive to the removal of SMX. The PCA/PAA system exhibited a great anti-interference ability against complex water matrices. ortho-Quinone, generated from the oxidation of PCA by PAA, played a dominant role in the SMX removal. Electrons tended to transfer from SMX to the generated ortho-quinones and form covalent bonds, resulting in the production of less toxic oligomers via the overlooked polymerization pathway. A reduction in the toxicity of the SMX solution was found following treatment with the PCA/PAA system. More interestingly, several polyphenols structurally related to PCA could also facilitate SMX removal using PAA as the oxidant. Overall, this study proposes a novel strategy for developing reactive quinones dominated AOPs with robust anti-interference performance, as well as enhances the understanding of contaminant removal via an overlooked polymerization pathway in natural polyphenol-related AOPs.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Linfeng He
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Fei Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Bo Sun
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Min Zhao
- China National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, P. R. China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| | - Lengshen Huang
- Institute of Horticulture Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, P. R. China
| | - Qingfeng Cheng
- School of Urban Construction, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Haoqiang Tan
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China
| |
Collapse
|
4
|
Du P, Yang B, Chow ATS, Shi D, Wong KMC, Wang J. From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4444-4454. [PMID: 39999104 DOI: 10.1021/acs.est.4c09859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triplet-state dissolved organic matter (3DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with 3DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP's effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike 3DOM*, TMP-RS may react with SMX with the formation of non-SMX•+ intermediates. This process prevents the reduction of SMX•+ and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP's involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Tat-Shing Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Dongliang Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
5
|
Zu J, Zhang N, Liu X, Hu Y, Yu L, Chen Z, Zhang H, Li H, Zhang L. Mechanochemical Thioglycolate Modification of Microscale Zero-Valent Iron for Superior Heavy Metal Removal. Angew Chem Int Ed Engl 2025; 64:e202415051. [PMID: 39345005 DOI: 10.1002/anie.202415051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Microscale zero-valent iron (mZVI) is widely used for water pollutant control and environmental remediation, yet its reactivity is still constrained by the inert oxide shell. Herein, we demonstrate that mechanochemical thioglycolate (TG) modification can dramatically enhance heavy metal (NiII, CrVI, CdII, PbII, HgII, and SbIII) removal rates of mZVI by times of 16.7 to 88.0. Compared with conventional impregnation (wet chemical process), this dry mechanochemical process could construct more robust covalent bonding between TG and the inert oxide shell of mZVI through its electron-withdrawing carboxylate group to accelerate the electron release from the iron core, and more effectively strengthen the surface heavy metal adsorption through metal(d)-sulfur(p) orbital hybridization between its thiol group and heavy metal ions. Impressively, this mechanochemically TG-modified mZVI exhibited an unprecedented NiII removal capacity of 580.4 mg Ni g-1 Fe, 17.1 and 9.5 times those of mZVI and wet chemically TG-modified mZVI, respectively. Its application potential was further validated by more than 10 days of stable groundwater NiII removal in a column flow reactor. This study offers a promising strategy to enhance the reactivity of mZVI, and also emphasizes the importance of the modification strategy in optimizing its performance for environmental applications.
Collapse
Affiliation(s)
- Junning Zu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Nuanqin Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yuqing Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Shi W, Zhang C, Zhao H, Zhang B, Tang H, Liu Y, Zhang B. Picolinic acid-mediated Mn(II) activated periodate for ultrafast and selective degradation of emerging contaminants: Key role of high-valent Mn-oxo species. WATER RESEARCH 2024; 266:122428. [PMID: 39265211 DOI: 10.1016/j.watres.2024.122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The utilization of periodate (PI, IO4-) in metal-based advanced oxidation processes (AOPs) for the elimination of emerging contaminants (ECs) have garnered significant attention. However, the commonly used homogeneous metal catalyst Mn(II) performs inadequately in activating PI. Herein, we exploited a novel AOP technology by employing the complex of Mn(II) with the biodegradable picolinic acid (PICA) to activate PI for the degradation of electron-rich pollutants. The performance of the Mn(II)-PICA complex surpassed that of ligand-free Mn(II) and other Mn(II) complexes with common aminopolycarboxylate ligands. Through scavenger, sulfoxide-probe transformation, and 18O isotope-labeling experiments, we confirmed that the dominant reactive oxidant generated in the Mn(II)-PICA/PI system was high-valent manganese-oxo species (Mn(V)=O). Due to its reliance on Mn(V)=O, the Mn(II)-PICA/PI process exhibited remarkable selectivity and strong anti-interference during EC oxidation in complex water matrices. Nine structurally diverse pollutants were selected for evaluation, and their lnkobs values in the Mn(II)-PICA/PI system correlated well with their electrophilic/nucleophilic indexes, EHOMO, and vertical IP (R2 = 0.79-0.94). Additionally, IO4- was converted into non-toxic iodate (IO3-) without producing undesired iodine species such as HOI, I2, and I3-. This study provides a novel protocol for metal-based AOPs using PI in combination with chelating agents and high-valent metal-oxo species formation during water purification.
Collapse
Affiliation(s)
- Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Chi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - He Zhao
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Heli Tang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 200051, China
| | - Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China.
| |
Collapse
|
7
|
Kralles ZT, Deherikar PK, Werner CA, Hu X, Kolodziej EP, Dai N. Halogenation of Anilines: Formation of Haloacetonitriles and Large-Molecule Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17497-17509. [PMID: 39297711 DOI: 10.1021/acs.est.4c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Prashant K Deherikar
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Ximin Hu
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Kong Q, Yao L, Ye L, Pan Y, Deng Y, Tan Z, Zhou Y, Shi G, Yang X. Photochemical Transformation of Monochloramine Induced by Triplet State Dissolved Organic Matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134366. [PMID: 38678708 DOI: 10.1016/j.jhazmat.2024.134366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/31/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
The photoexcited dissolved organic matter (DOM) could produce reactive intermediates, affecting chemical oxidant transformation in UV based advanced oxidation processes (AOPs). This study confirmed the critical role of triplet state DOM (3DOM*), generated from DOM photoexcitation, in the transformation of monochloramine (NH2Cl), a commonly used chemical oxidant and disinfectant in water treatment. NH2Cl (42.25 μM, as Cl2) was decayed by 17.4-73.4 % within 60 min, primarily due to 3DOM* , in DOM (2-30 mgC L-1) solutions irradiated by 365 nm, where NH2Cl has no absorption. The second-order quenching rate constants of triplet state model photosensitizers by NH2Cl were determined to be 0.95(± 0.04)-4.49(± 0.04)× 108 M-1 s-1 by using laser flash photolysis. As a reductant, 3DOM* reacted with NH2Cl through one-transfer mechanism, leading to amino radical (NH2•) generation, which then transferred to ammonia (NH4+, pKa 9.25) through H-abstraction by the phenolic moieties in DOM. Additionally, the intermediate product of 3DOM* oxidized by NH2Cl or those triplet state quinones can hydrolyze to form phenolic moieties, elevating NH4+ yield to higher than 99% upon 365 nm irradiation. These findings suggest that the widespread DOM can be applied to convert NH2Cl via 3DOM* with minimal toxic risks.
Collapse
Affiliation(s)
- Qingqing Kong
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Liaoliao Yao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yanchun Deng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zijie Tan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yangjian Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guojing Shi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|