1
|
Lema SC, Krayeva KA, Dale ZA, Guerre TE. Temperature modulates 17β-estradiol regulation of oogenesis protein expression in the liver of the eurythermal pupfish Cyprinodon nevadensis. Gen Comp Endocrinol 2025; 365:114707. [PMID: 40101872 DOI: 10.1016/j.ygcen.2025.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/20/2025]
Abstract
Female fish experiencing atypically high or prolonged elevations in temperature during oogenesis can suffer impaired oocyte development with fewer or smaller eggs, eggs with reduced yolk content or thinner envelopes, and lower egg viability. These changes in oocyte quality and quantity are in part caused by diminished liver synthesis of egg yolk (vitellogenin, Vtg) and egg envelope (choriogenin) proteins at anomalously high temperatures. Those declines in liver Vtg and choriogenin production are commonly paralleled by reduced blood concentrations of 17β-estradiol (E2). However, it is unclear whether declines in liver vitellogenin and choriogenin production at elevated temperatures result solely from lower circulating E2 or if other aspects of E2 signaling are also altered to diminish liver synthesis of oogenesis proteins. In this study, adult female Amargosa River pupfish (Cyprinodon nevadensis amargosae), a species with asynchronous follicular development, were maintained at 20 °C, 28 °C, or 36 °C and then administered E2 or vehicle solution. Ovarian gonadosomatic index (GSI) values and plasma E2 were lower in females at 36 °C compared to those at cooler temperatures. Females at 36 °C also had reduced plasma Vtg protein, lower liver abundances for mRNAs encoding vitellogenin genes (vtgAa, vtgAb, vtgc), choriogenin genes (cgh, cghm, cgl), and estrogen receptor α (esr1). Supplemental E2 increased plasma E2 in females at all temperatures, but only upregulated liver vitellogenin and choriogenin mRNAs at 36 °C, despite E2 upregulation of hepatic esr1 receptor transcripts at all temperatures. Females at 36 °C also exhibited higher liver mRNA abundances for sex hormone-binding globulin (shbg) and cytochrome P450 family 1 subfamily A member 1 (cyp1a1), an estrogen-metabolizing monooxygenase enzyme that converts E2 to 2-hydroxyestradiol. Together, these findings indicate elevated temperatures diminish E2 stimulation of liver Vtg and choriogenin expression in pupfish via effects on several aspects of E2 signaling including circulating E2 concentrations and liver esr1 expression as well as shbg and cyp1a1 expression, which may result in changes to free:bound E2 and the rate of hepatic E2 inactivation. These results also demonstrate that E2 replacement can help compensate for high temperature-induced declines in hepatic oogenesis gene expression in female pupfish.
Collapse
Affiliation(s)
- Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Kseniya A Krayeva
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Zoey A Dale
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Teresa E Guerre
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
2
|
Chuang HJ, Chiu L, Liao BJ, Chang CY, Wu GC, Tseng YC, Chou MY, Hwang PP. Environmental acidification drives inter-organ energy mobilization to enhance reproductive performance in medaka (Oryzias latipes). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136197. [PMID: 39442299 DOI: 10.1016/j.jhazmat.2024.136197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Anthropogenically environmental acidification impacts aquatic organisms, including teleosts, the largest group of vertebrates. Despite its significance, how teleosts allocate nutrient and energy among their organs to cope with acidic stress remains unclear. Our integrated analysis of physiological, metabolic, and gene expression data reveals that Japanese medaka (Oryzias latipes) mobilize energy resources among organs in response to acidic conditions. We found that the muscles lost carbohydrates and proteins and the liver accumulates all macronutrients in both sexes. Notably, female-specific energy mobilization between the liver and ovary were triggered by estrogen signaling, resulting in improved oocyte maturation and ovulation. Female produced more offspring under acidic stress. Furthermore, the offspring embryos exhibited smaller diameters and earlier hatching but demonstrated growth rates and acid tolerance. These metabolic changes suggest a trade-off in energy allocation by suppressing basal maintenance (33 % decrease in oxygen consumption) and growth (25 % decrease in muscle mass) but enhancing energy storage (159 % increase in liver mass in males and 127 % in females) and reproduction (165 % increase in ovary mass). This reallocation may improve medaka fitness and population sustainability in acidic environments. Further investigation into more species is needed to project the survival of aquatic animals in an acidified future.
Collapse
Affiliation(s)
- Hsin-Ju Chuang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ling Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Bo-Jun Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Yung Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
3
|
Cossaboon JM, Teh SJ, Sant KE. Reproductive toxicity of DDT in the Japanese medaka fish model: Revisiting the impacts of DDT+ on female reproductive health. CHEMOSPHERE 2024; 357:141967. [PMID: 38615950 PMCID: PMC11160350 DOI: 10.1016/j.chemosphere.2024.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.
Collapse
Affiliation(s)
| | - Swee J Teh
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
4
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
5
|
Walsh HL, Rafferty SD, Gordon SE, Blazer VS. Reproductive health and endocrine disruption in smallmouth bass (Micropterus dolomieu) from the Lake Erie drainage, Pennsylvania, USA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:3. [PMID: 34862922 PMCID: PMC8643298 DOI: 10.1007/s10661-021-09654-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Smallmouth bass Micropterus dolomieu were sampled from three sites within the Lake Erie drainage (Elk Creek, Twentymile Creek, and Misery Bay, an embayment in Presque Isle Bay). Plasma, tissues for histopathological analyses, and liver and testes preserved in RNALater® were sampled from 30 smallmouth bass (of both sexes) at each site. Liver and testes samples were analyzed for transcript abundance with Nanostring nCounter® technology. Evidence of estrogenic endocrine disruption was assessed by the presence and severity of intersex (testicular oocytes; TO) and concentrations of plasma vitellogenin in male fish. Abundance of 17 liver transcripts associated with reproductive function, endocrine activity, and contaminant detoxification pathways and 40 testes transcripts associated with male and female reproductive function, germ cell development, and steroid biosynthesis were also measured. Males with a high rate of TO (87-100%) and plasma vitellogenin were noted at all sites; however, TO severity was greatest at the site with the highest agricultural land cover. Numerous transcripts were differentially regulated among the sites and patterns of transcript abundance were used to better understand potential risk factors for estrogenic endocrine disruption. The results of this study suggest endocrine disruption is prevalent in this region and further research would benefit to identify the types of contaminants that may be associated with the observed biological effects.
Collapse
Affiliation(s)
- Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA.
| | - Sean D Rafferty
- Pennsylvania Sea Grant College Program, The Pennsylvania State University, Tom Ridge Environmental Center, 301 Peninsula Drive, Erie, PA, 16505, USA
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center - Leetown Research Laboratory, 11649 Leetown Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
6
|
Kawashima Y, Onishi Y, Tatarazako N, Yamamoto H, Koshio M, Oka T, Horie Y, Watanabe H, Nakamoto T, Yamamoto J, Ishikawa H, Sato T, Yamazaki K, Iguchi T. Summary of 17 chemicals evaluated by OECD TG229 using Japanese Medaka, Oryzias latipes in EXTEND 2016. J Appl Toxicol 2021; 42:750-777. [PMID: 34725835 PMCID: PMC9297976 DOI: 10.1002/jat.4255] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/13/2021] [Accepted: 09/25/2021] [Indexed: 11/07/2022]
Abstract
In June 2016, the Ministry of the Environment of Japan announced a program "EXTEND2016" on the implementation of testing and assessment for endocrine active chemicals, consisting of a two-tiered strategy. The aim of the Tier 1 screening and the Tier 2 testing is to identify the impacts on the endocrine system and to characterize the adverse effects to aquatic animals by endocrine disrupting chemicals detected in the aquatic environment in Japan. For the consistent assessment of the effects on reproduction associated with estrogenic, anti-estrogenic, androgenic, and/or anti-androgenic activities of chemicals throughout Tier 1 screening to Tier 2 testing, a unified test species, Japanese medaka (Oryzias latipes), has been used. For Tier 1 screening, the in vivo Fish Short-Term Reproduction Assay (OECD test guideline No. 229) was conducted for 17 chemicals that were nominated based on the results of environmental monitoring, existing knowledge obtained from a literature survey, and positive results in reporter gene assays using the estrogen receptor of Japanese medaka. In the 17 assays using Japanese medaka, adverse effects on reproduction (i.e., reduction in fecundity and/or fertility) were suggested for 10 chemicals, and a significant increase of hepatic vitellogenin in males, indicating estrogenic (estrogen receptor agonistic) potency, was found for eight chemicals at the concentrations in which no overt toxicity was observed. Based on these results, and the frequency and the concentrations detected in the Japanese environment, estrone, 4-nonylphenol (branched isomers), 4-tert-octylphenol, triphenyl phosphate, and bisphenol A were considered as high priority candidate substances for the Tier 2 testing.
Collapse
Affiliation(s)
- Yukio Kawashima
- Environmental Consulting Department, Japan NUS Co., Tokyo, Japan
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.,Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Masaaki Koshio
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Tomohiro Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Resources Recycling Center, Japan Environmental Management Association for Industry, Tokyo, Japan
| | - Yoshifumi Horie
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan.,Research Center for Inland Sea (KURCIS), Kobe University, Kobe, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takashi Nakamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Hidenori Ishikawa
- Institute of Environmental Ecology, IDEA Consultants, Inc., Shizuoka, Japan
| | - Tomomi Sato
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| | - Kunihiko Yamazaki
- Environmental Health Department, Ministry of the Environment of Japan, Tokyo, Japan
| | - Taisen Iguchi
- Nanobioscience Department, Yokohama City University, Yokohama, Japan
| |
Collapse
|
7
|
Ferreira MF, Lo Nostro FL, Fernández DA, Genovese G. Endocrine disruption in the sub Antarctic fish Patagonotothen tessellata (Perciformes, Notothenidae) from Beagle Channel associated to anthropogenic impact. MARINE ENVIRONMENTAL RESEARCH 2021; 171:105478. [PMID: 34562790 DOI: 10.1016/j.marenvres.2021.105478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Situated in the sub-Antarctic region, Beagle Channel represents a unique marine ecosystem due to the connection between the Pacific and the Atlantic Oceans, and its proximity to the Antarctic Peninsula. Ushuaia city, the biggest settlement on the channel, exerts an increasing anthropogenic pressure by discharges of urban and industrial effluents. In the present work, we use Patagonotothen tessellata, one of the most abundant and widespread species in the channel, as a bioindicator species in order to evidence anthropic impact from Ushuaia Bay and surrounding areas. We first analyzed and characterized real time gene expression of androgen receptor, estrogen receptor and different forms of vitellogenin (VTG), under laboratory conditions. This was achieved by induction with estradiol of P. tessellata males. Then, the selected genes were used as biomarkers for an environmental biomonitoring study. Morphometric indices and circulating sex steroids (estradiol and testosterone) were also quantified in male fish collected from different sites. The qPCR analysis showed that vtgAb form is more inducible than vtgAa or vtgC forms after estrogen induction. The field survey revealed the up-regulation of vtgAb and the androgen receptor in fish from sites with higher anthropogenic influence. Sex steroids followed seasonal variations according to their reproductive cycle, with higher levels of estradiol and testosterone in winter and summer seasons. The use of biomarkers such as gene expression of VTG demonstrates that fish from Ushuaia Bay are likely to be exposed to endocrine disrupting compounds. To our knowledge, this research is the first attempt to assess the endocrine disruption associated to anthropic impact in a widespread fish of the Beagle Channel and contributes to a better understanding of the reproductive physiology of sub Antarctic ichthyofauna.
Collapse
Affiliation(s)
- Maria Florencia Ferreira
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| | - Fabiana L Lo Nostro
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina.
| | - Daniel A Fernández
- Universidad Nacional de Tierra Del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA-UNTDF), Ushuaia, Argentina; Centro Austral de Investigaciones Científicas (CADIC-CONICET), Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos (LEFyE), Ushuaia, Argentina
| | - Griselda Genovese
- CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática, Buenos Aires, Argentina
| |
Collapse
|
8
|
Nagata J, Mushirobira Y, Nishimiya O, Yamaguchi Y, Fujita T, Hiramatsu N, Hara A, Todo T. Hepatic estrogen-responsive genes relating to oogenesis in cutthroat trout (Oncorhynchus clarki): The transcriptional induction in primary cultured hepatocytes and the in vitro promoter transactivation in responses to estradiol-17β. Gen Comp Endocrinol 2021; 310:113812. [PMID: 33992640 DOI: 10.1016/j.ygcen.2021.113812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022]
Abstract
Estradiol-17β (E2) regulates transcription of estrogen-responsive genes via estrogen receptors (Esr). In many teleost species, choriogenin (chg), vitellogenin (vtg) and esr genes are transactivated by E2 in the liver. This study aimed i) to compare expression properties of all subtypes of these genes (chg: chgHα, chgHβ, chgL; vtg: vtgAs, vtgC; esr: esr1a, esr1b, esr2a, esr2b) in response to estrogen stimulation, and ii) to confirm how each of four Esr subtypes is involved in the transcriptional regulation of these estrogen-responsive genes in cutthroat trout hepatocytes. In hepatocytes in primary culture, all chg and vtg subtype mRNA levels, and those of esr1a, were increased by E2 treatment (10-6 M) at 24 and 72 h post initiation (hpi), but esr1b, esr2a and esr2b mRNA levels were not. Treatment of hepatocytes with various concentrations of E2 (10-11-10-6 M) induced dose-dependent increases in the levels of all chg and vtg subtype mRNAs at 24 and 72 hpi. At both time points, the lowest dose that induced a significant increase in the expression levels of mRNAs (LOEC) for E2 differed among the genes; LOECs were estimated as 10-11 M for chgHα at 24 hpi, as 10-9 M for vtgC at 72 hpi, and as 10-10 M for other mRNAs at both 24 and 72 hpi. Meanwhile, the levels of esr1a mRNA exhibited a dose-dependent increase at 24 and 72 hpi, but the LOEC shifted from 10-9 M at 24 hpi to 10-7 M at 72 hpi because of a decrease in mRNA levels at treatment groups exposed to high concentrations of E2. All Esr subtypes transactivated chg, vtg and esr1a promoters in the presence of E2 in vitro. The activation levels indicated that promoter activity of chgHα ≥ vtgAs > chgHβ > chgL ≥ vtgC ≥ esr1a when mediated by Esr1a, chgHβ > chgHα > chgHL > vtgAs ≥ vtgC ≥ esr1a by Esr1b, chgHβ ≥ chgL > chgHα ≥ vtgAs > vtgC > esr1a by Esr2a, and chgHβ ≥ chgHα ≥ vtgAs > chgL ≥ vtgC > esr1a by Esr2b. Collectively, different Esr subtypes were distinctly different in their ability to transactivate estrogen-responsive target genes, resulting in differential expression of chg, vtg and esr1a genes in the estrogen-exposed hepatocytes.
Collapse
Affiliation(s)
- Jun Nagata
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Yuji Mushirobira
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, 1551-7 Taira, Nagasaki 851-2213, Japan
| | - Osamu Nishimiya
- South Ehime Fisheries Research Center, Ehime University, 25-1 Uchidomari, Ainan, Ehime 798-4206, Japan
| | - You Yamaguchi
- Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Toshiaki Fujita
- Faculty of Engineering, Hachinohe Institute of Technology, 88-1 Obiraki, Myo, Hachinohe, Aomori 031-8501, Japan
| | - Naoshi Hiramatsu
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Akihiko Hara
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Takashi Todo
- Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
9
|
Ishibashi H, Uchida M, Hirano M, Hayashi T, Yamamoto R, Kubota A, Ichikawa N, Ishibashi Y, Tominaga N, Arizono K. In vivo and in silico analyses of estrogenic potential of equine estrogens in medaka (Oryzias latipes). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144379. [PMID: 33421642 DOI: 10.1016/j.scitotenv.2020.144379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Equine estrogens (EEs) are widely used in hormone replacement therapy pharmaceuticals for postmenopausal women. Previous studies have shown that EEs occur in the aquatic environment; however, the potential estrogenicity and risk of EEs in aquatic organisms, including fish, have yet to be studied in detail. Therefore, we evaluated the estrogenic potential of major EEs, namely equilin (Eq), 17α-dihydroequilin (17α-Eq), 17β-dihydroequilin (17β-Eq), equilenin (Eqn), 17α-dihydroequilenin (17α-Eqn), and 17β-dihydroequilenin (17β-Eqn), on medaka (Oryzias latipes) using in vivo and in silico assays. Quantitative real-time RT-PCR analyses revealed that expression levels of choriogenin L (ChgL) and choriogenin H (ChgH) in medaka embryos responded to various types and concentrations of EEs in a concentration-dependent manner, whereas transcription levels of vitellogenin 1 were not significantly affected by any of the EEs in the concentration range tested. The order of the in vivo estrogenic potencies of EEs was as follows: 17β-Eq > Eq > 17β-Eqn > Eqn > 17α-Eqn > 17α-Eq. Additionally, the 50% effective concentrations (EC50) of 17β-Eq was lower than that of 17β-estradiol. We also investigated the interaction potential of EEs with medaka estrogen receptor (ER) subtypes in silico using a three-dimensional model of the ligand-binding domain (LBD) for each ER and docking simulations. All six EEs were found to interact with the LBDs of ERα, ERβ1, and ERβ2. The order of the in silico interaction potentials of EEs with each ER LBD was as follows: 17β-Eq > 17α-Eq > Eq > 17β-Eqn > 17α-Eqn > Eqn. Furthermore, we identified the key amino acids that interact with EEs in each ER LBD; our findings suggest that amino acids and/or their hydrogen bonding may be responsible for the ligand-specific interactions with each ER. This study is the first to comprehensively analyze the estrogenic potential of EEs in medaka both in vivo and in silico.
Collapse
Affiliation(s)
- Hiroshi Ishibashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| | - Masaya Uchida
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Masashi Hirano
- Department of Biological and Chemical Systems Engineering, National Institute of Technology, Kumamoto College, 2627 Hirayama-shinmachi, Yatsushiro, Kumamoto 866-8501, Japan
| | - Taka Hayashi
- Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Ryoko Yamamoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Akira Kubota
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada-cho Nishi, Obihiro 080-8555, Hokkaido, Japan
| | - Nobuhiro Ichikawa
- College of Pharmaceutical Sciences, Department of Pharmacy, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Ishibashi
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, 3-1-100 Tsukide, Higashi-ku, Kumamoto 862-8502, Japan
| | - Nobuaki Tominaga
- Department of Creative Engineering, National Institute of Technology, Ariake College, 150 Higashi-Hagio, Omuta, Fukuoka 836-8585, Japan
| | - Koji Arizono
- Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
10
|
Viganò L, Casatta N, Farkas A, Mascolo G, Roscioli C, Stefani F, Vitelli M, Olivo F, Clerici L, Robles P, Dellavedova P. Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:10729-10747. [PMID: 31942721 DOI: 10.1007/s11356-019-07417-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Sediment toxicity plays a fundamental role in the health of inland fish communities; however, the assessment of the hazard potential of contaminated sediments is not a common objective in environmental diagnostics or remediation. This study examined the potential of transcriptional endpoints investigated in zebrafish (Danio rerio) exposed to riverbed sediments in ecotoxicity testing. Embryo-larval 10-day tests were conducted on sediment samples collected from five sites (one upstream and four downstream of the city of Milan) along a polluted tributary of the Po River, the Lambro River. Sediment chemistry showed a progressive downstream deterioration in river quality, so that the final sampling site showed up to eight times higher concentrations of, for example, triclosan, galaxolide, PAH, PCB, BPA, Ni, and Pb, compared with the uppermost site. The embryo/larval tests showed widespread toxicity although the middle river sections evidenced worse effects, as evidenced by delayed embryo development, hatching rate, larval survival, and growth. At the mRNA transcript level, the genes encoding biotransformation enzymes (cyp1a, gst, ugt) showed increasing upregulations after exposure to sediment from further downstream sites. The genes involved in antioxidant responses (sod, gpx) suggested that more critical conditions may be present at downstream sites, but even upstream of Milan there seemed to be some level of oxidative stress. Indirect evidences of potential apoptotic activity (bcl2/bax < 1) in turn suggested the possibility of genotoxic effects. The genes encoding for estrogen receptors (erα, erβ1, erβ2) showed exposure to (xeno)estrogens with a progressive increase after exposure to sediments from downstream sites, paralleled by a corresponding downregulation of the ar gene, likely related to antiandrogenic compounds. Multiple levels of thyroid disruption were also evident particularly in downstream zebrafish, as for thyroid growth (nkx2.1), hormone synthesis and transport (tg, ttr, d2), and signal transduction (trα, trβ). The inhibition of the igf2 gene reasonably reflected larval growth inhibitions. Although none of the sediment chemicals could singly explain fish responses, principal component analysis suggested a good correlation between gene transcripts and the overall trend of contamination. Thus, the combined impacts from known and unknown covarying chemicals were proposed as the most probable explanation of fish responses. In summary, transcriptional endpoints applied to zebrafish embryo/larval test can provide sensitive, comprehensive, and timeliness information which may greatly enable the assessment of the hazard potential of sediments to fish, complementing morphological endpoints and being potentially predictive of longer studies.
Collapse
Affiliation(s)
- Luigi Viganò
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Nadia Casatta
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Anna Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3, P.O. Box 35, Tihany, H-8237, Hungary
| | - Giuseppe Mascolo
- CNR - National Research Council of Italy, IRSA - Water Research Institute, Via De Blasio 5, 70132, Bari, Italy
| | - Claudio Roscioli
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Fabrizio Stefani
- CNR - National Research Council of Italy, IRSA - Water Research Institute , Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Matteo Vitelli
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Fabio Olivo
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Laura Clerici
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pasquale Robles
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| | - Pierluisa Dellavedova
- ARPA - Regional Agency for Environmental Protection of Lombardy, Laboratories Sector, Via Rosellini, 17, 20124, Milan, Italy
| |
Collapse
|
11
|
Maeng S, Yoon SW, Kim EJ, Nam YK, Sohn YC. Transcriptional Activity of an Estrogen Receptor β Subtype in the Medaka Oryzias dancena. Dev Reprod 2020; 23:333-344. [PMID: 31993539 PMCID: PMC6985291 DOI: 10.12717/dr.2019.23.4.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
Abstract
In vertebrate reproductive system, estrogen receptor (ER) plays a pivotal role in
mediation of estrogenic signaling pathways. In the present study, we report the
cDNA cloning, expression analysis, and transcriptional activity of ERβ1
subtype from medaka Oryzias dancena. The deduced O.
dancena ERβ1 (odERβ1; 519 amino acids) contained six
characteristic A/B to E/F domains with very short activation function 2 region
(called AF2). A phylogenetic analysis indicated that odERβ1 was highly
conserved among teleost ERβ1 subgroup. A conventional RT-PCR revealed
that the odERβ1 transcripts were widely distributed in
the multiple tissues, the ovary, brain, gill, intestine, kidney, and muscle.
Further, the relatively higher odERβ1 expressions in the
ovary and brain were clearly reproduced in RT-qPCR assay. When HA-fused
odERβ1 expression vector was transfected into HEK293 cells, an
immunoreactivity for odERβ1 was mainly detected in the nucleus part.
Finally, an estrogen responsive element driven luciferase reporter assays
demonstrated that the transcriptional activity of odERβ1 significantly
increased by estradiol-17β (E2) in a dose dependent manner
(p<0.05). However, fold-activation of odERβ1
in the presence of E2 was markedly weak, when it compared with those of
O. latipes ERβ1. Taken together, these data suggest
that odERβ1 represents a functional variant of teleost ERβ subtype
and provides a basic tool allowing future studies examining the function of F
domain of ERβ1 subtype and expanding our knowledge of ERβ
evolution.
Collapse
Affiliation(s)
- Sejung Maeng
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Sung Woo Yoon
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| | - Eun Jeong Kim
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Yoon Kwon Nam
- Dept. of Marine Bio-Materials and Aquaculture, Pukyong National University, Busan 48513, Korea
| | - Young Chang Sohn
- Dept. of Marine Molecular Biosciences, Gangneung-Wonju National University, Gangneung 25457, Korea
| |
Collapse
|
12
|
Yan L, Feng H, Wang F, Lu B, Liu X, Sun L, Wang D. Establishment of three estrogen receptors (esr1, esr2a, esr2b) knockout lines for functional study in Nile tilapia. J Steroid Biochem Mol Biol 2019; 191:105379. [PMID: 31078694 DOI: 10.1016/j.jsbmb.2019.105379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptors (ESRs) in all vertebrates. To date, distinct roles of estrogen receptors have been characterized only in human and model organisms, including mouse, rat, zebrafish and medaka. Physiological role of estrogen/receptor signaling in reproduction remains poorly defined in non-model organisms. In the present study, we successfully generated esr1, esr2a and esr2b mutant lines in tilapia by CRISPR/Cas9 and examined their phenotypes. Surprisingly, the esr1 mutants showed no phenotypes of reproductive development and function in both females and males. The esr2a mutant females showed significantly delayed ovarian development and follicle growth at 90 and 180 dah, and the development caught up later at 360 dah. The esr2a mutant males showed no phenotypes at 90 dah, and displayed smaller gonads and efferent ducts, less spermatogonia and more abnormal sperms at 180 dah. In contrast, the esr2b mutants displayed abnormal development of ovarian ducts and efferent ducts which failed to connect to the genital orifice, and which in turn, resulted in infertility in female and male, respectively, although they produced gametes in their gonads. Taken together, our study provides evidence for differential functions of esr1, esr2a and esr2b in fish reproduction.
Collapse
Affiliation(s)
- Longxia Yan
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Haiwei Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feilong Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Baoyue Lu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xingyong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Thakur B, Yadav R, Vallon L, Marmeisse R, Fraissinet-Tachet L, Sudhakara Reddy M. Multi-metal tolerance of von Willebrand factor type D domain isolated from metal contaminated site by metatranscriptomics approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:432-440. [PMID: 30677688 DOI: 10.1016/j.scitotenv.2019.01.201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 06/09/2023]
Abstract
Environmental pollution through heavy metals is an upcoming universal problem that relentlessly endangers human health, biodiversity and ecosystems. Hence remediating these heavy metal pollutants from the environment by engineering soil microbiome through metatranscriptomics is befitting reply. In the present investigation, we have constructed size fractionated cDNA libraries from eukaryotic mRNA of cadmium (Cd) contaminated soil and screened for Cd tolerant genes by yeast complementation system by using Cd sensitive ycf1Δ mutant. We are reporting one of the transformants PLCe10 (from library C, 1-4 kb) with potential tolerance towards Cd toxicity (40 μM-80 μM). Sequence analysis of PLCe10 transcript showed homology to von Willebrand factor type D domain (VWD) of vitellogenin-6 of Ascaris suum encoding 338 amino acids peptide. qPCR analysis revealed that PLCe10 induced in presence of Cd (32 fold) and also accumulated maximum amount of Cd at 60 μM Cd. This cDNA was further tested for its tolerance against other heavy metals like copper (Cu), zinc (Zn) and cobalt (Co). Heterologous complementation assays of cDNA PLCe10 showed a range of tolerance to Cu (150 μM-500 μM), Zn (10 mM-12 mM) and Co (2-4 mM). Results of the present study suggest that cDNA PLCe10 is one of the functional eukaryotic heavy metal tolerant genes present among the soil microbial community and could be exploited to rehabilitate metal contaminated sites.
Collapse
Affiliation(s)
- Bharti Thakur
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Rajiv Yadav
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622 Villeurbanne, France
| | - Laurent Vallon
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622 Villeurbanne, France
| | - Roland Marmeisse
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622 Villeurbanne, France
| | - Laurence Fraissinet-Tachet
- Ecologie Microbienne, UMR CNRS, UMR INRA, Université Claude Bernard Lyon 1 Université de Lyon, F-69622 Villeurbanne, France
| | - M Sudhakara Reddy
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India.
| |
Collapse
|
14
|
Weber AA, Moreira DP, Melo RMC, Vieira ABC, Bazzoli N, Rizzo E. Stage-specific testicular protein levels of the oestrogen receptors (ERα and ERβ) and Cyp19 and association with oestrogenic contamination in the lambari Astyanax rivularis (Pisces: Characidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34403-34413. [PMID: 30306442 DOI: 10.1007/s11356-018-3392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Oestrogens participate in various biological processes such as oogenesis, vitellogenesis and testicular development, but studies regarding the distribution and protein levels of oestrogen receptors (ERα and ERβ) and aromatase (Cyp19) in testis are rarely investigated in fish species. The aim of the present study was to analyse the expression pattern of ERα, ERβ and Cyp19 in testis of Astyanax rivularis and, in addition, to verify if oestrogenic contamination interferes in the expression levels of these proteins. Quarterly, field samplings were carried out during a reproductive cycle in a stream of the Upper Velhas River with a good conservation status (site S1). In the gonadal maturation peak (June), when ripe stage was most abundant, fish collection was made in three streams: S1, reference site, and S2 and S3, sites contaminated by untreated sewage. The results of immunohistochemistry demonstrated labelling of Cyp19 in Leydig cells and acidophilic granulocytes, but spermatogonia, Sertoli cells, spermatids and spermatozoa were also labelled. ERα was more widely distributed than ERβ being found in all developmental germ cell phases. On the other hand, ERβ was found only in spermatogonia and spermatocytes. During testicular maturation, ELISA levels for Cyp19, ERα and ERβ followed the gonadosomatic index (GSI) with significant higher values in the ripe stage. Regarding to endocrine disruption, the males exposed to domestic sewage presented significant higher expression of Cyp19 and ERα when compared to the non-exposed fish. Together, our results demonstrate expression patterns of Cyp19, ERα and ERβ in the testis of A. rivularis. In addition, we indicate ERα and Cyp19 as sensitive biomarkers for monitoring of oestrogenic contamination in freshwater environments.
Collapse
Affiliation(s)
- André Alberto Weber
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Davidson Peruci Moreira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Rafael Magno Costa Melo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Augusto Bicalho Cruz Vieira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil
| | - Nilo Bazzoli
- Programa de Pós-graduação em Zoologia de Vertebrados, Pontifícia Universidade Católica de Minas Gerais, PUC Minas, Belo Horizonte, Minas Gerais, 30535-610, Brazil
| | - Elizete Rizzo
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, UFMG, C.P.486, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|