1
|
Wang Q, Du Y, Li W, Wang C, Zhang J, Yang M, Yu J. Treatability of odorous dioxanes/dioxolanes in source water: How does molecular flexibility and pre-oxidation affect odorant adsorption. WATER RESEARCH 2024; 266:122364. [PMID: 39276475 DOI: 10.1016/j.watres.2024.122364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Odorous dioxanes and dioxolanes, a class of cyclic acetals often produced as byproducts in polyester resin manufacturing, are problematic in drinking water treatment due to their low odor thresholds and resistance to conventional treatment technology. Our research focuses on the removal of ten dioxane/dioxolane compounds through oxidation and adsorption processes, exploring the key molecular properties that govern the treatmentability. We discovered that both chlorination and permanganate oxidation were largely ineffective at degrading cyclic acetals, achieving less than 20% removal even at high applicable doses. Conversely, powdered activated carbon (PAC) adsorption proved to be a more effective method, with a removal of > 90% at a PAC dosage of 10 mg/L for seven out of ten compounds. The presence of natural organic matter (NOM) reduced PAC adsorbability for all odorants, but the deterioration level substantially varied and mostly affected by structural flexibility as indicated by the number of rotatable bonds. The results of both the experimental investigation and molecular simulation corroborated the hypothesis that more rotatable bonds (from one to three here) are indicative of greater structural flexibility, which in consequence determines the susceptibility of cyclic acetals to NOM competitive adsorption. Increased structural flexibility could facilitate greater entry into silt-like micropores or achieve preferential adsorption sites with more compatible morphology against NOM competition. When pre-oxidation (chlorination and permanganate oxidation) and adsorption were applied sequentially, additional low molecular weight NOM components produced by pre-oxidation resulted in intensified NOM competition and decreased odorant adsorbability. If this combination is inevitably required for algae and odorant control, it would be beneficial to utilize a wise screen for oxidants and a reduced oxidant dose (less than 2 mg/L) to mitigate the deterioration of odorant adsorption. This study elucidates the roles of structural flexibility in influencing the treatability of dioxanes and dioxolanes, extending beyond the solely well-established effects of hydrophobicity. It also presents rational practice guidelines for the combination of pre-oxidation and adsorption in addressing odor incidents associated with dioxane and dioxolane compounds.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yuning Du
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wentao Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, 210023 Nanjing, China
| | - Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Liu F, Wang Q, Zietzschmann F, Yang F, Nie S, Zhang J, Yang M, Yu J. Competition & UV 254 projection in odorants vs natural organic matter adsorption onto activated carbon surfaces: Is the chemistry right? WATER RESEARCH 2024; 268:122764. [PMID: 39566283 DOI: 10.1016/j.watres.2024.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Powdered activated carbon (PAC) adsorption remains an indispensable method for addressing odor problems in drinking water. While natural organic matter (NOM) is ubiquitous and competes strongly in deteriorating odorant adsorption capacity, it can also serve as a promising indicator for predicting odorant adsorption through online measurement. However, the impact of PAC surface chemistry on NOM competition and feasibility of prediction across various adsorbents are not well understood. Here, we examined the role of PAC properties (pore structure and surface chemistry) in the competitive adsorption between odorants and NOM components, aligned with the applicability assessment of using NOM optical properties for odorant adsorption projection across various PAC samples. Chemical oxidation and thermal treatment achieved considerable changes in surface functional group composition, alongside minimal changes in pore structure, of two typical PAC products with microporous/mesoporous pore characteristics. The effect of NOM interference on the reduction of odorant adsorption exhibited a similar level regardless of the PACs with different pore structure (average pore size of 1.7 nm vs. 4.2 nm). Surface modification increased the equilibrium adsorption capacity (qe50) of odorants by 15.1 % to 146.4 % (thermal treatment) or decreased by -81.3 % to -34.1 % (chemical oxidation), respectively, but minimal changes in odorant-NOM selectivity. For various odorants, hydrophobicity (log D) influenced the adsorption capacity while the structural flexibility (reflected by the rotatable bonds) affected the vulnerability of odorant adsorption to NOM competition. It was found for the first time that four-parameter Richards model (RMSE = 2.6 %) is superior to the linear model (RMSE = 12.5 %) or logarithmic model (RMSE = 77.6 %) to describe the S-shape UV254 projection curves associated with odorant adsorption on PAC. Moreover, the feasibility was confirmed to use UV254 projection curves of pristine PAC fitted with the Richards model to predict the odorant adsorption on surface-modified PAC in two different surface waters (RMSE 9.2 % and 7.4 %, respectively). This study provides insight into the role of PAC surface chemistry and pore characteristics in odorant adsorption in NOM-containing waters and enhances the feasibility of the NOM surrogate model for odorant monitor and control during PAC adsorption.
Collapse
Affiliation(s)
- Fang Liu
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | - Fan Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaozhen Nie
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang Y, Yan X, Wang S, Gao S, Yang K, Zhang R, Zhang M, Wang M, Ren L, Yu J. Electronic nose application for detecting different odorants in source water: Possibility and scenario. ENVIRONMENTAL RESEARCH 2023; 227:115677. [PMID: 36940815 DOI: 10.1016/j.envres.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 05/08/2023]
Abstract
The problem of taste and odor (T&O) in drinking water is a widespread societal concern and highlights substantial challenges related to the detection and evaluation of odor in water. In this study, the portable electronic nose PEN3, which is equipped with ten different heated metal sensors, was applied to analyze its applicability, feasibility and application scenarios for the detection of typical odorants, such as 2-methylisobornel (2-MIB), geosmin (GSM), β-cyclocitral, β-ionone, and other T&O compounds in source water, while avoiding uncertainties and instability related to manual inspection. All the T&O compounds could be effectively differentiated by principal component analysis (PCA). Linear discriminant analysis (LDA) showed that the odors varied greatly between different samples and could be effectively distinguished. As the odorant concentration increased, the sensor response intensity of the primary identification sensors R6 and R8 increased with a significant positive correlation. For Microcystis aeruginosa, an algae that produces odorants, PCA could distinguish the odors of algae at a series of densities at different concentrations. The responses of R10 showed a significant increase with increasing algae density, implying the production of more aliphatic hydrocarbons and other odor compounds. The results indicated that the electronic nose could provide a promising alternative to traditional unstable and complex detection methods for the detection of odorous substances in surface water and early warning of odor events. This study aimed to provide technical support for rapid monitoring and early warning of odorants in source water management.
Collapse
Affiliation(s)
- Yongjing Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyu Yan
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Songtao Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Song Gao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Kai Yang
- China MCC5 Group Corp. Ltd, Chengdu, 610023, China
| | - Ruolin Zhang
- Institute of Scientific and Technical Information of China, Beijing, 100038, China
| | - Mengshu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Moru Wang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Lianhai Ren
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Wang C, Yu J, Chen Y, Dong Y, Su M, Dong H, Wang Z, Zhang D, Yang M. Co-occurrence of odor-causing dioxanes and dioxolanes with bis(2-chloro-1-methylethyl) ether in Huangpu River source water and fates in O 3-BAC process. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128435. [PMID: 35183052 DOI: 10.1016/j.jhazmat.2022.128435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
In recent years, dioxanes and dioxolanes have been intermittently detected in water environment and have caused several offensive drinking water odor incidents worldwide. In this study, the co-occurrence of eight dioxanes, twelve dioxolanes and bis(2-chloro-1-methylethyl) ether was investigated in Huangpu River watershed to explore potential sources and contributions to septic/chemical odor. Totally 8 dioxanes and dioxolanes were detected in river, with 1,4-dioxane (212 -8310 ng/L) and 2,5,5-trimethyl-1,3-dioxane (n.d.-133 ng/L) as the dominated dioxanes, 2-methyl-1,3-dioxolane (49.5 -2278 ng/L), 2-ethy-4-methyl-1,3-dioxolane (n.d.-167 ng/L) and 1,3-dioxolane (n.d.-225 ng/L) as the major dioxolanes. Bis(2-chloro-1-methylethyl) ether was detected (n.d.-1094 ng/L) with significant correlation with dioxanes and dioxolanes, illustrating their similar polyester resin-related industrial origins. 2-Ethy-4-methyl-1,3-dioxolane, 2,5,5-trimethyl-1,3-dioxane and bis(2-chloro-1-methylethyl) ether with individual maximum odor activity value above 1, should contribute to septic/chemical odor in Huangpu River water. The increased concentrations of these chemicals in the downstream of some industrial areas illustrated the association with industrial discharge. Fates in a waterworks using the river water as source water were further explored. The adopting ozone-biological activated carbon treatment could permit a relatively high removal for bis(2-chloro-1-methylethyl) ether and 2,5,5-trimethyl-1,3-dioxane (> 80%), while limited removal for other chemicals. This study provides valuable information for the management of drinking source water and water environment.
Collapse
Affiliation(s)
- Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Chen
- Wuxi Water Group Co., Ltd., Wuxi 214031, China.
| | - Yunxing Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zheng Wang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai 200082, China.
| | - Dong Zhang
- Shanghai National Engineering Research Center of Urban Water Resources Co., Ltd., Shanghai 200082, China.
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Karges U, de Boer S, Vogel AL, Püttmann W. Implementation of initial emission mitigation measures for 1,4-dioxane in Germany: Are they taking effect? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150701. [PMID: 34634353 DOI: 10.1016/j.scitotenv.2021.150701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Since our comprehensive investigation of finished drinking water in Germany obtained from managed aquifer recharge systems in the period 2015-2016, which revealed widespread contamination with 1,4-dioxane, mitigation measures (integration of AOP units, shutdown or alteration of production processes) have been implemented at some sites. In this study, we conducted follow-up tests on surface water concentrations and associated finished drinking water concentrations in 2017/2018, to evaluate the effectiveness of these measures. Our findings demonstrate that the emission mitigation measures had considerably reducing effects on the average 1,4-dioxane drinking water concentrations for some of the previously severely affected areas (Lower Franconia: -54%, Passau: -88%). Conversely, at notoriously contaminated sites where neither monitoring nor mitigation measures were introduced, the drinking water concentrations stagnated or even increased. Drinking water concentrations determined via a modified US EPA method 522 ranged from below LOQ (0.034 μg/L) up to 1.68 μg/L in all drinking water samples investigated. In river water samples, the maximum concentration exceeded 10 μg/L. Effluents of wastewater treatments plants containing 1,4-dioxane (5 μg/L-1.75 mg/L) were also analyzed for other similar cyclic ethers by suspected target screening. Thus, 1,3-dioxolane and three other derivatives were tentatively identified in effluents from the polyester processing or manufacturing industry. 1,3-Dioxolane was present in concentrations >1.2 mg/L at one site, exceeding up to sevenfold the 1,4-dioxane concentration found there. At another site 2-methyl-1,3-dioxolane was still found 13 km downstream of the discharge point, indicating that ethers analogous to 1,4-dioxane should be further considered regarding their occurrence and fate in wastewater treatment and the aquatic environment.
Collapse
Affiliation(s)
- Ursula Karges
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.
| | - Sabrina de Boer
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany; CRETUS Institute, Department of Chemical Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Alexander L Vogel
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Wilhelm Püttmann
- Institute of Atmospheric and Environmental Sciences, Goethe-University Frankfurt am Main, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Wang C, Gallagher DL, Dietrich AM, Su M, Wang Q, Guo Q, Zhang J, An W, Yu J, Yang M. Data Analytics Determines Co-occurrence of Odorants in Raw Water and Evaluates Drinking Water Treatment Removal Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16770-16782. [PMID: 34855387 DOI: 10.1021/acs.est.1c02129] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A complex dataset with 140 sampling events was generated using triple quadrupole gas chromatography-mass spectrometer to track the occurrence of 95 odorants in raw and finished water from 98 drinking water treatment plants in 31 cities across China. Data analysis identified more than 70 odorants with concentrations ranging from not detected to thousands of ng/L. In raw water, Pearson correlation analysis determined that thioethers, non-oxygen benzene-containing compounds, and pyrazines were classes of chemicals that co-occurred, and geosmin and p(m)-cresol, as well as cyclohexanone and benzaldehyde, also co-occurred, indicating similar natural or industrial sources. Based on classification and regression tree analysis, total dissolved organic carbon and geographical location were identified as major factors affecting the occurrence of thioethers. Indoles, phenols, and thioethers were well-removed through conventional and advanced treatment processes, while some aldehydes could be generated. For other odorants, higher removal was achieved by ozonation-biological activated carbon (39.3%) compared to the conventional treatment process (14.5%). To our knowledge, this is the first study to systematically identify the major odorants in raw water and determine suitable treatment strategies to control their occurrence by applying data analytics and statistical methods to the complex dataset. These provide informative reference for odor control and water quality management in drinking water industry.
Collapse
Affiliation(s)
- Chunmiao Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daniel L Gallagher
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 413 Durham Hall, 1145 Perry Street, MC 0246, Blacksburg, Virginia 24061, United States
| | - Andrea M Dietrich
- Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, 413 Durham Hall, 1145 Perry Street, MC 0246, Blacksburg, Virginia 24061, United States
| | - Ming Su
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Guo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wei An
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Guo Q, Li Z, Chen T, Yang B, Ding C. Implications for emergency response to the severe odor incident occurred in source water: Potential odorants and control strategy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67022-67031. [PMID: 34244936 DOI: 10.1007/s11356-021-15218-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Sudden odor incidents occurring in the source water have been a severe problem for water suppliers. In order to apply emergency control measures effectively, it is necessary to identify the target compounds responsible for odor incidents rapidly. The present work identified the odorants and explored emergency disposal mechanisms for sudden and severe odors in the QT River's drinking water source (HZ city, China). Medicinal, chemical, septic, and musty odors with strong intensities were detected in the source water. The effect of conventional treatments of drinking water treatment plant (DWTP) on odors' removal was limited, which was evident by the presence of medicinal, chemical, and musty odors with moderate intensities in the effluent of DWTP. Total seventeen odorants were identified successfully in the source water of QT River and the effluent of DWTP. The measured OAVs and reconstituting the identified odorants explained 87, 87, 89, and 94% of medicinal, chemical, septic, and musty odors, respectively, in the source water of the QT River and 90, 87, and 88% of medicinal, chemical, and musty odors in the effluent. Styrene, phenol, 2-chlorophenol, 2-tert-butylphenol, and 2-methylphenol were associated with the medicinal odor, while propyl sulfide, diethyl disulfide, propyl disulfide, and indole were related to the septic odor. Geosmin and 2-methylisoborneol (2-MIB) were responsible for the musty odor, and cyclohexanone, 1,4-dichlorobenzene, and nitrobenzene were involved with the chemical odor. Based on the characteristics of identified odorants, powdered activated carbon (PAC) was applied to control the odors in the QT River. The results indicated that the medicinal, chemical, septic, and musty odors could be removed entirely after adding 15 mg/L PAC, which effectively controlled emergency odor problems. Overall, the study would offer a scientific basis and operational reference for emergency odor management and control in DWTP with similar complicated odor incidents.
Collapse
Affiliation(s)
- Qingyuan Guo
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Zhaoxia Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Tianming Chen
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Bairen Yang
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China
| | - Cheng Ding
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, 224051, China.
| |
Collapse
|
8
|
(Sesha) Pochiraju S, Hoppe-Jones C, Adams C, Weinrich L. Development and optimization of analytical methods for the detection of 18 taste and odor compounds in drinking water utilities. WATER RESEARCH X 2021; 11:100099. [PMID: 33889833 PMCID: PMC8050797 DOI: 10.1016/j.wroa.2021.100099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Taste and odor (T&O) issues have been a major concern among drinking water utilities as source waters are becoming increasingly vulnerable to compounds released during algal blooms as well as non-algal compounds. While most of the literature focuses on the two most common T&O compounds - 2-MIB and geosmin, there are other compounds that have the potential to cause T&O events. The aim of this study was to develop an advanced analytical method using solid phase microextraction (SPME) and gas chromatography-tandem mass spectrometry (GC-MS/MS) to identify 18 T&O compounds belonging to various odor classes. The developed method was optimized for the 18 analytes and implemented to determine the holding time of the compounds in raw and treated (distribution system point-of-entry or PoE) drinking water matrices. Compounds belonging to certain classes such as pyrazines and anisoles were found to be "stable" (< 30% loss) in all tested waters for up to two weeks, while aldehydes, ketones, esters and alkyl sulfides showed > 30% loss within 96 h in raw water. Preservation of samples at low pH (< 2) using hydrochloric acid increased the holding times and reduced losses within 96 h for aldehydes, ketones and esters. The paper also discusses the occurrence of these compounds with water utilities from the Midwest and Eastern US during the summer months. The study detected eight T&O compounds - 2-MIB, geosmin, β-cyclocitral, β-ionone, hexanal, indole, dimethyl disulfide and dimethyl trisulfide. While five compounds were detected above their threshold concentrations in the raw water, two of them (2-MIB and geosmin) were detected above threshold in the PoE samples.
Collapse
Affiliation(s)
| | | | - Craig Adams
- Saint Louis University, St. Louis, MO, 63103, USA
| | | |
Collapse
|
9
|
Quintana J, de la Cal A, Boleda MR. Monitoring the complex occurrence of pesticides in the Llobregat basin, natural and drinking waters in Barcelona metropolitan area (Catalonia, NE Spain) by a validated multi-residue online analytical method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:952-965. [PMID: 31539999 DOI: 10.1016/j.scitotenv.2019.07.317] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The European Directive 98/83/CE legislates the presence of pesticides in drinking water, but apart from a few compounds, nothing is said about which pesticides should be monitored. Nevertheless, water companies need to go beyond the accomplishment of the legislation and find out pesticide contamination in all sources of water in order to manage the hazard assessment, and to guarantee safe drinking water to all the population. The aim of this work was to develop an analytical multi-residue method for circa 100 compounds. The method analyses previously monitored compounds in Barcelona city and its metropolitan area, as well as many emerging pesticides and some transformation products. An on-line sample extraction (0.75 mL) coupled to fast UHPLC-MS/MS method was developed. Good linearity (r2 > 0.995, with less residuals than 15%), accuracies and precisions under 25%, and acceptable expanded uncertainties were obtained for most of the monitored compounds, according to ISO/IEC 17025, obtaining limits of quantification between 5 and 25 ng/L for all compounds. A monitoring campaign on natural and treated waters in the Barcelona metropolitan area was carried out during 2016-2017. Results showed that pesticide contamination at the low stretch of Llobregat River and in its aquifer is severe. The maximum concentrations were in the range of few μg/L for carbendazim, DEET, diuron and propiconazole, and in the range 0.1-0.5 μg/L for bentazone, imidacloprid, isoproturon, simazine, metazachlor, methomyl, terbutryn and tebuconazole. However, the efficiency of advanced treatments in the DWTPs involved in drinking water production in the Barcelona metropolitan area allows the complete removal of pesticides and a safe water production for consumers. The method shows a good analytical performance for most compounds with a fast sample preparation and analysis. In addition, it has updated the knowledge about the occurrence of pesticides in the Barcelona city area.
Collapse
Affiliation(s)
- Jordi Quintana
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A. General Batet 1-7, 08028 Barcelona, Spain.
| | - Agustina de la Cal
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A. General Batet 1-7, 08028 Barcelona, Spain
| | - M Rosa Boleda
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A. General Batet 1-7, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Quintana J, Hernández A, Ventura F, Devesa R, Boleda MR. Identification of 3-(trifluoromethyl)phenol as the malodorous compound in a pollution incident in the water supply in Catalonia (N.E. Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16076-16084. [PMID: 30968295 DOI: 10.1007/s11356-019-04635-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
A study of organic compounds that caused a serious taste and odor episode of water supply in two residential areas in Catalonia (N.E. Spain) was carried out. Sweet and paint/solvent odor were the main descriptors used by consumers. Some cases of sickness and nausea were also associated with drinking water consumption by the consumers. Closed-loop stripping analysis (CLSA) combined with sensory gas chromatography and gas chromatography mass spectrometry detection were used to study the problem. As a result, 3-(trifluoromethyl)phenol (CAS number 98-17-9) was for the first time identified as a responsible of an odor incident in drinking water. Concentration levels of this compound were up to 17,000 ng/L in groundwater and up to 600 ng/L in distributed water. Odor threshold in water for 3-(trifluoromethyl)phenol was determined as 13 ng/L (45 °C).
Collapse
Affiliation(s)
- Jordi Quintana
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A., General Batet, 1-7, 08028, Barcelona, Spain.
| | - Alejandra Hernández
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A., General Batet, 1-7, 08028, Barcelona, Spain
| | - Francesc Ventura
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research - Spanish Council for Scientific Research (IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Ricard Devesa
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A., General Batet, 1-7, 08028, Barcelona, Spain
| | - Maria Rosa Boleda
- Aigües de Barcelona, Empresa Metropolitana de Gestió del Cicle Integral de l'Aigua, S.A., General Batet, 1-7, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Carrera G, Vegué L, Ventura F, Hernández-Valencia A, Devesa R, Boleda MR. Dioxanes and dioxolanes in source waters: Occurrence, odor thresholds and behavior through upgraded conventional and advanced processes in a drinking water treatment plant. WATER RESEARCH 2019; 156:404-413. [PMID: 30933698 DOI: 10.1016/j.watres.2019.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Over the last years, the human probable carcinogen 1,4-dioxane and alkyl-1,3-dioxanes and dioxolanes have been detected and identified as the cause of several pollution episodes in the Llobregat River (Catalonia, NE Spain) and its aquifer. It is an issue of major concern to study these compounds which are released to the environment by resin manufacturing plants' spills and wastewater discharges spread along rivers and reach drinking water treatment plants (DWTPs) in order to protect the environment and public health. In this study four seasonal sampling campaigns were carried out over a year to determine the removal efficiency of the dioxanes and dioxolanes at each step of a DWTP including ozonation, granular activated carbon filters, ultrafiltration and reverse osmosis step's treatments. Additionally, a weekly sampling monitoring of 1,4-dioxane and alkyl-1,3-dioxanes and dioxolanes in raw water, groundwater and finished water was performed at a DWTP over more than two years. Aqueous odor concentration thresholds (OTCs) were established by the three-alternative forced choice method (3-AFC). Following a previous published methodology, samples were analyzed and results showed that the advanced treatment (Ultrafiltration followed by reverse osmosis) line removes more efficiently 1,4-dioxane, alkyl dioxanes and dioxolanes (80 ± 6% for 1,4-dioxane, 97 ± 7% for 5,5-DMD and 100 ± 0% for 2,5,5-TMD) than the upgraded conventional treatment line (ozonation followed by granular activated carbon filters) (-12 ± 50%, 25 ± 62% and 50 ± 51% respectively), where some desorption processes were eventually observed. From the monitoring study, results suggest that the presence of 1,4-dioxane is not only due to spills, but also from other sources of contamination. Whereas dioxolanes almost completely disappeared in time, 1,4-dioxane's concentrations remained low and fluctuant. A background concentration of 1,4-dioxane in surface waters (∼1 μg/L) has been determined with a relevant concentration up to 11.6 μg/L of 1,4-dioxane in groundwater. The perception values for some of the studied compounds were extremely low (few ng/L only), which confirms the relevancy of this group of compounds as malodorous agents in waters.
Collapse
Affiliation(s)
- Guillem Carrera
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain.
| | - Lídia Vegué
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain
| | - Francesc Ventura
- IDAEA-CSIC, Department of Environmental Chemistry, J. Girona 18, 08034, Barcelona, Spain
| | | | - Ricard Devesa
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain
| | - M Rosa Boleda
- Aigües de Barcelona - EMGCIA S.A, General Batet 1-7, 08028, Barcelona, Spain
| |
Collapse
|
12
|
Marron EL, Mitch WA, von Gunten U, Sedlak DL. A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. Acc Chem Res 2019; 52:615-622. [PMID: 30821146 PMCID: PMC7653687 DOI: 10.1021/acs.accounts.8b00612] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In response to water scarcity and an increased recognition of the risks associated with the presence of chemical contaminants, environmental engineers have developed advanced water treatment systems that are capable of converting municipal wastewater effluent into drinking water. This practice, which is referred to as potable water reuse, typically relies upon reverse osmosis (RO) treatment followed by exposure to ultraviolet (UV) light and addition of hydrogen peroxide (H2O2). These two treatment processes individually are capable of controlling many of the chemical and microbial contaminants in wastewater; however, a few chemicals may still be present after treatment at concentrations that affect water quality. Low-molecular weight (<200 Da), uncharged compounds represent the greatest challenge for RO treatment. For potable water reuse systems, compounds of greatest concern include oxidation products formed during treatment (e.g., N-nitrosodimethylamine, halogenated disinfection byproducts) and compounds present in wastewater effluent (e.g., odorous compounds, organic solvents). Although the concentrations of most of these compounds decrease to levels where they no longer compromise water quality after they encounter the second treatment barrier (i.e., UV/H2O2), low-molecular weight compounds that are resistant to direct photolysis and exhibit low reactivity with hydroxyl radical (·OH) may persist. While attempts to identify the compounds that pass through both barriers have accounted for approximately half of the dissolved organic carbon remaining after treatment, it is unlikely that a significant fraction of the remaining unknowns will ever be identified with current analytical techniques. Nonetheless, the toxicity-weighted concentration of certain known compounds (e.g., disinfection byproducts) is typically lower in RO-UV/H2O2 treated water than conventional drinking water. To avoid the expense associated with managing the concentrate produced by RO, environmental engineers have begun to employ alternative treatment barriers. The use of alternatives such as nanofiltration, ozonation followed by biological filtration, or activated carbon filtration avoids the problems associated with the production and disposal of RO concentrate, but they may allow a larger number of chemical contaminants to pass through the treatment process. In addition to the transformation products and solvents that pose risks in the RO-UV/H2O2 system, these alternative barriers are challenged by larger, polar compounds that are not amenable to oxidation, such as perfluoroalkyl acids and phosphate-containing flame retardants. To fully protect consumers who rely upon potable water reuse systems, new policies are needed to prevent chemicals that are difficult to remove during advanced treatment from entering the sewer system. By using knowledge about the composition of municipal wastewater and the mechanisms through which contaminants are removed during treatment, it should be possible to safely reuse municipal wastewater effluent as a drinking water source.
Collapse
Affiliation(s)
- Emily L. Marron
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
| | - William A. Mitch
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéralé de Lausanne, CH-1015 Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Carrera G, Vegué L, Boleda MR, Ventura F. Simultaneous determination of the potential carcinogen 1,4-dioxane and malodorous alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes in environmental waters by solid-phase extraction and gas chromatography tandem mass spectrometry. J Chromatogr A 2017; 1487:1-13. [DOI: 10.1016/j.chroma.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 12/25/2022]
|
14
|
Phetxumphou K, Dietrich AM, Shanaiah N, Smiley E, Gallagher DL. Subtleties of human exposure and response to chemical mixtures from spills. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:618-626. [PMID: 27131822 DOI: 10.1016/j.envpol.2016.04.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/14/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
Worldwide, chemical spills degrade drinking water quality and threaten human health through ingestion and inhalation. Spills are often mixtures of chemicals; thus, understanding the interaction of chemical and biological properties of the major and minor components is critical to assessing human exposure. The crude (4-methylcyclohexyl)methanol (MCHM) spill provides an opportunity to assess such subtleties. This research determined the relative amounts, volatilization, and biological odor properties of minor components cis- and trans-methyl-4-methylcyclohexanecarboxylate (MMCHC) isomers and major components cis- and trans-4-MCHM, then compared properties and human exposure differences among them. (1)H nuclear magnetic resonance and chromatography revealed that the minor MMCHC isomers were about 1% of the major MCHM isomers. At typical showering temperature of 40 °C, Henry's law constants were 1.50 × 10(-2) and 2.23 × 10(-2) for cis- and trans-MMCHC, respectively, which is 20-50 fold higher than for 4-MCHM isomers. The odor thresholds were 1.83 and 0.02 ppb-v air for cis- and trans-MMCHC, which were both described as predominantly sweet. These data are compared to the higher 120 ppb-v air and 0.06 ppb-v odor thresholds for cis- and trans-4-MCHM, for which the trans-isomer had a dominant licorice descriptor. Application of a shower model demonstrated that while MMCHC isomers are only about 1% of the MCHM isomers, during showering, the MMCHC isomers are 13.8% by volume (16.3% by mass) because of their higher volatility. Trans-4-MCHM contributed about 82% of the odor because of higher volatility and lower odor threshold, trans-MMCHC, which represents 0.3% of the mass, contributed 18% of the odor. This study, with its unique human sensory component to assess exposure, reaffirmed that hazard assessment must not be based solely on relative concentration, but also consider the chemical fate, transport, and biological properties to determine the actual levels of exposure across different media.
Collapse
Affiliation(s)
- Katherine Phetxumphou
- Civil and Environmental Engineering, 413 Durham Hall, MC0246, 1145 Perry Street, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Andrea M Dietrich
- Civil and Environmental Engineering, 413 Durham Hall, MC0246, 1145 Perry Street, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | - Elizabeth Smiley
- Civil and Environmental Engineering, 413 Durham Hall, MC0246, 1145 Perry Street, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Daniel L Gallagher
- Civil and Environmental Engineering, 413 Durham Hall, MC0246, 1145 Perry Street, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|