1
|
Yue Z, Shi X, Zhang H, Wu Z, Gao C, Wei B, Du C, Peng Y, Yang X, Lu J, Cheng Y, Zhou L, Zou X, Chen L, Li Y, Hu Q. The viral trends and genotype diversity of norovirus in the wastewater of Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:174884. [PMID: 39034007 DOI: 10.1016/j.scitotenv.2024.174884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Norovirus (NoV) is the primary cause of acute gastroenteritis (AGE) on a global scale. Numerous studies have demonstrated the immense potential of wastewater surveillance in monitoring the prevalence and spread of NoV within communities. This study employed a one-step reverse transcription-quantitative PCR to quantify NoV GI/GII in wastewater samples (n = 2574), which were collected once or twice a week from 38 wastewater treatment plants from March 2023 to February 2024 in Shenzhen. The concentrations of NoV GI and GII ranged from 5.0 × 104 to 1.7 × 106 copies/L and 4.1 × 105 to 4.5 × 106 copies/L, respectively. The concentrations of NoV GII were higher than those of NoV GI. Spearman's correlation analysis revealed a moderate correlation between the concentration of NoV in wastewater and the detection rates of NoV infections in sentinel hospitals. Baseline values were established for NoV concentrations in Shenzhen's wastewater, providing a crucial reference point for implementing early warning systems and nonpharmaceutical interventions to mitigate the impact of potential outbreaks. A total of 24 NoV genotypes were identified in 100 wastewater samples by sequencing. Nine genotypes of NoV GI were detected, with the major genotypes being GI.4 (38.6 %) and GI.3 (21.8 %); Fifteen genotypes of NoV GII were identified, with GII.4 (53.6 %) and GII.17 (26.0 %) being dominant. The trends in the relative abundance of NoV GI/GII were significantly different, and the trends in the relative abundance of NoV GII.4 over time were similar across all districts, suggesting a potential risk of cross-regional spread. Our findings underscore the effectiveness of wastewater surveillance in reflecting population-level NoV infections, capturing the diverse array of NoV genotypes, and utilizing NoV RNA in wastewater as a specific indicator to supplement clinical surveillance data, ultimately enhancing our ability to predict the timing and intensity of NoV epidemics.
Collapse
Affiliation(s)
- Zhijiao Yue
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiuyuan Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailong Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ziqi Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chenxi Gao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Shanxi Medical University, Taiyuan 030001, China
| | - Bincai Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Du
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuejing Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xi Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Liping Zhou
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Qinghua Hu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
2
|
Zhang Y, Zhang S, Qi Z, Zhao H, Zhao R, Liu T. A real-time simulation model of water quality with the impact of internal pollution for water source reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38323-38342. [PMID: 38801608 DOI: 10.1007/s11356-024-33722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
The water source reservoirs are the important urban water source in northern China. Although external pollution has been greatly improved, the internal pollutants in reservoirs continue to accumulate with the complex deposition and release processes, resulting in potential risks to water supply safety. To address the aforementioned issue, this paper proposed a simulation model of water quality named ECOlab EU1-WSR to simulate the spatio-temporal changes of water quality under the influence of internal pollution for the water source reservoirs. Based on the analysis of the water quality characteristics and the distribution of benthic vegetation in the reservoir, a three-dimensional hydrodynamic model was established based on MIKE3, the corresponding parameters and the related state variables were set, the ECOlab EU1-WSR model was established by secondly developing the original ECOlab EU1 template, and the real-time dynamic outputs of pollutant content in sediment were added to link the water quality index with sediment nutrition index for better revealing the impact of the internal pollution on the water quality. The performance of the model was evaluated by the case application on the water quality simulation of Daye reservoir and the optimization of the connection project between Daye reservoir and Xueye reservoir in Shandong Province China. The results showed that the model can accurately and simultaneously simulate the pollution in water and sediment by the comparative verification of hydrodynamics, water temperature, and water quality. Moreover, the model can effectively reflect the influence of the accumulation, deposition, and release of internal pollution on water quality by analyzing the correlation between the content of various pollution in water body and those in sediment, such as the total nitrogen and total phosphorus in the water body at the bottom of the water intake, were negatively correlated with the total nitrogen and total phosphorus in the sediments with correlation coefficients of 0.538 and 0.917, respectively. In addition, the optimal water inlet position and water flow rate of the connection project can be optimized and determined by using the model to effectively control water quality. The established model will be a useful tool for the design and management of a reservoir, the interconnection projects, and other water bodies by adaptively recoded.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- School of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus, No. 17923, Jingshi Road, Lixia District, Jinan City, 250014, Shandong Province, China
| | - Shuanghu Zhang
- Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhen Qi
- School of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus, No. 17923, Jingshi Road, Lixia District, Jinan City, 250014, Shandong Province, China
| | - Huaqing Zhao
- School of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus, No. 17923, Jingshi Road, Lixia District, Jinan City, 250014, Shandong Province, China
| | - Ranhang Zhao
- School of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus, No. 17923, Jingshi Road, Lixia District, Jinan City, 250014, Shandong Province, China.
| | - Tangqiong Liu
- School of Civil Engineering and Water Conservancy, Shandong University, Qianfoshan Campus, No. 17923, Jingshi Road, Lixia District, Jinan City, 250014, Shandong Province, China
| |
Collapse
|
3
|
Suslovaite V, Pickett H, Speight V, Shucksmith JD. Forecasting acute rainfall driven E. coli impacts in inland rivers based on sewer monitoring and field runoff. WATER RESEARCH 2024; 248:120838. [PMID: 37979565 DOI: 10.1016/j.watres.2023.120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Surface water quality is frequently impacted by acute rainfall driven pollutant sources such as sewer overflows. Understanding the risk of exposure from faecal pollution from short term impacts is challenging due to a paucity of high-resolution data from river systems. This paper proposes practical modelling approach for forecasting arrival time and durations of elevated E. coli levels based on hydrological routing of catchment source loadings, characterized by distributed and remote sensing techniques (including sewer overflow monitoring). The model is calibrated and validated using new high resolution E. coli datasets from a UK catchment featuring both diffuse field runoff and storm overflow impacts. Hourly/Bihourly sampling of E. coli was undertaken in the river following different rainfall events across a range of seasonal conditions. The model provides a good estimate of arrival times and durations of elevated E. coli periods following rainfall events. Model simulations suggest that key sources in the catchment are event specific, with sewer overflow spills being more significant following short, intense rainfall events.
Collapse
Affiliation(s)
- Vaida Suslovaite
- Sheffield Water Centre, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| | - Helen Pickett
- Severn Trent Centre, 2 St Johns Street, Coventry CV1 2LZ, UK
| | - Vanessa Speight
- Sheffield Water Centre, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - James D Shucksmith
- Sheffield Water Centre, Department of Civil and Structural Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
4
|
Panizzolo M, Gea M, Carraro E, Gilli G, Bonetta S, Pignata C. Occurrence of human pathogenic viruses in drinking water and in its sources: A review. J Environ Sci (China) 2023; 132:145-161. [PMID: 37336605 DOI: 10.1016/j.jes.2022.07.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/21/2023]
Abstract
Since many waterborne diseases are caused by human pathogenic viruses, virus monitoring of drinking water (DW) and DW sources is crucial for public health. Therefore, the aim of this review was to describe the occurrence of human pathogenic viruses in DW and DW sources; the occurrence of two viruses proposed as novel indicators of human faecal contamination (Pepper mild mottle virus and Tobacco mosaic virus) was also reported. This research was focused on articles that assessed viral occurrence using molecular methods in the surface water used for DW production (SW-D), groundwater used for DW production (GW-D), DW and bottled-DW (BW). A total of 1544 studies published in the last 10 years were analysed, and 79 were ultimately included. In considering the detection methods, filtration is the most common concentration technique, while quantitative polymerase chain reaction is the most common quantification technique. Regarding virus occurrence in SW-D, GW-D, and DW, high percentages of positive samples were reported for adenovirus, polyomavirus and Pepper mild mottle virus. Viral genomes were frequently detected in SW-D and rarely in GW-D, suggesting that GW-D may be a safe DW source. Viral genomes were also detected in DW, posing a possible threat to human health. The lowest percentages of positive samples were found in Europe, while the highest were found in Asia and South America. Only three articles assessed viral occurrence in BW. This review highlights the lack of method standardization and the need for legislation updates.
Collapse
Affiliation(s)
- Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Marta Gea
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy.
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
5
|
Mazumder P, Dash S, Honda R, Sonne C, Kumar M. Sewage surveillance for SARS-CoV-2: Molecular detection, quantification, and normalization factors. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 28:100363. [PMID: 35694049 PMCID: PMC9170178 DOI: 10.1016/j.coesh.2022.100363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The presence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in wastewater systems provides a primary indication of the coronavirus disease 2019 (COVID-19) spread throughout communities worldwide. Droplet digital polymerase chain reaction (dd-PCR) or reverse transcription-polymerase chain reaction (RT-PCR) administration of SARS-CoV-2 in wastewaters provides a reliable and efficient technology for gathering secondary local-level public health data. Often the accuracy of prevalence estimation is hampered by many methodological issues connected with wastewater surveillance. Still, more studies are needed to use and create efficient approaches for deciphering the actual SARS-CoV-2 indication from noise in the specimens/samples. Nearly 39-65% of positive patients and asymptomatic carriers expel the virus through their faeces however, only ∼6% of the infected hosts eject it through their urine. COVID-19 positive patients can shed the remnants of the SARS-CoV-2 RNA virus within the concentrations ∼103-108 copies/L. However, it can decrease up to 102 copies/L in wastewaters due to dilution. Environmental virology and microbiology laboratories play a significant role in the identification and analysis of SARS-CoV-2 ribonucleic acid (RNA) in waste and ambient waters worldwide. Virus extraction or recovery from the wastewater (However, due to lack of knowledge, established procedures, and integrated quality assurance/quality control (QA/QC) approaches, the novel coronavirus RNA investigation for estimating current illnesses and predicting future outbreaks is insufficient and/or conducted inadequately. The present manuscript is a technical review of the various methods and factors considered during the identification of SARS-CoV-2 genetic material in wastewaters and/or sludge, including tips and tricks to be taken care of during sampling, virus concentration, normalization, PCR inhibition, and trend line smoothening when compared with clinically active/positive cases.
Collapse
Affiliation(s)
- Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| | - Siddhant Dash
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Ryo Honda
- School of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Roskilde, DK-4000, Denmark
- Henan Province Engineering Research Center for Biomass Value-Added Products, Henan Agricultural University, Zhengzhou, Henan, 450002, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
6
|
Li J, Liu J, Yu H, Zhao W, Xia X, You S, Zhang J, Tong H, Wei L. Sources, fates and treatment strategies of typical viruses in urban sewage collection/treatment systems: A review. DESALINATION 2022; 534:115798. [PMID: 35498908 PMCID: PMC9033450 DOI: 10.1016/j.desal.2022.115798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The ongoing coronavirus pandemic (COVID-19) throughout the world has severely threatened the global economy and public health. Due to receiving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a wide variety of sources (e.g., households, hospitals, slaughterhouses), urban sewage treatment systems are regarded as an important path for the transmission of waterborne viruses. This review presents a quantitative profile of the concentration distribution of typical viruses within wastewater collection systems and evaluates the influence of different characteristics of sewer systems on virus species and concentration. Then, the efficiencies and mechanisms of virus removal in the units of wastewater treatment plants (WWTPs) are summarized and compared, among which the inactivation efficiencies of typical viruses by typical disinfection approaches under varied operational conditions are elucidated. Subsequently, the occurrence and removal of viruses in treated effluent reuse and desalination, as well as that in sewage sludge treatment, are discussed. Potential dissemination of viruses is emphasized by occurrence via aerosolization from toilets, the collection system and WWTP aeration, which might have a vital role in the transmission and spread of viruses. Finally, the frequency and concentration of viruses in reclaimed water, the probability of infection are also reviewed for discussing the potential health risks.
Collapse
Affiliation(s)
- Jianju Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Geosciences, China University of Petroleum, Qingdao 266580, China
| | - Hang Yu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Sokolova E, Ivarsson O, Lillieström A, Speicher NK, Rydberg H, Bondelind M. Data-driven models for predicting microbial water quality in the drinking water source using E. coli monitoring and hydrometeorological data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149798. [PMID: 34454142 DOI: 10.1016/j.scitotenv.2021.149798] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Rapid changes in microbial water quality in surface waters pose challenges for production of safe drinking water. If not treated to an acceptable level, microbial pathogens present in the drinking water can result in severe consequences for public health. The aim of this paper was to evaluate the suitability of data-driven models of different complexity for predicting the concentrations of E. coli in the river Göta älv at the water intake of the drinking water treatment plant in Gothenburg, Sweden. The objectives were to (i) assess how the complexity of the model affects the model performance; and (ii) identify relevant factors and assess their effect as predictors of E. coli levels. To forecast E. coli levels one day ahead, the data on laboratory measurements of E. coli and total coliforms, Colifast measurements of E. coli, water temperature, turbidity, precipitation, and water flow were used. The baseline approaches included Exponential Smoothing and ARIMA (Autoregressive Integrated Moving Average), which are commonly used univariate methods, and a naive baseline that used the previous observed value as its next prediction. Also, models common in the machine learning domain were included: LASSO (Least Absolute Shrinkage and Selection Operator) Regression and Random Forest, and a tool for optimising machine learning pipelines - TPOT (Tree-based Pipeline Optimization Tool). Also, a multivariate autoregressive model VAR (Vector Autoregression) was included. The models that included multiple predictors performed better than univariate models. Random Forest and TPOT resulted in higher performance but showed a tendency of overfitting. Water temperature, microbial concentrations upstream and at the water intake, and precipitation upstream were shown to be important predictors. Data-driven modelling enables water producers to interpret the measurements in the context of what concentrations can be expected based on the recent historic data, and thus identify unexplained deviations warranting further investigation of their origin.
Collapse
Affiliation(s)
- Ekaterina Sokolova
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Sweden.
| | - Oscar Ivarsson
- Chalmers University of Technology, Department of Computer Science and Engineering, Sweden
| | - Ann Lillieström
- Chalmers University of Technology, Department of Computer Science and Engineering, Sweden
| | - Nora K Speicher
- Chalmers University of Technology, Department of Computer Science and Engineering, Sweden
| | - Henrik Rydberg
- City of Gothenburg, Department of Sustainable Water and Waste, Sweden
| | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Sweden
| |
Collapse
|
8
|
Summerlin HN, Pola CC, Chamakura KR, Young R, Gentry T, McLamore ES, Karthikeyan R, Gomes CL. Fate of enteric viruses during leafy greens (romaine lettuce) production using treated municipal wastewater and AP205 bacteriophage as a surrogate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1138-1144. [PMID: 34427159 DOI: 10.1080/10934529.2021.1968231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Water reuse programs are being explored to close the gap between supply and demand for irrigation in agriculture. However, these sources could contain hazardous microbial contaminants, and pose risks to public health. This study aimed to grow and irrigate romaine lettuce with inoculated wastewater effluent to track AP205 bacteriophage prevalence through cultivation and post-harvest storage. AP205 is a bacteriophage and was used as a surrogate for enteric viruses. Low and high dosages (mean ± standard deviation) of AP205 at 4.8 ± 0.4 log PFU/mL and 6.6 ± 0.2 log PFU/mL; respectively, were prepared to examine viral load influence on contamination levels. Foliage, leachate, and soil contamination levels were directly related to AP205 concentrations in the effluent. AP205 concentrations increased throughout cultivation for foliage and leachate, suggesting bacteriophage accumulation. During post-harvest storage (14 day at 4 °C), there was a significant decrease in AP205 concentration on the foliage. Results show that wastewater effluents usage for leafy greens cultivation can pose risks to humans and additional steps are required to safely apply wastewater effluents to soils and crops.
Collapse
Affiliation(s)
- Harvey N Summerlin
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, Texas, USA
| | - Cícero C Pola
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Karthikeyan R Chamakura
- Center for Phage Technology, Texas A&M AgriLife, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Ry Young
- Center for Phage Technology, Texas A&M AgriLife, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Terry Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, South Carolina, USA
| | | | - Carmen L Gomes
- Department of Biological & Agricultural Engineering, Texas A&M University, College Station, Texas, USA
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
9
|
Ali W, Zhang H, Wang Z, Chang C, Javed A, Ali K, Du W, Niazi NK, Mao K, Yang Z. Occurrence of various viruses and recent evidence of SARS-CoV-2 in wastewater systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125439. [PMID: 33684818 PMCID: PMC7894103 DOI: 10.1016/j.jhazmat.2021.125439] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 05/17/2023]
Abstract
Viruses are omnipresent and persistent in wastewater, which poses a risk to human health. In this review, we summarise the different qualitative and quantitative methods for virus analysis in wastewater and systematically discuss the spatial distribution and temporal patterns of various viruses (i.e., enteric viruses, Caliciviridae (Noroviruses (NoVs)), Picornaviridae (Enteroviruses (EVs)), Hepatitis A virus (HAV)), and Adenoviridae (Adenoviruses (AdVs))) in wastewater systems. Then we critically review recent SARS-CoV-2 studies to understand the ongoing COVID-19 pandemic through wastewater surveillance. SARS-CoV-2 genetic material has been detected in wastewater from France, the Netherlands, Australia, Italy, Japan, Spain, Turkey, India, Pakistan, China, and the USA. We then discuss the utility of wastewater-based epidemiology (WBE) to estimate the occurrence, distribution, and genetic diversity of these viruses and generate human health risk assessment. Finally, we not only promote the prevention of viral infectious disease transmission through wastewater but also highlight the potential use of WBE as an early warning system for public health assessment.
Collapse
Affiliation(s)
- Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, College of Oceanography, Hohai University, Nanjing 210098, PR China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Asif Javed
- Department of Earth and Environmental Sciences, Bahria University Islamabad, Pakistan
| | - Kamran Ali
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Science and Technology (NUST), Islamabad 44000, Pakistan
| | - Wei Du
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, PR China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| |
Collapse
|
10
|
Maffettone R, Manoli K, Santoro D, Passalacqua KD, Wobus CE, Sarathy S. Performic Acid Disinfection of Municipal Secondary Effluent Wastewater: Inactivation of Murine Norovirus, Fecal Coliforms, and Enterococci. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12761-12770. [PMID: 32835477 DOI: 10.1021/acs.est.0c05144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Performic acid (PFA) is an emerging disinfectant to inactivate bacterial and viral microorganisms in wastewater. In this study, the inactivation kinetics of murine norovirus (MNV) by PFA, in phosphate buffer and municipal secondary effluent wastewater, are reported for the first time. PFA decay followed first-order kinetics and the inactivation of MNV was governed by the exposure of microorganisms to PFA, i.e., the integral of the PFA concentration over time (integral CT or ICT). The extension of the Chick-Watson model, in the ICT domain, described well the reduction of MNV by PFA, with determined ICT-based inactivation rate constants, kd, of 1.024 ± 0.038 L/(mg·min) and 0.482 ± 0.022 L/(mg·min) in phosphate buffer and wastewater, respectively, at pH 7.2. Furthermore, the simultaneous PFA inactivation of MNV and fecal indicators indigenously present in wastewater such as fecal coliforms and enterococci showed that 1-log reduction could be achieved with ICT of 2, 1.5, and 3.5 mg·min/L, respectively. When compared with the most commonly used peracid disinfectant of municipal wastewater, peracetic acid (PAA), the ICT requirements determined using the fitted ICT-based kinetic models were ∼20 times higher for PAA than PFA, indicating a much stronger inactivation power of the PFA molecule.
Collapse
Affiliation(s)
- Roberta Maffettone
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
- Trojan Technologies, London, Ontario N5 V 4T7, Canada
| | - Kyriakos Manoli
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
- Trojan Technologies, London, Ontario N5 V 4T7, Canada
| | - Domenico Santoro
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
- USP Technologies, London, Ontario N5 V 4T7, Canada
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Siva Sarathy
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
- Trojan Technologies, London, Ontario N5 V 4T7, Canada
| |
Collapse
|
11
|
Environmental and Adaptive Changes Necessitate a Paradigm Shift for Indicators of Fecal Contamination. Microbiol Spectr 2020. [DOI: 10.1128/microbiolspec.erv-0001-2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
ABSTRACT
Changes in the occurrence, distribution, and seasonal variation of waterborne pathogens due to global climate change may increase the risk of human exposure to these microorganisms, thus heightening the need for more reliable surveillance systems. Routine monitoring of drinking water supplies and recreational waters is performed using fecal indicator microorganisms, such as
Escherichia coli
,
Enterococcus
spp., and coliphages. However, the presence and numbers of these indicators, especially
E. coli
and
Enterococcus
spp., do not correlate well with those of other pathogens, especially enteric viruses, which are a major cause of waterborne outbreaks associated with contaminated water and food, and recreational use of lakes, ponds, rivers, and estuarine waters. For that reason, there is a growing need for a surveillance system that can detect and quantify viral pathogens directly in water sources to reduce transmission of pathogens associated with fecal transmission. In this review, we present an updated overview of relevant waterborne enteric viruses that we believe should be more commonly screened to better evaluate water quality and to determine the safety of water use and reuse and of epidemiological data on viral outbreaks. We also discuss current methodologies that are available to detect and quantify these viruses in water resources. Finally, we highlight challenges associated with virus monitoring. The information presented in this review is intended to aid in the assessment of human health risks due to contact with water sources, especially since current environmental and adaptive changes may be creating the need for a paradigm shift for indicators of fecal contamination.
Collapse
|
12
|
Taghipour M, Shakibaeinia A, Sylvestre É, Tolouei S, Dorner S. Microbial risk associated with CSOs upstream of drinking water sources in a transboundary river using hydrodynamic and water quality modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:547-558. [PMID: 31146060 DOI: 10.1016/j.scitotenv.2019.05.130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Urban source water protection planning requires the characterization of sources of contamination upstream of drinking water intakes. Elevated pathogen concentrations following Combined Sewer Overflows (CSOs) represent a threat to human health. Quantifying peak pathogen concentrations at the intakes of drinking water plants is a challenge due to the variability of CSO occurrences and uncertainties with regards to the fate and transport mechanisms from discharge points to source water supplies. Here, a two-dimensional deterministic hydrodynamic and water quality model is used to study the fluvial contaminant transport and the impacts of the upstream CSO discharges on the downstream concentrations of Escherichia coli in the raw water supply of two drinking water plants, located on a large river. CSO dynamic loading characteristics were considered for a variety of discharges. As a result of limited Cryptosporidium data, a probability distribution of the ratio of E. coli to Cryptosporidium based on historical data was used to estimate microbial risk from simulated CSO-induced E. coli concentrations. During optimal operational performance of the plants, the daily risk target was met (based on the mean concentration during the peak) for 80% to 90% of CSO events. For suboptimal performance of the plants, these values dropped to 40% to 55%. Mean annual microbial risk following CSO discharge events was more dependent on treatment performance rather than the number of CSO occurrences. The effect of CSO-associated short term risk on the mean annual risk is largely dependent on the treatment performance as well as representativeness of the baseline condition at the intakes, demonstrating the need for assessment of treatment efficacy. The results of this study will enable water utilities and managers with a tool to investigate the potential alternatives in reducing the microbial risk associated with CSOs.
Collapse
Affiliation(s)
- Milad Taghipour
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada.
| | - Ahmad Shakibaeinia
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Émile Sylvestre
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water, Polytechnique Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Samira Tolouei
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada; NSERC Industrial Chair on Drinking Water, Polytechnique Montréal, P.O. Box 6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada
| | - Sarah Dorner
- Civil, Geological and Mining Engineering, Polytechnique Montréal, C.P.6079, Station Centre-ville, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|
13
|
Potential infection of grazing cattle via contaminated water: a theoretical modelling approach. Animal 2019; 13:2052-2059. [PMID: 30614435 DOI: 10.1017/s1751731118003415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Wastewater discharge and agricultural activities may pose microbial risks to natural water sources. The impact of different sources can be assessed by water quality modelling. The aim of this study was to use hydrological and hydrodynamic models to illustrate the risk of exposing grazing animals to faecal pollutants in natural water sources, using three zoonotic faecal pathogens as model microbes and fictitious pastures in Sweden as examples. Microbial contamination by manure from fertilisation and grazing was modelled by use of a hydrological model (HYPE) and a hydrodynamic model (MIKE 3 FM), and microbial contamination from human wastewater was modelled by application of both models in a backwards process. The faecal pathogens Salmonella spp., verotoxin-producing Escherichia coli O157:H7 (VTEC) and Cryptosporidium parvum were chosen as model organisms. The pathogen loads on arable land and pastures were estimated based on pathogen concentration in cattle faeces, herd prevalence and within-herd prevalence. Contamination from human wastewater discharge was simulated by estimating the number of pathogens required from a fictitious wastewater discharge to reach a concentration high enough to cause infection in cattle using the points on the fictitious pastures as their primary source of drinking water. In the scenarios for pathogens from animal sources, none of the simulated concentrations of salmonella exceeded the concentrations needed to infect adult cattle. For VTEC, most of the simulated concentrations exceeded the concentration needed to infect calves. For C. parvum, all the simulated concentrations exceeded the concentration needed to infect calves. The pathogen loads needed at the release points for human wastewater to achieve infectious doses for cattle were mostly above the potential loads of salmonella and VTEC estimated to be present in a 24-h overflow from a medium-size Swedish wastewater treatment plant, while the required pathogen loads of C. parvum at the release points were below the potential loads of C. parvum in a 24-h wastewater overflow. Most estimates in this study assume a worst-case scenario. Controlling zoonotic infections at herd level prevents environmental contamination and subsequent human exposure. The potential for infection of grazing animals with faecal pathogens has implications for keeping animals on pastures with access to natural water sources. As the infectious dose for most pathogens is more easily reached for calves than for adult animals, and young calves are also the main shedders of C. parvum, keeping young calves on pastures adjacent to natural water sources is best avoided.
Collapse
|
14
|
Dunkin N, Weng S, Coulter CG, Jacangelo JG, Schwab KJ. Impacts of virus processing on human norovirus GI and GII persistence during disinfection of municipal secondary wastewater effluent. WATER RESEARCH 2018; 134:1-12. [PMID: 29407643 DOI: 10.1016/j.watres.2018.01.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/03/2023]
Abstract
Noroviruses cause significant global health burdens and waterborne transmission is a known exposure pathway. Chlorination is the most common method of disinfection for water and wastewater worldwide. The purpose of this study was to investigate the underlying causes for discrepancies in human norovirus (hNoV) resistance to free chlorine that have been previously published, and to assess hNoV GI and GII persistence during disinfection of municipal secondary wastewater (WW) effluent. Our results reveal that choice of hNoV purification methodology prior to seeding the viruses in an experimental water matrix influences disinfection outcomes in treatment studies. Common hNoV purification processes such as solvent extraction and 0.45-μm filtration were ineffective in removing high levels of organics introduced into water or wastewater samples when seeding norovirus positive stool. These methods resulted in experimental water matrices receiving an additional 190 mg/L as Cl2 of 15-s chlorine demand and approximately 440 mg/L as Cl2 of 30-min chlorine demand due to seeding norovirus positive stool at 1% w/v. These high organic loads impact experimental water chemistry and bias estimations of hNoV persistence. Advanced purification of norovirus positive stool using sucrose cushion ultracentrifugation and ultrafiltration reduced 15-s chlorine demands by 99% and TOC by 93% for loose (i.e. unformed diarrhea) stools. Using these methods, hNoV GI and GII persistence was investigated during free chlorination of municipal WW. A suite five of kinetic inactivation models was fit to viral reverse transcription-qPCR reduction data, and model predicted CT values for 1, 2, and 3 log10 reduction of hNoV GI in municipal WW by free chlorine were 0.3, 2.1, and 7.8 mg-min/L, respectively. Model predicted CT values for reduction of hNoV GII in WW were 0.4, 2.0, and 7.0 mg-min/L, respectively. These results indicate that current WW treatment plant disinfection practices employing free chlorine are likely protective for public health with regards to noroviruses, and will achieve at least 3-log reduction of hNoV GI and GII RNA despite previous reports of high hNoV resistance.
Collapse
Affiliation(s)
- Nathan Dunkin
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - ShihChi Weng
- JHU/MWH Alliance, Johns Hopkins University, Baltimore, MD, USA
| | - Caroline G Coulter
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph G Jacangelo
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; JHU/MWH Alliance, Johns Hopkins University, Baltimore, MD, USA; MWH-Stantec, Pasadena, CA, USA
| | - Kellogg J Schwab
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; JHU/MWH Alliance, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Björklund K, Bondelind M, Karlsson A, Karlsson D, Sokolova E. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 207:32-42. [PMID: 29154006 DOI: 10.1016/j.jenvman.2017.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/03/2017] [Accepted: 11/05/2017] [Indexed: 06/07/2023]
Abstract
The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality.
Collapse
Affiliation(s)
- Karin Björklund
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Mia Bondelind
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden
| | - Anna Karlsson
- Tyréns AB, Lilla Badhusgatan 2, SE-411 21 Gothenburg, Sweden
| | - Dick Karlsson
- Sustainable Waste and Water, City of Gothenburg, Box 123, SE-424 23 Angered, Sweden
| | - Ekaterina Sokolova
- Department of Architecture and Civil Engineering, Chalmers University of Technology, Sven Hultins gata 6, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|