1
|
Gao SC, Fan XX, Zhang Z, Li RT, Zhang Y, Gao TP, Liu Y. A dual-function mixed-culture biofilm for sulfadiazine removal and electricity production using bio-electrochemical system. Biosens Bioelectron 2024; 263:116552. [PMID: 39038400 DOI: 10.1016/j.bios.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/17/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
Sulfadiazine (SDZ) is frequently detected in environmental samples, arousing much concern due to its toxicity and hard degradation. This study investigated the electricity generation capabilities, SDZ removal and microbial communities of a highly efficient mixed-culture system using repeated transfer enrichments in a bio-electrochemical system. The mixed-culture biofilm (S160-T2) produced a remarkable current density of 954.12 ± 15.08 μA cm-2 with 160 mg/L SDZ, which was 32.9 and 1.8 times higher than that of Geobacter sulfurreducens PCA with 40 mg/L SDZ and without additional SDZ, respectively. Especially, the impressive SDZ removal rate of 98.76 ± 0.79% was achieved within 96 h using the further acclimatized mixed-culture. The removal efficiency of this mixed-culture for SDZ through the bio-electrochemical system was 1.1 times higher than that using simple anaerobic biodegradation. Furthermore, the current density and removal efficiency in this system gradually decreased with increasing SDZ concentrations from 0 to 800 mg/L. In addition, community diversity data demonstrated that the dominant genera, Geobacter and Escherichia-Shigella, were enriched in mixed-culture biofilm, which might be responsible for the current production and SDZ removal. This work confirmed the important roles of acclimatized microbial consortia and co-substrates in the simultaneous removal of SDZ and electricity generation in an electrochemical system.
Collapse
Affiliation(s)
- Sheng-Chao Gao
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Xin-Xin Fan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Zhen Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Rui-Tao Li
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Yue Zhang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China
| | - Tian-Peng Gao
- The Engineering Research Center of Mining Pollution Treatment and Ecological Restoration of Gansu Province, Lanzhou City University, Lanzhou, 730070, China; College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Ying Liu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
2
|
Yan X, Bu J, Chen X, Zhu MJ. Comparative genomic analysis reveals electron transfer pathways of Thermoanaerobacterium thermosaccharolyticum: Insights into thermophilic electroactive bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167294. [PMID: 37741387 DOI: 10.1016/j.scitotenv.2023.167294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/27/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Microbial extracellular respiration is an important energy metabolism on earth, which is significant for the elemental biogeochemical cycle. Herein, extracellular Fe(III) and electrode respiration were confirmed in Thermoanaerobacterium thermosaccharolyticum MJ2. The intra/extracellular electron transfer (IET/EET) mechanism of MJ2 was investigated by comparative genomic analysis for the first time. Morphological characterization and electrochemical properties of anode illustrated that MJ2 generated bio-electricity by forming a biofilm. The respiration chain inhibition and enzyme activity tests showed that hydrogenase with cytochrome c (Cyt-c) was involved in IET of MJ2. Noteworthily, the exogenous Cyt-c increased hydrogenase activity to promote bio-electricity generation by 92.84 %. The Cyt-c gene synteny between MJ2 and another well-known exoelectrogen (Thermincola potens JR) indicated that Cyt-c bound to the outer membrane mediated the formation of biofilm involved in EET of MJ2. This study broadened the understanding of microbial extracellular respiration diversity and provided new insights to explore the electron transfer pathways of exoelectrogens.
Collapse
Affiliation(s)
- Xing Yan
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Jie Bu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yarkand Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi, People's Republic of China.
| |
Collapse
|
3
|
Lascu I, Locovei C, Bradu C, Gheorghiu C, Tanase AM, Dumitru A. Polyaniline-Derived Nitrogen-Containing Carbon Nanostructures with Different Morphologies as Anode Modifier in Microbial Fuel Cells. Int J Mol Sci 2022; 23:11230. [PMID: 36232531 PMCID: PMC9569864 DOI: 10.3390/ijms231911230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Anode modification with carbon nanomaterials is an important strategy for the improvement of microbial fuel cell (MFC) performance. The presence of nitrogen in the carbon network, introduced as active nitrogen functional groups, is considered beneficial for anode modification. In this aim, nitrogen-containing carbon nanostructures (NCNs) with different morphologies were obtained via carbonization of polyaniline and were further investigated as anode modifiers in MFCs. The present study investigates the influence of NCN morphology on the changes in the anodic microbial community and MFC performance. Results show that the nanofibrillar morphology of NCNs is beneficial for the improvement of MFC performance, with a maximum power density of 40.4 mW/m2, 1.25 times higher than the anode modified with carbonized polyaniline with granular morphology and 2.15 times higher than MFC using the carbon cloth-anode. The nanofibrillar morphology, due to the well-defined individual nanofibers separated by microgaps and micropores and a better organization of the carbon network, leads to a larger specific surface area and higher conductivity, which can allow more efficient substrate transport and better bacterial colonization with greater relative abundances of Geobacter and Thermoanaerobacter, justifying the improvement of MFC performance.
Collapse
Affiliation(s)
- Irina Lascu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Claudiu Locovei
- Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Magurele, Romania
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - Corina Bradu
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Cristina Gheorghiu
- Extreme Light Infrastructure-Nuclear Physics (ELI-NP), “Horia Hulubei” National Institute for R&D in Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele, Romania
| | - Ana Maria Tanase
- Faculty of Biology, University of Bucharest, Splaiul Independenței 91–95, 050095 Bucharest, Romania
| | - Anca Dumitru
- Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Magurele, Romania
| |
Collapse
|
4
|
Jadhav P, Khalid ZB, Zularisam AW, Krishnan S, Nasrullah M. The role of iron-based nanoparticles (Fe-NPs) on methanogenesis in anaerobic digestion (AD) performance. ENVIRONMENTAL RESEARCH 2022; 204:112043. [PMID: 34543635 DOI: 10.1016/j.envres.2021.112043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Several strategies have been proposed to improve the performance of the anaerobic digestion (AD) process. Among them, the use of various nanoparticles (NPs) (e.g. Fe, Ag, Cu, Mn, and metal oxides) is considered one of the most effective approaches to enhance the methanogenesis stage and biogas yield. Iron-based NPs (zero-valent iron with paramagnetic properties (Fe0) and iron oxides with ferromagnetic properties (Fe3O4/Fe2O3) enhance microbial activity and minimise the inhibition effect in methanogenesis. However, comprehensive and up-to-date knowledge on the function and impact of Fe-NPs on methanogens and methanogenesis stages in AD is frequently required. This review focuses on the applicative role of iron-based NPs (Fe-NPs) in the AD methanogenesis step to provide a comprehensive understanding application of Fe-NPs. In addition, insight into the interactions between methanogens and Fe-NPs (e.g. role of methanogens, microbe interaction and gene transfer with Fe-NPs) beneficial for CH4 production rate is provided. Microbial activity, inhibition effects and direct interspecies electron transfer through Fe-NPs have been extensively discussed. Finally, further studies towards detecting effective and optimised NPs based methods in the methanogenesis stage are reported.
Collapse
Affiliation(s)
- Pramod Jadhav
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Zaied Bin Khalid
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia
| | - Santhana Krishnan
- Centre of Environmental Sustainability and Water Security (IPASA), Research Institute of Sustainable Environment (RISE), Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Malaysia; PSU Energy Systems Research Institute, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Lebuhraya Tun Razak, Gambang, Kuantan, Pahang, 26300, Malaysia.
| |
Collapse
|
5
|
Chaudhary S, Yadav S, Singh R, Sadhotra C, Patil SA. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications. BIORESOURCE TECHNOLOGY 2022; 347:126663. [PMID: 35017088 DOI: 10.1016/j.biortech.2021.126663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Electroactive microorganisms (EAMs) use extracellular electron transfer (EET) processes to access insoluble electron donors or acceptors in cellular respiration. These are used in developing microbial electrochemical technologies (METs) for biosensing and bioelectronics applications and the valorization of liquid and gaseous wastes. EAMs from extreme environments can be useful to overcome the existing limitations of METs operated with non-extreme microorganisms. Studying extreme EAMs is also necessary to improve understanding of respiratory processes involving EET. This article first discusses the advantages of using extreme EAMs in METs and summarizes the diversity of EAMs from different extreme environments. It is followed by a detailed discussion on their use as biocatalysts in various bioprocessing applications via bioelectrochemical systems. Finally, the challenges associated with operating METs under extreme conditions and promising research opportunities on fundamental and applied aspects of extreme EAMs are presented.
Collapse
Affiliation(s)
- Srishti Chaudhary
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sukrampal Yadav
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Ramandeep Singh
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Chetan Sadhotra
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India
| | - Sunil A Patil
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali (IISER Mohali), Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
6
|
Kas A, Yilmazel YD. High current density via direct electron transfer by hyperthermophilic archaeon, Geoglobus acetivorans, in microbial electrolysis cells operated at 80 °C. Bioelectrochemistry 2022; 145:108072. [PMID: 35144167 DOI: 10.1016/j.bioelechem.2022.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/02/2022]
Abstract
Utilization of hyperthermophilic electro-active microorganisms in microbial electrolysis cells (MECs) that are used for hydrogen production from organic wastes offers significant advantages, such as increased reaction rate and enhanced degradation of insoluble materials. However, only a limited number of hyperthermophilic bioelectrochemical systems have been investigated so far. This study is the first to illustrate hydrogen production in hyperthermophilic MECs with a maximum rate of 0.57 ± 0.06 m3 H2/m3d, where an iron reducing archaeon, Geoglobus acetivorans, was used as inoculum. In fact, this is the first study to report that G. acetivorans, as the fourth hyperthermophilic electro-active archaeon. In single chamber MECs operated at 80 °C with a set potential of 0.7 V, a peak current density of 1.53 ± 0.24 A/m2 has been attained and this is the highest record of current produced by pure culture hyperthermophilic microorganisms. Turnover cyclic voltammetry curve illustrated a sigmoidal shape (midpoint of -0.40 V vs. Ag/AgCl), and together with linear relation of scan rate and peak anodic current, proves the biofilm attachment to the anode and its capability of direct electron transfer. Along with simple substrate (acetate), G. acetivorans effectively utilized dark fermentation effluent for hydrogen production in MECs.
Collapse
Affiliation(s)
- Aykut Kas
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Yasemin Dilsad Yilmazel
- Department of Environmental Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
7
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
8
|
Gurumurthy DM, Bilal M, Nadda AK, Reddy VD, Saratale GD, Guzik U, Ferreira LFR, Gupta SK, Savanur MA, Mulla SI. Evaluation of cell wall-associated direct extracellular electron transfer in thermophilic Geobacillus sp. 3 Biotech 2021; 11:383. [PMID: 34350088 PMCID: PMC8316523 DOI: 10.1007/s13205-021-02917-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 11/25/2022] Open
Abstract
UNLABELLED In this study, a cell wall-associated extracellular electron transfer (EET) was determined in the thermophilic Geobacillus sp. to utilize iron as a terminal electron acceptor. The direct extracellular transfer of its electrons was primarily linked to the cell wall cytochrome-c and diffusible redox mediators like flavins during the anoxic condition. Based on the azo dye decolouration and protein film voltammetry, it was revealed that, in the absence of surface polysaccharide and diffusible mediators, the cell wall-associated EET pathway was likely to be a favorable mechanism in Geobacillus sp. Since the permeability of such redox molecule is primarily limited to the cell wall, the electron transfer occurs by direct contact with cell wall-associated cytochrome and final electron acceptor. Furthermore, transfer of electrons with the help of redox shuttling molecules like riboflavin from cytochrome to cells, vice versa indicates that Geoabcillus sp. has adopted this unique pathway during an anoxic environment for its respiration. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02917-2.
Collapse
Affiliation(s)
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234 Himachal Pradesh India
| | - Vaddi Damodara Reddy
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560 064 India
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang, Gyeonggi 10326 Republic of Korea
| | - Urszula Guzik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Science
, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering
, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe 49032-490 Brazil
| | - Sanjay Kumar Gupta
- Environmental Engineering, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016 India
| | | | - Sikandar I. Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560 064 India
| |
Collapse
|
9
|
Paquete CM. Electroactivity across the cell wall of Gram-positive bacteria. Comput Struct Biotechnol J 2020; 18:3796-3802. [PMID: 33335679 PMCID: PMC7720022 DOI: 10.1016/j.csbj.2020.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growing interest on sustainable biotechnological processes for the production of energy and industrial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms that are able to exchange electrons with an electrode) and the characterization of their extracellular electron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer. However, in the last decade, an increased number of Gram-positive bacteria have been found to perform extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is introduced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted. This understanding is fundamental to advance the implementation of these organisms in sustainable biotechnological processes, either through modification of the systems or through genetic engineering, where the organisms can be optimized to become better catalysts.
Collapse
Affiliation(s)
- Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
10
|
Gurumurthy DM, Bharagava RN, Kumar A, Singh B, Ashfaq M, Saratale GD, Mulla SI. EPS bound flavins driven mediated electron transfer in thermophilic Geobacillus sp. Microbiol Res 2019; 229:126324. [PMID: 31491671 DOI: 10.1016/j.micres.2019.126324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Abstract
Through extracellular electron transfer (EET), bacteria are capable of transforming different insoluble materials of geochemical interest into energy-rich molecules for their growth. For this process, bacteria have been depending directly or indirectly on molecules synthesized within the cells or by various synthetics as mediators. Herein, we studied the in-situ change in electrochemistry and supporting components for EET in the extracellular polysaccharide (EPS) producing biofilm of thermophilic Geobacillus sp. The CV and DPV resultsrevealed that the intact biofilm of bacteria was not able to generate any potential at 25 °C /- ≤50 °C. However, at 55 °C (optimal condition), the potential occurred drastically after the EPS production by bacteria. HPLC and MALDI-TOF results revealed that the presence of Flavins, which can able adsorbed to the electrodes from the cell surface. Moreover, the temperature-dependent EPS production and originally conceived ability of flavins to act as electron shuttles suggest that not much complexity in bacteria with minerals. Additionally, the electrochemical potential was severely affected upon removal of EPS/flavin moiety from the intact biofilm, revealed the necessity of EPS bound flavins in transferring the electrons across its thick cell walls. This paradigm shift to electrogenic nature of Geobacillus sp. biofilm will become evident in the adaptation of other microbes during mineral respiration in extreme environments.
Collapse
Affiliation(s)
| | - Ram Naresh Bharagava
- Department of Microbiology (DM), School for Environmental Sciences (SES), Babasaheb BhimraoAmbedkar University (A Central University), VidyaVihar, Raebareli Road, Lucknow 226 025, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Muhammad Ashfaq
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Pakistan
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bangalore, 560 064, Karnataka State, India.
| |
Collapse
|
11
|
Dessì P, Chatterjee P, Mills S, Kokko M, Lakaniemi AM, Collins G, Lens PNL. Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 294:122115. [PMID: 31541978 DOI: 10.1016/j.biortech.2019.122115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The microbial communities developed from a mixed-species culture in up-flow and flow-through configurations of thermophilic (55 °C) microbial fuel cells (MFCs), and their power production from acetate, were investigated. The up-flow MFC was operated for 202 days, obtaining an average power density of 0.13 W/m3, and Tepidiphilus was the dominant transcriptionally-active microorganisms. The planktonic community developed in the up-flow MFC was used to inoculate a flow-through MFC resulting in the proliferation of Ureibacillus, whose relative abundance increased from 1 to 61% after 45 days. Despite the differences between the up-flow and flow-through MFCs, including the anode electrode, hydrodynamic conditions, and the predominant microorganism, similar (p = 0.05) volumetric power (0.11-0.13 W/m3), coulombic efficiency (16-18%) and acetate consumption rates (55-69 mg/L/d) were obtained from both. This suggests that though MFC design can shape the active component of the thermophilic microbial community, the consortia are resilient and can maintain similar performance in different MFC configurations.
Collapse
Affiliation(s)
- Paolo Dessì
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland.
| | - Pritha Chatterjee
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; Department of Civil Engineering, Indian Institute of Technology Hyderabad, India
| | - Simon Mills
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Marika Kokko
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Aino-Maija Lakaniemi
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| | - Piet N L Lens
- Tampere University, Faculty of Engineering and Natural Sciences, P.O. Box 541, FI-33104 Tampere University, Finland; National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
| |
Collapse
|
12
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
13
|
The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr Opin Biotechnol 2019; 57:101-110. [DOI: 10.1016/j.copbio.2019.03.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/07/2018] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
|
14
|
Lusk BG. Thermophiles; or, the Modern Prometheus: The Importance of Extreme Microorganisms for Understanding and Applying Extracellular Electron Transfer. Front Microbiol 2019; 10:818. [PMID: 31080440 PMCID: PMC6497744 DOI: 10.3389/fmicb.2019.00818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/01/2019] [Indexed: 11/30/2022] Open
Abstract
Approximately four billion years ago, the first microorganisms to thrive on earth were anaerobic chemoautotrophic thermophiles, a specific group of extremophiles that survive and operate at temperatures ∼50 - 125°C and do not use molecular oxygen (O2) for respiration. Instead, these microorganisms performed respiration via dissimilatory metal reduction by transferring their electrons extracellularly to insoluble electron acceptors. Genetic evidence suggests that Gram-positive thermophilic bacteria capable of extracellular electron transfer (EET) are positioned close to the root of the Bacteria kingdom on the tree of life. On the contrary, EET in Gram-negative mesophilic bacteria is a relatively new phenomenon that is evolutionarily distinct from Gram-positive bacteria. This suggests that EET evolved separately in Gram-positive thermophiles and Gram-negative mesophiles, and that EET in these bacterial types is a result of a convergent evolutionary process leading to homoplasy. Thus, the study of dissimilatory metal reducing thermophiles provides a glimpse into some of Earth's earliest forms of respiration. This will provide new insights for understanding biogeochemistry and the development of early Earth in addition to providing unique avenues for exploration and discovery in astrobiology. Lastly, the physiological composition of Gram-positive thermophiles, coupled with the kinetic and thermodynamic consequences of surviving at elevated temperatures, makes them ideal candidates for developing new mathematical models and designing innovative next-generation biotechnologies. KEY CONCEPTS Anaerobe: organism that does not require oxygen for growth. Chemoautotroph: organism that obtains energy by oxidizing inorganic electron donors. Convergent Evolution: process in which organisms which are not closely related independently evolve similar traits due to adapting to similar ecological niches and/or environments. Dissimilatory Metal Reduction: reduction of a metal or metalloid that uses electrons from oxidized organic or inorganic electron donors. Exoelectrogen: microorganism that performs dissimilatory metal reduction via extracellular electron transfer. Extremophiles: organisms that thrive in physical or geochemical conditions that are considered detrimental to most life on Earth. Homoplasy: a character shared by a set of species that is not shared by a common ancestor Non-synonymous Substitutions (K a ): a substitution of a nucleotide that changes a codon sequence resulting in a change in the amino acid sequence of a protein. Synonymous Substitutions (K s ): a substitution of a nucleotide that may change a codon sequence, but results in no change in the amino acid sequence of a protein. Thermophiles: a specific group of extremophiles that survive and operate at temperatures ∼50-125°C.
Collapse
|
15
|
Pillot G, Frouin E, Pasero E, Godfroy A, Combet-Blanc Y, Davidson S, Liebgott PP. Specific enrichment of hyperthermophilic electroactive Archaea from deep-sea hydrothermal vent on electrically conductive support. BIORESOURCE TECHNOLOGY 2018; 259:304-311. [PMID: 29573609 DOI: 10.1016/j.biortech.2018.03.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/09/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
While more and more investigations are done to study hyperthermophilic exoelectrogenic communities from environments, none have been performed yet on deep-sea hydrothermal vent. Samples of black smoker chimney from Rainbow site on the Atlantic mid-oceanic ridge have been harvested for enriching exoelectrogens in microbial electrolysis cells under hyperthermophilic (80 °C) condition. Two enrichments were performed in a BioElectrochemical System specially designed: one from direct inoculation of crushed chimney and the other one from inoculation of a pre-cultivation on iron (III) oxide. In both experiments, a current production was observed from 2.4 A/m2 to 5.8 A/m2 with a set anode potential of -0.110 V vs Ag/AgCl. Taxonomic affiliation of the exoelectrogen communities obtained on the electrode exhibited a specific enrichment of Archaea belonging to Thermococcales and Archeoglobales orders, even when both inocula were dominated by Bacteria.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Eléonore Frouin
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Emilie Pasero
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes - UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Sylvain Davidson
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, IRD, Université de Toulon, CNRS, MIO UM 110, Marseille, France.
| |
Collapse
|
16
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
17
|
Shrestha N, Chilkoor G, Vemuri B, Rathinam N, Sani RK, Gadhamshetty V. Extremophiles for microbial-electrochemistry applications: A critical review. BIORESOURCE TECHNOLOGY 2018; 255:318-330. [PMID: 29433771 DOI: 10.1016/j.biortech.2018.01.151] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/08/2023]
Abstract
Extremophiles, notably archaea and bacteria, offer a good platform for treating industrial waste streams that were previously perceived as hostile to the model organisms in microbial electrochemical systems (MESs). Here we present a critical overview of the fundamental and applied biology aspects of halophiles and thermophiles in MESs. The current study suggests that extremophiles enable the MES operations under a seemingly harsh conditions imposed by the physical (pressure, radiation, and temperature) and geochemical extremes (oxygen levels, pH, and salinity). We highlight a need to identify the underpinning mechanisms that define the exceptional electrocatalytic performance of extremophiles in MESs.
Collapse
Affiliation(s)
- Namita Shrestha
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Govinda Chilkoor
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Bhuvan Vemuri
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Navanietha Rathinam
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Rajesh K Sani
- Chemical and Biological Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- Civil and Environmental Engineering, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States; Surface Engineering Research Center, South Dakota School of Mines and Technology, 501 E Saint Joseph Blvd, Rapid City, SD 57701, United States.
| |
Collapse
|
18
|
Lusk BG, Peraza I, Albal G, Marcus AK, Popat SC, Torres CI. pH Dependency in Anode Biofilms of Thermincola ferriacetica Suggests a Proton-Dependent Electrochemical Response. J Am Chem Soc 2018; 140:5527-5534. [DOI: 10.1021/jacs.8b01734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bradley G. Lusk
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- ScienceTheEarth, Mesa, Arizona 85201, United States
| | - Isaias Peraza
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Gaurav Albal
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Andrew K. Marcus
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Sudeep C. Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Cesar I. Torres
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
19
|
Venkidusamy K, Hari AR, Megharaj M. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems. Front Microbiol 2018; 9:349. [PMID: 29593662 PMCID: PMC5858583 DOI: 10.3389/fmicb.2018.00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) in MERS (maximum currentdensity 50.64 ± 7 mA/m2; power density 4.08 ± 2 mW/m2, 1000 ω, hydrocarbon removal 60.14 ± 0.7%). Such observations reveal the potential of electroactive biofilms in the simultaneous remediation of hydrocarbon contaminated environments with generation of energy.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia
| | - Ananda Rao Hari
- Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
20
|
Dessì P, Porca E, Haavisto J, Lakaniemi AM, Collins G, Lens PNL. Composition and role of the attached and planktonic microbial communities in mesophilic and thermophilic xylose-fed microbial fuel cells. RSC Adv 2018; 8:3069-3080. [PMID: 35541202 PMCID: PMC9077550 DOI: 10.1039/c7ra12316g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/08/2018] [Indexed: 11/21/2022] Open
Abstract
A mesophilic (37 °C) and a thermophilic (55 °C) two-chamber microbial fuel cell (MFC) were studied and compared for their power production from xylose and the microbial communities involved. The anode-attached, membrane-attached, and planktonic microbial communities, and their respective active subpopulations, were determined by next generation sequencing (Illumina MiSeq), based on the presence and expression of the 16S rRNA gene. Geobacteraceae accounted for 65% of the anode-attached active microbial community in the mesophilic MFC, and were associated to electricity generation likely through direct electron transfer, resulting in the highest power production of 1.1 W m-3. A lower maximum power was generated in the thermophilic MFC (0.2 W m-3), likely due to limited acetate oxidation and the competition for electrons by hydrogen oxidizing bacteria and hydrogenotrophic methanogenic archaea. Aerobic microorganisms, detected among the membrane-attached active community in both the mesophilic and thermophilic MFC, likely acted as a barrier for oxygen flowing from the cathodic chamber through the membrane, favoring the strictly anaerobic exoelectrogenic microorganisms, but competing with them for xylose and its degradation products. This study provides novel information on the active microbial communities populating the anodic chamber of mesophilic and thermophilic xylose-fed MFCs, which may help in developing strategies to favor exoelectrogenic microorganisms at the expenses of competing microorganisms.
Collapse
Affiliation(s)
- Paolo Dessì
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Estefania Porca
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Johanna Haavisto
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Aino-Maija Lakaniemi
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
| | - Gavin Collins
- Microbial Communities Laboratory, School of Natural Sciences, National University of Ireland Galway University Road Galway H91 TK33 Ireland
| | - Piet N L Lens
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology P.O. Box 541 FI-33101 Tampere Finland +358 417239696
- UNESCO-IHE, Institute for Water Education Westvest 7 2611AX Delft The Netherlands
| |
Collapse
|
21
|
Barua S, Dhar BR. Advances towards understanding and engineering direct interspecies electron transfer in anaerobic digestion. BIORESOURCE TECHNOLOGY 2017; 244:698-707. [PMID: 28818798 DOI: 10.1016/j.biortech.2017.08.023] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 05/16/2023]
Abstract
Direct interspecies electron transfer (DIET) is a recently discovered microbial syntrophy where cell-to-cell electron transfer occurs between syntrophic microbial species. DIET between bacteria and methanogenic archaea in anaerobic digestion can accelerate the syntrophic conversion of various reduced organic compounds to methane. DIET-based syntrophy can naturally occur in some anaerobic digester via conductive pili, however, can be engineered via the addition of various non-biological conductive materials. In recent years, research into understanding and engineering DIET-based syntrophy has emerged with the aim of improving methanogenesis kinetics in anaerobic digestion. This article presents a state-of-art review focusing on the fundamental mechanisms, key microbial players, the role of electrical conductivity, the effectiveness of various conductive additives, the significance of substrate characteristics and organic loading rates in promoting DIET in anaerobic digestion.
Collapse
Affiliation(s)
- Sajib Barua
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, School of Mining & Petroleum Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
22
|
Yilmazel YD, Zhu X, Kim KY, Holmes DE, Logan BE. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari. Bioelectrochemistry 2017; 119:142-149. [PMID: 28992595 DOI: 10.1016/j.bioelechem.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
Few microorganisms have been examined for current generation under thermophilic (40-65°C) or hyperthermophilic temperatures (≥80°C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68±0.11A/m2 was attained in F. placidus MECs at 85°C, and 0.57±0.10A/m2 in G. ahangari MECs at 80°C, with an applied voltage of 0.7V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of -0.39V (vs. Ag/AgCl) for F. placidus and -0.37V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.
Collapse
Affiliation(s)
- Yasemin D Yilmazel
- Department of Chemical Engineering, Rochester Institute of Technology, Rochester, NY, USA; Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Xiuping Zhu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA, USA
| | - Kyoung-Yeol Kim
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Dawn E Holmes
- Department of Biology, Western New England University, Springfield, MA, USA
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE. Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. BIORESOURCE TECHNOLOGY 2017; 239:82-86. [PMID: 28500892 DOI: 10.1016/j.biortech.2017.04.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/25/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Applying microbial electrochemical technologies for the treatment of highly saline or thermophilic solutions is challenging due to the lack of proper inocula to enrich for efficient exoelectrogens. Brine pools from three different locations (Valdivia, Atlantis II and Kebrit) in the Red Sea were investigated as potential inocula sources for enriching exoelectrogens in microbial electrolysis cells (MECs) under thermophilic (70°C) and hypersaline (25% salinity) conditions. Of these, only the Valdivia brine pool produced high and consistent current 6.8±2.1A/m2-anode in MECs operated at a set anode potential of +0.2V vs. Ag/AgCl (+0.405V vs. standard hydrogen electrode). These results show that exoelectrogens are present in these extreme environments and can be used to startup MEC under thermophilic and hypersaline conditions. Bacteroides was enriched on the anode of the Valdivia MEC, but it was not detected in the open circuit voltage reactor seeded with the Valdivia brine pool.
Collapse
Affiliation(s)
- Noura A Shehab
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Research Product Development Innovations, The Business Gate Qurtubah, Riyadh 13244, Saudi Arabia
| | - Juan F Ortiz-Medina
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Krishna P Katuri
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ananda Rao Hari
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Gary Amy
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pascal E Saikaly
- Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
24
|
Lusk BG, Colin A, Parameswaran P, Rittmann BE, Torres CI. Simultaneous fermentation of cellulose and current production with an enriched mixed culture of thermophilic bacteria in a microbial electrolysis cell. Microb Biotechnol 2017; 11:63-73. [PMID: 28557303 PMCID: PMC5743814 DOI: 10.1111/1751-7915.12733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
An enriched mixed culture of thermophilic (60°C) bacteria was assembled for the purpose of using cellulose to produce current in thermophilic microbial electrolysis cells (MECs). Cellulose was fermented into sugars and acids before being consumed by anode‐respiring bacteria (ARB) for current production. Current densities (j) were sustained at 6.5 ± 0.2 A m−2 in duplicate reactors with a coulombic efficiency (CE) of 84 ± 0.3%, a coulombic recovery (CR) of 54 ± 11% and without production of CH4. Low‐scan rate cyclic voltammetry (LSCV) revealed a mid‐point potential (Eka) of −0.17 V versus SHE. Pyrosequencing analysis of the V4 hypervariable region of 16S rDNA and scanning electron microscopy present an enriched thermophilic microbial community consisting mainly of the phylum Firmicutes with the Thermoanaerobacter (46 ± 13%) and Thermincola (28 ± 14%) genera occupying the biofilm anode in high relative abundance and Tepidmicrobium (38 ± 6%) and Moorella (11 ± 8%) genera present in high relative abundance in the bulk medium. The Thermoanaerobacter (15 ± 16%) and Brevibacillus (21 ± 30%) genera were also present in the bulk medium; however, their relative abundance varied by reactor. This study indicates that thermophilic consortia can obtain high CE and CR, while sustaining high current densities from cellulose in MECs.
Collapse
Affiliation(s)
- Bradley G Lusk
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ, 85287-5701, USA.,#ScienceTheEarth, Mesa, AZ, 85201, USA
| | - Alexandra Colin
- Ecole Normale Superieure, 45, rue d'Ulm, 75230, Paris Cedex 05, France
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, 2123 Fiedler Hall, Manhattan, KS, 66502, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ, 85287-5701, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Cesar I Torres
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ, 85287-5701, USA.,School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
25
|
Gildemyn S, Rozendal RA, Rabaey K. A Gibbs Free Energy-Based Assessment of Microbial Electrocatalysis. Trends Biotechnol 2017; 35:393-406. [DOI: 10.1016/j.tibtech.2017.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 10/19/2022]
|
26
|
Cytochrome OmcZ is essential for the current generation by Geobacter sulfurreducens under low electrode potential. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.01.091] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells. Sci Rep 2016; 6:38690. [PMID: 27934925 PMCID: PMC5146674 DOI: 10.1038/srep38690] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/11/2016] [Indexed: 11/24/2022] Open
Abstract
Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension.
Collapse
|
28
|
Lusk BG, Parameswaran P, Popat SC, Rittmann BE, Torres CI. The effect of pH and buffer concentration on anode biofilms of Thermincola ferriacetica. Bioelectrochemistry 2016; 112:47-52. [DOI: 10.1016/j.bioelechem.2016.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 11/16/2022]
|