1
|
Zhou H, Duan X, Huang B, Zhong S, Cheng C, Sharma VK, Wang S, Lai B. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angew Chem Int Ed Engl 2025; 64:e202422892. [PMID: 40040468 PMCID: PMC12051784 DOI: 10.1002/anie.202422892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Xiaoguang Duan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| | - Shuang Zhong
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Cheng Cheng
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Virender K. Sharma
- Department of Chemical, Environmental and MaterialsUniversity of Miami1251 Memorial DriveCoral GablesFlorida33146USA
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| |
Collapse
|
2
|
Köster D, Hesse T, Niemann F, Jochmann MA, Schmidt TC. Alkaline persulfate oxidation as an intermediate step for the development of a wet chemical oxidation interface for compound-specific δ 15N analysis by LC-IRMS. Anal Bioanal Chem 2025; 417:2085-2096. [PMID: 39985670 PMCID: PMC11961470 DOI: 10.1007/s00216-025-05795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/24/2025]
Abstract
For the measurement of compound-specific isotope ratios by liquid chromatography isotope ratio mass spectrometry (LC-IRMS), complete mineralization of organic compounds to a single species of measurement gas is required so that isotopic fractionation can be minimized and corrected by identical treatment with standards. The established use of peroxydisulfate in an acidic environment has its limitations, especially when it comes to the complete oxidation of nitrogen-containing compounds with aromatic ring systems. Under acidic oxidation conditions, ammonium and nitrate were identified as the main nitrogen containing mineralization products of the oxidation of different model compounds. In contrast to the oxidation in an acidic environment, alkaline peroxydisulfate oxidation leads to nitrate as a final mineralization product. The concept of alkaline oxidation was transferred from large-scale batch experiments to a commercially available oxidation reactor used in LC-IRMS systems. The obtained nitrate recoveries indicate that alkaline oxidation could be a promising step towards the measurement of compound-specific nitrogen isotope ratios by LC-IMRS. In our work, we show that alkaline peroxydisulfate oxidation allows faster and more complete mineralization of nitrogen-containing compounds. For several model compounds, 63 to 100% of the initially present nitrogen was converted to nitrate within a reaction time of 43 s.
Collapse
Affiliation(s)
- Daniel Köster
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Institut Für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), Alte Heerstraße 111, 53757, Sankt Augustin, Germany
| | - Tobias Hesse
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- Probenahmedienst Feststoffe, Ressourcen- und Qualitätsmanagement, Landesamt Für Natur, Umwelt und Verbraucherschutz NRW, Wuhanstr. 6, 47051, Duisburg, Germany
| | - Felix Niemann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Maik A Jochmann
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Torsten C Schmidt
- Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
- University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU) Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
3
|
Liu X, Köpke J, Akay C, Kümmel S, Imfeld G. Sulfamethoxazole Transformation by Heat-Activated Persulfate: Linking Transformation Products Patterns with Carbon and Nitrogen Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5704-5714. [PMID: 40064550 DOI: 10.1021/acs.est.4c09732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Sulfamethoxazole (SMX) is a frequently detected antibiotic in groundwater, raising environmental concerns. Persulfate oxidation is used for micropollutant removal. To investigate SMX transformation by persulfate, experiments were conducted using heat-activated persulfate at pH 3, 7, and 10. TP269a (SMX-hydroxylamine) and TP178 were identified as the dominant TPs across the pH levels. The exclusive formation of 4-nitroso-SMX, 4-nitro-SMX, and TP518 at pH 3 highlighted the role of SO4•- in attacking the NH2. At pH 7 and 10, 3A5MI emerged as the dominant TP. Carbon isotopic fractionation (εC = -1.3 ± 0.5‰, -1.1 ± 0.4‰, and -1.1 ± 0.3‰ at pH 3, 7, and 10) remained consistent across pH levels, caused by the formation of TP178 involving C-S bond cleavage. An inverse nitrogen isotope fractionation at pH 3 (εN = +0.68 ± 0.11‰) was associated with SO4•--induced single-electron transfer. Conversely, normal nitrogen isotope fractionation at pH 10 (εN = -0.27 ± 0.04‰) was associated with N-H bond cleavage by H abstraction through HO• and N-S bond cleavage. The inverse nitrogen isotope fractionation at pH 7 indicated that the dominant pathway involved SO4•- reactions, accounting for 74%. Overall, the results highlight the potential of CSIA to elucidate SMX oxidation pathways.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Jimmy Köpke
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Caglar Akay
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Department of Exposure Science, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
4
|
Levesque-Vargas M, Ohlund L, Sleno L, Gélinas Y, Höhener P, Ponsin V. Insights from multiple stable isotopes (C, N, Cl) into the photodegradation of herbicides atrazine and metolachlor. CHEMOSPHERE 2025; 370:144010. [PMID: 39716600 DOI: 10.1016/j.chemosphere.2024.144010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Many processes can contribute to the attenuation of the frequently detected and toxic herbicides atrazine and metolachlor in surface water, including photodegradation. Multi-element compound-specific isotope analysis has the potential to decipher between these different degradation pathways as Cl is a promising tool for both pathway identification and a sensitive indicator of degradation for both atrazine and metolachlor. In this study, photodegradation experiments of atrazine and metolachlor were conducted under simulated sunlight in buffered solutions (direct photodegradation) and with nitrate (indirect photodegradation by OH radicals) to determine kinetics, transformation products and isotope fractionation for C, N and for the first time Cl. For metolachlor, the C-Cl dual isotope slope (ΛC/Cl = 0.46 ± 0.19) is identical to previously reported values for hydrolysis and biodegradation in soils, suggesting the same reaction mechanism (C-Cl bond breakage by SN2 nucleophilic substitution). For atrazine, both direct and indirect photodegradation resulted in a pronounced inverse isotope effect for chlorine (εCl = 6.9 ± 3.3 ‰, and εCl = 2.3 ± 1.2 ‰, respectively), leading to characteristic dual isotope slopes (ΛC/Cl = -0.49 ± 0.17 and ΛC/Cl = -0.31 ± 0.10, respectively). These values are distinct from those previously reported for abiotic hydrolysis, biotic hydrolysis and oxidative dealkylation which are all relevant processes in surface water, opening the path for pathway identification in future field studies.
Collapse
Affiliation(s)
- Matias Levesque-Vargas
- Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada.
| | - Leanne Ohlund
- Département de chimie, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| | - Lekha Sleno
- Département de chimie, Université du Québec à Montréal, Montréal, QC, H3C 3P8, Canada.
| | - Yves Gélinas
- Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada; Department of Chemistry and Biochemistry, Concordia University, Montréal, QC, H4B 1R6, Canada.
| | - Patrick Höhener
- Laboratoire Chimie Environnement, Aix-Marseille Université, 13331, Marseille, France.
| | - Violaine Ponsin
- Département des sciences de la Terre et de l'atmosphère, Université du Québec à Montréal, Montréal, QC, H2X 1Y4, Canada; Geotop Research Centre, Montréal, QC, H2X 3Y7, Canada.
| |
Collapse
|
5
|
Dou Q, Canavan A, Fu Y, Xiang L, Wang Y, Wang X, Jiang X, Dirr C, Wang F, Elsner M. Nitrogen stable isotope analysis of sulfonamides by derivatization-gas chromatography-isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:4237-4247. [PMID: 38849528 PMCID: PMC11525405 DOI: 10.1007/s00216-024-05361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The continuous introduction of micropollutants into the environment through livestock farming, agricultural practices, and wastewater treatment is a major concern. Among these pollutants are synthetic sulfonamide antibiotics such as sulfamethoxazole, which are not always fully degraded and pose a risk of fostering antimicrobial resistance. It is challenging to assess the degradation of sulfonamides with conventional concentration measurements. This study introduces compound-specific isotope analysis of nitrogen isotope ratios at natural abundances by derivatization-gas chromatography hyphenated with isotope ratio mass spectrometry (derivatization-GC-IRMS) as a new and more precise method for tracing the origin and degradation of sulfonamides. Here, sulfamethoxazole was used as a model compound to develop and optimize the derivatization conditions using (trimethylsilyl)diazomethane as a derivatization reagent. With the optimized conditions, accurate and reproducible δ15N analysis of sulfamethoxazole by derivatization-GC-IRMS was achieved in two different laboratories with a limit for precise isotope analysis of 3 nmol N on column, corresponding to 0.253 µg non-derivatized SMX. Application of the method to four further sulfonamides, sulfadiazine, sulfadimethoxine, sulfadimidine, and sulfathiazole, shows the versatility of the developed method. Its benefit was demonstrated in a first application, highlighting the possibility of distinguishing sulfamethoxazole from different suppliers and pharmaceutical products.
Collapse
Affiliation(s)
- Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Aoife Canavan
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Yu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xi Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Christopher Dirr
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
| | - Martin Elsner
- Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
6
|
Liu X, Akay C, Köpke J, Kümmel S, Richnow HH, Imfeld G. Direct Phototransformation of Sulfamethoxazole Characterized by Four-Dimensional Element Compound Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10322-10333. [PMID: 38822809 DOI: 10.1021/acs.est.4c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
The antibiotic sulfamethoxazole (SMX) undergoes direct phototransformation by sunlight, constituting a notable dissipation process in the environment. SMX exists in both neutral and anionic forms, depending on the pH conditions. To discern the direct photodegradation of SMX at various pH levels and differentiate it from other transformation processes, we conducted phototransformation of SMX under simulated sunlight at pH 7 and 3, employing both transformation product (TP) and compound-specific stable isotope analyses. At pH 7, the primary TPs were sulfanilic acid and 3A5MI, followed by sulfanilamide and (5-methylisoxazol-3-yl)-sulfamate, whereas at pH 3, a photoisomer was the dominant product, followed by sulfanilic acid and 3A5MI. Isotope fractionation patterns revealed normal 13C, 34S, and inverse 15N isotope fractionation, which exhibited significant differences between pH 7 and 3. This indicates a pH-dependent transformation process in SMX direct phototransformation. The hydrogen isotopic composition of SMX remained stable during direct phototransformation at both pH levels. Moreover, there was no variation observed in 33S between the two pH levels, indicating that the 33S mass-independent process remains unaffected by changes in pH. The analysis of main TPs and single-element isotopic fractionation suggests varying combinations of bond cleavages at different pH values, resulting in distinct patterns of isotopic fractionation. Conversely, dual-element isotope values at different pH levels did not significantly differ, indicating cleavage of several bonds in parallel. Hence, prudent interpretation of dual-element isotope analysis in these systems is warranted. These findings highlight the potential of multielement compound-specific isotope analysis in characterizing pH-dependent direct phototransformation of SMX, thereby facilitating the evaluation of its natural attenuation through sunlight photolysis in the environment.
Collapse
Affiliation(s)
- Xiao Liu
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| | - Caglar Akay
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Jimmy Köpke
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307 Berlin, Germany
| | - Steffen Kümmel
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg, Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, F-67084 Strasbourg, France
| |
Collapse
|
7
|
Wabnitz C, Chen W, Elsner M, Bakkour R. Quartz Crystal Microbalance as a Holistic Detector for Quantifying Complex Organic Matrices during Liquid Chromatography: 2. Compound-Specific Isotope Analysis. Anal Chem 2024; 96:7436-7443. [PMID: 38700939 PMCID: PMC11099894 DOI: 10.1021/acs.analchem.3c05441] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
In carbon-compound-specific isotope analysis (carbon CSIA) of environmental micropollutants, purification of samples is often required to guarantee accurate measurements of a target compound. A companion paper has brought forward an innovative approach to couple a quartz crystal microbalance (QCM) with high-performance liquid chromatography (HPLC) for the online quantification of matrices during a gradient HPLC purification. This work investigates the benefit for isotope analysis of polar micropollutants typically present in environmental samples. Here, we studied the impact of the natural organic matter (NOM) on the isotopic integrity of model analytes and the suitability of the NOM-to-analyte ratio as a proxy for the sample purity. We further investigated limitations and enhancement of HPLC purification using QCM on C18 and C8 phases for single and multiple targets. Strong isotopic shifts of up to 3.3% toward the isotopic signature of NOM were observed for samples with an NOM-to-analyte ratio ≥10. Thanks to QCM, optimization of matrix removal of up to 99.8% of NOM was possible for late-eluting compounds. The efficiency of HPLC purification deteriorated when aiming for simultaneous purification of two or three compounds, leading to up to 2.5% less NOM removal. Our results suggest that one optimized HPLC purification can be achieved through systematic screening of 3 to 5 different gradients, thereby leading to a shift of the boundaries of accurate carbon CSIA by up to 2 orders of magnitude toward lower micropollutant concentrations.
Collapse
Affiliation(s)
- Christopher Wabnitz
- Department of Chemistry, Chair of Analytical
Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Wei Chen
- Department of Chemistry, Chair of Analytical
Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Martin Elsner
- Department of Chemistry, Chair of Analytical
Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Rani Bakkour
- Department of Chemistry, Chair of Analytical
Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
8
|
Kuznetsova OV. Current trends and challenges in the analysis of marine environmental contaminants by isotope ratio mass spectrometry. Anal Bioanal Chem 2024; 416:71-85. [PMID: 37979060 DOI: 10.1007/s00216-023-05029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
An increasing number of organic and inorganic pollutants are being detected in the marine environment, posing a severe threat to the ecosystem and human health, even in trace concentrations. Isotope ratio mass spectrometry (IRMS) is one of the critical methods for determining the origin and fate of environmental pollutants and characterising their transformation processes. It has been used for a relatively long time for ecological monitoring of some well-studied industrial hydrocarbons at contaminated sites. However, the method still faces many analytical challenges. This review provides a comprehensive overview of recent technical advances concerning IRMS analysis of various contaminants and discusses typical pitfalls encountered in marine environment analysis. Particular attention is given to the study of sampling techniques and sample preparation for examination, often the keys to successful research given the complexity of marine matrices and the diverse and numerous nature of contaminants. Prospects for developing IRMS to monitor pollution sources and pollutant transformation in the marine environment are outlined.
Collapse
Affiliation(s)
- Olga V Kuznetsova
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, 119991, Moscow, Russian Federation.
| |
Collapse
|
9
|
Houska J, Stocco L, Hofstetter TB, Gunten UV. Hydrogen Peroxide Formation during Ozonation of Olefins and Phenol: Mechanistic Insights from Oxygen Isotope Signatures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18950-18959. [PMID: 37155568 PMCID: PMC10690717 DOI: 10.1021/acs.est.3c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Mitigation of undesired byproducts from ozonation of dissolved organic matter (DOM) such as aldehydes and ketones is currently hampered by limited knowledge of their precursors and formation pathways. Here, the stable oxygen isotope composition of H2O2 formed simultaneously with these byproducts was studied to determine if it can reveal this missing information. A newly developed procedure, which quantitatively transforms H2O2 to O2 for subsequent 18O/16O ratio analysis, was used to determine the δ18O of H2O2 generated from ozonated model compounds (olefins and phenol, pH 3-8). A constant enrichment of 18O in H2O2 with a δ18O value of ∼59‰ implies that 16O-16O bonds are cleaved preferentially in the intermediate Criegee ozonide, which is commonly formed from olefins. H2O2 from the ozonation of acrylic acid and phenol at pH 7 resulted in lower 18O enrichment (δ18O = 47-49‰). For acrylic acid, enhancement of one of the two pathways followed by a carbonyl-H2O2 equilibrium was responsible for the smaller δ18O of H2O2. During phenol ozonation at pH 7, various competing reactions leading to H2O2 via an intermediate ozone adduct are hypothesized to cause lower δ18O in H2O2. These insights provide a first step toward supporting pH-dependent H2O2 precursor elucidation in DOM.
Collapse
Affiliation(s)
- Joanna Houska
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Laura Stocco
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Thomas B. Hofstetter
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Urs von Gunten
- Eawag
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- School
of Architecture, Civil, and Environmental Engineering, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
- Department
of Environmental System Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
10
|
Glöckler D, Wabnitz C, Elsner M, Bakkour R. Avoiding Interferences in Advance: Cyclodextrin Polymers to Enhance Selectivity in Extraction of Organic Micropollutants for Carbon Isotope Analysis. Anal Chem 2023; 95:7839-7848. [PMID: 37167407 DOI: 10.1021/acs.analchem.2c05465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Compound-specific isotope analysis (CSIA) of organic water contaminants can provide important information about their sources and fate in the environment. Analyte enrichment from water remains nonetheless a critical yet inevitable step before measurement. Commercially available solid-phase extraction (SPE) sorbents are inherently nonselective leading to co-extraction of concurrent dissolved organic matter (DOM) and in turn to analytical interferences, especially for low-occurring contaminants. Here, we (i) increased extraction selectivity by synthesizing cyclodextrin polymers (α-, β-, γ-CDP) as SPE sorbents, (ii) assessed their applicability to carbon isotope analysis for a selection of pesticides, and (iii) compared them with commonly used commercial sorbents. Extraction with β-CDP significantly reduced backgrounds in gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and enhanced sensitivity by a factor of 7.5, which was further confirmed by lower carbon-normalized CDOM/Canalyte ratios in corresponding extracts as derived from dissolved organic carbon (DOC) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Gibbs free energies of adsorption demonstrated weak competition between DOM and analyte on the three CDPs. No isotopic fractionation (Δδ13C within ± 0.3‰) was observed for the investigated pesticides after using β-CDP as an SPE sorbent covering a range of concentrations (5-500 μg L-1), flow velocities (5-40 cm min-1), and sorbent regeneration (up to six times). The present study highlights the benefit of selecting innovative extraction sorbents to avoid interferences in advance. This strategy in combination with existing cleanup approaches offers new prospects for CSIA at field concentrations of tens to hundreds of nanograms per liter.
Collapse
Affiliation(s)
- David Glöckler
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Christopher Wabnitz
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Martin Elsner
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Rani Bakkour
- TUM School of Natural Sciences, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
11
|
Blessing M, Baran N. A review on environmental isotope analysis of aquatic micropollutants: Recent advances, pitfalls and perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Terhalle J, Nikutta SE, Krzeciesa DL, Lutze HV, Jochmann MA, Schmidt TC. Linking reaction rate constants and isotope fractionation of ozonation reactions using phenols as probes. WATER RESEARCH 2022; 210:117931. [PMID: 34996014 DOI: 10.1016/j.watres.2021.117931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Ozonation is nowadays a widely used method in drinking water treatment for disinfection and pollutant control. However, transformation products of ozonation can be more toxic than their parent compounds. Therefore, the knowledge of the reaction mechanisms and product formation is essential for a safe application. Different analytical methods such as high-resolution mass spectrometry (HRMS) and compound-specific isotope analysis (CSIA) can be applied to elucidate products and primary attack positions of oxidation agents such as ozone. During the investigation of the ozonation of phenolic compounds in water by CSIA, a reaction rate depending carbon isotope fractionation was observed. The fractionation strongly depends on the phenol speciation. With decreasing pH values and reaction rates <105 M-1 s-1, the isotope enrichment factor ε increases (ε is between -5.2 and -1.0‰). For faster reactions (>105 M-1 s-1), the carbon isotope enrichment was not significant anymore (ε is between -1.0 and 0‰). Based on these data a concept to correlate isotope enrichment factors with kinetic data for aromatic compounds is proposed. The additional investigation of aliphatic double and triple bonds did not fit this correlation suggesting different rate-limiting steps. However, double and triple bond showed a similar enrichment factor, which implies the same rate-limiting step in the reaction with ozone, the monodentate addition of ozone.
Collapse
Affiliation(s)
- Jens Terhalle
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Simon E Nikutta
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Dawid L Krzeciesa
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany
| | - Holger V Lutze
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Department of Civil and Environmental Engineering, Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| | - Maik A Jochmann
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, Essen D-45141, Germany; IWW Water Centre, Moritzstraße 26, Mülheim an der Ruhr D-4547, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, Essen D-45141, Germany.
| |
Collapse
|
13
|
Drouin G, Droz B, Leresche F, Payraudeau S, Masbou J, Imfeld G. Direct and indirect photodegradation of atrazine and S-metolachlor in agriculturally impacted surface water and associated C and N isotope fractionation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:1791-1802. [PMID: 34709265 DOI: 10.1039/d1em00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Knowledge of direct and indirect photodegradation of pesticides and associated isotope fractionation can help to assess pesticide degradation in surface waters. Here, we investigated carbon (C) and nitrogen (N) isotope fractionation during direct and indirect photodegradation of the herbicides atrazine and S-metolachlor in synthetic agriculturally impacted surface waters containing nitrates (20 mg L-1) and dissolved organic matter (DOM, 5.4 mgC L-1). Atrazine and S-metolachlor were quickly photodegraded by both direct and indirect processes (half-lives <5 and <7 days, respectively). DOM slowed down photodegradation while nitrates increased degradation rates. The analysis of transformation products showed that oxidation mediated by hydroxyl radicals (HO˙) predominated during indirect photodegradation. UV light (254 nm) led to significant C and N isotope fractionation, yielding isotopic fractionation values εC = 2.7 ± 0.3 and 0.8 ± 0.1‰, and εN = 2.4 ± 0.3 and -2.6 ± 0.7‰ for atrazine and S-metolachlor, respectively. In contrast, photodegradation under simulated sunlight led to negligible C and slight N isotope fractionation, emphasizing the effect of the radiation wavelengths on the isotope fractionation induced by direct photodegradation. Altogether, these results highlight the importance of using simulated sunlight to obtain environmentally-relevant isotopic fractionation values and to distinguish photodegradation and other dissipation pathways in surface waters.
Collapse
Affiliation(s)
- Guillaume Drouin
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Boris Droz
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, Environmental Engineering Program, University of Colorado Boulder, Colorado 80309, USA
| | - Sylvain Payraudeau
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Jérémy Masbou
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| | - Gwenaël Imfeld
- Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg, EOST, ENGEES, CNRS, UMR 7063, 5 rue Descartes, Strasbourg F-67084, France.
| |
Collapse
|
14
|
Xiong J, Li G, Peng P, Gelman F, Ronen Z, An T. Mechanism investigation and stable isotope change during photochemical degradation of tetrabromobisphenol A (TBBPA) in water under LED white light irradiation. CHEMOSPHERE 2020; 258:127378. [PMID: 32554023 DOI: 10.1016/j.chemosphere.2020.127378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Light driven degradation is very promising for pollutants remediation. In the present work, photochemical reaction of tetrabromobisphenol A (TBBPA) under LED white light (λ > 400 nm) irradiation system was investigated to figure out the TBBPA photochemical degradation pathways and isotope fractionation patterns associated with transformation mechanisms. Results indicated that photochemical degradation of TBBPA would happen only with addition to humic acid in air bubbling but not in N2 bubbling. For photochemical reaction of TBBPA, singlet oxygen (1O2) was found to be important reactive oxygen species for the photochemical degradation of TBBPA. 2,6-Dibromo-4-(propan-2-ylidene)cyclohexa-2,5-dienone and two isopropyl phenol derivatives were identified as the photochemical degradation intermediates by 1O2. 2,6-Dibromo-4-(1-methoxy-ethyl)-phenol was determined as an intermediate via oxidative skeletal rearrangement, reduction and O-methylation. Hydrolysis product hydroxyl-tribromobisphenol A was also observed in the reductive debromination process. In addition, to deeply explore the mechanism, carbon and bromine isotope analysis were performed using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and gas chromatography-multicollector inductively coupled plasma mass spectrometry (GC/MC/ICPMS) during the photochemical degradation of TBBPA. The results showed that photochemical degradation could not result in statistically significant isotope fractionation, indicated that the bond cleavage of C-C and C-Br were not the rate controlling process. Stable isotope of carbon being not fractionated will be useful for distinguishing the pathways of TBBPA and tracing TBBPA fate in water systems. This work sheds light on photochemical degradation mechanisms of brominated organic contaminants.
Collapse
Affiliation(s)
- Jukun Xiong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Faina Gelman
- Geological Survey of Israel, 30 Malhei Israel Street, Jerusalem, 95501, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Sede Boqer, 84990, Israel
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Willach S, Lutze HV, Somnitz H, Terhalle J, Stojanovic N, Lüling M, Jochmann MA, Hofstetter TB, Schmidt TC. Carbon Isotope Fractionation of Substituted Benzene Analogs during Oxidation with Ozone and Hydroxyl Radicals: How Should Experimental Data Be Interpreted? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6713-6722. [PMID: 32383866 DOI: 10.1021/acs.est.0c00620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxidative processes frequently contribute to organic pollutant degradation in natural and engineered systems, such as during the remediation of contaminated sites and in water treatment processes. Because a systematic characterization of abiotic reactions of organic pollutants with oxidants such as ozone or hydroxyl radicals by compound-specific stable isotope analysis (CSIA) is lacking, stable isotope-based approaches have rarely been applied for the elucidation of mechanisms of such transformations. Here, we investigated the carbon isotope fractionation associated with the oxidation of benzene and several methylated and methoxylated analogs, namely, toluene, three xylene isomers, mesitylene, and anisole, and determined their carbon isotope enrichments factors (εC) for reactions with ozone (εC = -3.6 to -4.6 ‰) and hydroxyl radicals (εC = 0.0 to -1.2‰). The differences in isotope fractionation can be used to elucidate the contribution of the reactions with ozone or hydroxyl radicals to overall transformation. Derivation of apparent kinetic isotope effects (AKIEs) for the reaction with ozone, however, was nontrivial due to challenges in assigning reactive positions in the probe compounds for the monodentate attack leading to an ozone adduct. We present several options for this step and compare the outcome to quantum chemical characterizations of ozone adducts. Our data show that a general assignment of reactive positions for reactions of ozone with aromatic carbons in ortho-, meta-, or para-positions is not feasible and that AKIEs of this reaction should be derived on a compound-by-compound basis.
Collapse
Affiliation(s)
- Sarah Willach
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Holger V Lutze
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- IWW Water Centre, Moritzstrasse 26, D-45476 Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Holger Somnitz
- Faculty of Chemistry, Theoretical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Jens Terhalle
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Nenad Stojanovic
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Michelle Lüling
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Maik A Jochmann
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
| | - Torsten C Schmidt
- Faculty of Chemistry, Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
- IWW Water Centre, Moritzstrasse 26, D-45476 Mülheim an der Ruhr, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstrasse 5, D-45141 Essen, Germany
| |
Collapse
|
16
|
Huang Y, Su L, Zhang S, Zhao Q, Zhang X, Li X, Li H, Liu L, Chen J, Wei X. Opposite pH-dependent roles of hydroxyl radicals in ozonation and UV photolysis of genistein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136243. [PMID: 31884282 DOI: 10.1016/j.scitotenv.2019.136243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/02/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Phytoestrogens were frequently detected in municipal or industrial wastewater, and raised great attentions due to potential risks to humans or organisms. Until now, transformation mechanisms of phytoestrogens in advanced wastewater treatments were largely unknown. Here, pH influence mechanisms on transformations of phytoestrogens during two typical advanced wastewater treatments (ozonation and photolysis) were investigated, employing genistein (Gs) as a case. Removal efficiencies of Gs decreased significantly with increases of pH during ozonation, while photolytic rates increased by 44 or 200 times from pH 4.9 to 11.6 under irradiations without or with UVC. pH increases caused both dissociation of Gs and formation of hydroxyl radicals (OH) in ozonation or photolysis, however, led to opposite changes to degradation rates. This was because that OH played negatively as a competitor for O3 in ozonation, but acted as an accelerating species inducing self-sensitized photooxidation of Gs under UV light. Ozonation and photolytic products of Gs were similar at pH 4.9 or 8.6, but were totally different at pH 11.6. Most of the transformation products maintained isoflavone structures, and might possess phytoestrogenic effects. This study provided a deep insight into the pH influencing mechanism on typical advanced wastewater treatment processes of phytoestrogens. MAIN FINDING OF THE WORK: Opposite pH-dependent degradation mechanisms caused by hydroxyl radicals (OH) were elucidated for ozonation and UV photolysis of phytoestrogens, taking genistein as a case.
Collapse
Affiliation(s)
- Yang Huang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Lihao Su
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China; Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
17
|
Soil Sorption and Degradation Studies of Pharmaceutical Compounds Present in Recycled Wastewaters Based on Enantiomeric Fractionation. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Bakkour R, Bolotin J, Sellergren B, Hofstetter TB. Molecularly Imprinted Polymers for Compound-Specific Isotope Analysis of Polar Organic Micropollutants in Aquatic Environments. Anal Chem 2018; 90:7292-7301. [DOI: 10.1021/acs.analchem.8b00493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Rani Bakkour
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Börje Sellergren
- Department of Biomedical Sciences, Malmö University, 20506 Malmö, Sweden
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
19
|
Passeport E, Zhang N, Wu L, Herrmann H, Sherwood Lollar B, Richnow HH. Aqueous photodegradation of substituted chlorobenzenes: Kinetics, carbon isotope fractionation, and reaction mechanisms. WATER RESEARCH 2018; 135:95-103. [PMID: 29459118 DOI: 10.1016/j.watres.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Substituted chlorobenzenes are the basic substructure of many surface water contaminants. In this study, the isotope fractionation and reaction mechanisms involved during the aqueous direct and indirect photodegradation of CH3-, Cl-, and NO2- substituted chlorobenzenes were investigated in laboratory experiments. Only 4-nitrochlorobenzene showed slow but isotopically fractionating direct photolysis. During indirect photodegradation using UV/H2O2-generated OH radicals, the pseudo first-order reaction rate constants increased in the order of the NO2- < Cl- < CH3- substituted chlorobenzenes. The most pronounced carbon enrichment factors were observed for nitrochlorobenzenes (up to -4.8 ± 0.5‰), whereas the lowest were for chlorotoluenes (≤-1.0 ± 0.1‰). As the substituents became more electron-withdrawing, the activation energy barrier increased, leading to slower reaction rates, and the transition state changed to a more symmetrical or less reactant-like structure, resulting in larger apparent kinetic isotope effects. The results suggest that the rate-determining step in the reaction with OH radicals was the addition of the electrophile to the benzene ring. Even though further research is needed to quantify isotope fractionation during other transformation processes, these results showed evidence that compound specific isotope analysis can be used as a diagnostic tool for the fate of substituted chlorobenzenes in water.
Collapse
Affiliation(s)
- Elodie Passeport
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada.
| | - Ning Zhang
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- TROPOS Leibniz Institute for Tropospheric Research, Atmospheric Chemistry Department (ACD), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, ON M5S 3B1, Canada
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Center for Environmental Research UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
20
|
Willach S, Lutze HV, Eckey K, Löppenberg K, Lüling M, Wolbert JB, Kujawinski DM, Jochmann MA, Karst U, Schmidt TC. Direct Photolysis of Sulfamethoxazole Using Various Irradiation Sources and Wavelength Ranges-Insights from Degradation Product Analysis and Compound-Specific Stable Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1225-1233. [PMID: 29303258 DOI: 10.1021/acs.est.7b04744] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The environmental micropollutant sulfamethoxazole (SMX) is susceptible to phototransformation by sunlight and UV-C light which is used for water disinfection. Depending on the environmental pH conditions SMX may be present as neutral or anionic species. This study systematically investigates the phototransformation of these two relevant SMX species using four different irradiation scenarios, i.e., a low, medium, and high pressure Hg lamp and simulated sunlight. The observed phototransformation kinetics are complemented by data from compound-specific stable isotope and transformation product analysis using isotope-ratio and high-resolution mass spectrometry (HRMS). Observed phototransformation kinetics were faster for the neutral than for the anionic SMX species (from 3.4 (LP lamp) up to 6.6 (HP lamp) times). Furthermore, four phototransformation products (with m/z 189, 202, 242, and 260) were detected by HRMS that have not yet been described for direct photolysis of SMX. Isotopic fractionation occurred only if UV-B and UV-A wavelengths prevailed in the emitted irradiation and was most pronounced for the neutral species with simulated sunlight (εC = -4.8 ± 0.1 ‰). Phototransformation of SMX with UV-C light did not cause significant isotopic fractionation. Consequently, it was possible to differentiate sunlight and UV-C light induced phototransformation of SMX. Thus, CSIA might be implemented to trace back wastewater point sources or to assess natural attenuation of SMX by sunlight photolysis. In contrast to the wavelength range, pH-dependent speciation of SMX hardly impacted isotopic fractionation.
Collapse
Affiliation(s)
- Sarah Willach
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Holger V Lutze
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Kevin Eckey
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Katja Löppenberg
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Michelle Lüling
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Jens-Benjamin Wolbert
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Dorothea M Kujawinski
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
| | - Maik A Jochmann
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| | - Uwe Karst
- University of Muenster , Institute of Inorganic and Analytical Chemistry, Corrensstraße 28-30 D-48149, Muenster, Germany
| | - Torsten C Schmidt
- University of Duisburg-Essen , Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstraße 5 D-45141 Essen, Germany
- IWW Water Centre , Moritzstraße 26, D-45476 Muelheim an der Ruhr, Germany
- University of Duisburg-Essen , Centre for Water and Environmental Research (ZWU), Universitaetsstraße 5 D-45141 Essen, Germany
| |
Collapse
|
21
|
Willach S, Lutze HV, Eckey K, Löppenberg K, Lüling M, Terhalle J, Wolbert JB, Jochmann MA, Karst U, Schmidt TC. Degradation of sulfamethoxazole using ozone and chlorine dioxide - Compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects. WATER RESEARCH 2017; 122:280-289. [PMID: 28609731 DOI: 10.1016/j.watres.2017.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
The sulfonamide antibiotic sulfamethoxazole (SMX) is a widely detected micropollutant in surface and groundwaters. Oxidative treatment with e.g. ozone or chlorine dioxide is regularly applied for disinfection purposes at the same time exhibiting a high potential for removal of micropollutants. Especially for nitrogen containing compounds such as SMX, the related reaction mechanisms are largely unknown. In this study, we systematically investigated reaction stoichiometry, product formation and reaction mechanisms in reactions of SMX with ozone and chlorine dioxide. To this end, the neutral and anionic SMX species, which may occur at typical pH-values of water treatment were studied. Two moles of chlorine dioxide and approximately three moles of ozone were consumed per mole SMX degraded. Oxidation of SMX with ozone and chlorine dioxide leads in both cases to six major transformation products (TPs) as revealed by high-resolution mass spectrometry (HRMS). Tentatively formulated TP structures from other studies could partly be confirmed by compound-specific stable isotope analysis (CSIA). However, for one TP, a hydroxylated SMX, it was not possible by HRMS alone to identify whether hydroxylation occurred at the aromatic ring, as suggested in literature before, or at the anilinic nitrogen. By means of CSIA and an analytical standard it was possible to identify sulfamethoxazole hydroxylamine unequivocally as one of the TPs of the reaction of SMX with ozone as well as with chlorine dioxide. H-abstraction and electron transfer at the anilinic nitrogen are suggested as likely initial reactions of ozone and chlorine dioxide, respectively, leading to its formation. Oxidation of anionic SMX with ozone did not show any significant isotopic fractionation whereas the other reactions studied resulted in a significant carbon isotope fractionation.
Collapse
Affiliation(s)
- Sarah Willach
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany
| | - Holger V Lutze
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany; IWW Water Centre, Moritzstr. 26, D-45476 Muelheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitaetsstr. 5, D-45141 Essen, Germany
| | - Kevin Eckey
- University of Muenster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, D-48149 Muenster, Germany
| | - Katja Löppenberg
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany
| | - Michelle Lüling
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany
| | - Jens Terhalle
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany
| | - Jens-Benjamin Wolbert
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany
| | - Maik A Jochmann
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitaetsstr. 5, D-45141 Essen, Germany
| | - Uwe Karst
- University of Muenster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, D-48149 Muenster, Germany
| | - Torsten C Schmidt
- University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitaetsstr. 5, D-45141 Essen, Germany; IWW Water Centre, Moritzstr. 26, D-45476 Muelheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitaetsstr. 5, D-45141 Essen, Germany.
| |
Collapse
|
22
|
Brienza M, Chiron S. Enantioselective reductive transformation of climbazole: A concept towards quantitative biodegradation assessment in anaerobic biological treatment processes. WATER RESEARCH 2017; 116:203-210. [PMID: 28340418 DOI: 10.1016/j.watres.2017.03.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
An efficient chiral method-based using liquid chromatography-high resolution-mass spectrometry analytical method has been validated for the determination of climbazole (CBZ) enantiomers in wastewater and sludge with quantification limits below the 1 ng/L and 2 ng/g range, respectively. On the basis of this newly developed analytical method, the stereochemistry of CBZ was investigated over time in sludge biotic and sterile batch experiments under anoxic dark and light conditions and during wastewater biological treatment by subsurface flow constructed wetlands. CBZ stereoselective degradation was exclusively observed under biotic conditions, confirming the specificity of enantiomeric fraction variations to biodegradation processes. Abiotic CBZ enantiomerization was insignificant at circumneutral pH and CBZ was always biotransformed into CBZ-alcohol due to the specific and enantioselective reduction of the ketone function of CBZ into a secondary alcohol function. This transformation was almost quantitative and biodegradation gave good first order kinetic fit for both enantiomers. The possibility to apply the Rayleigh equation to enantioselective CBZ biodegradation processes was investigated. The results of enantiomeric enrichment allowed for a quantitative assessment of in situ biodegradation processes due to a good fit (R2 > 0.96) of the anoxic/anaerobic CBZ biodegradation to the Rayleigh dependency in all the biotic microcosms and was also applied in subsurface flow constructed wetlands. This work extended the concept of applying the Rayleigh equation towards quantitative biodegradation assessment of organic contaminants to enantioselective processes operating under anoxic/anaerobic conditions.
Collapse
Affiliation(s)
- Monica Brienza
- UMR HydroSciences 5569, IRD, Montpellier University, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France
| | - Serge Chiron
- UMR HydroSciences 5569, IRD, Montpellier University, 15 Avenue Ch. Flahault, 34093 Montpellier cedex 5, France.
| |
Collapse
|