1
|
Hao Y, Zheng T, Liu L, Li P, Ma H, Zheng Z, Zheng X, Luo J. Occurrence of dissimilatory nitrate reduction to ammonium (DNRA) in groundwater table fluctuation zones during dissolved organic nitrogen leaching through unsaturated zone. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137501. [PMID: 39952133 DOI: 10.1016/j.jhazmat.2025.137501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
Nitrate reduction in unsaturated zone is critical for preventing groundwater contamination from anthropogenic nitrogen fertilization. Dissimilatory nitrate reduction to ammonium (DNRA), found in anoxic environments, offers an alternative pathway to denitrification by reducing nitrate while conserving nitrogen. However, the occurrence of DNRA in unsaturated zone remains poorly understood. To address this gap, we conducted numerical simulations to investigate the reactive transport of dissolved organic nitrogen (DON) through unsaturated zone under fluctuating groundwater table conditions, with the focus on the competition between denitrification and DNRA. Our results indicate that DNRA typically gets stronger within capillary fringe, with its intensity varying with groundwater table fluctuations. DNRA competes with denitrification, contributing up to 46.33 % of nitrate reduction, especially when groundwater table drops. The strength of DNRA requires comprehensive consideration of the adsorption characteristics, permeability and porosity of vadose zone, and in our study, silty clay loam-with the relatively weaker adsorptive capacity/lower permeability-exhibits the highest DNRA reaction rates and the largest reaction areas, while DNRA in sandy loam may occur during periods when both DON and NO3--N reserves are relatively low. This study firstly revealed the distribution of DNRA in groundwater table fluctuation zone, exploring its kinetics, controlling factors, and contributions, providing a scientific foundation for assessing the self-purification processes in groundwater contamination.
Collapse
Affiliation(s)
- Yujie Hao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Lecheng Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Peihua Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Haoran Ma
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Zhihong Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecological Education, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
2
|
Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, Keiluweit M, Naughton HR, Noël V, Sihi D. Consider the Anoxic Microsite: Acknowledging and Appreciating Spatiotemporal Redox Heterogeneity in Soils and Sediments. ACS EARTH & SPACE CHEMISTRY 2023; 7:1592-1609. [PMID: 37753209 PMCID: PMC10519444 DOI: 10.1021/acsearthspacechem.3c00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 07/21/2023] [Indexed: 09/28/2023]
Abstract
Reduction-oxidation (redox) reactions underlie essentially all biogeochemical cycles. Like most soil properties and processes, redox is spatiotemporally heterogeneous. However, unlike other soil features, redox heterogeneity has yet to be incorporated into mainstream conceptualizations of soil biogeochemistry. Anoxic microsites, the defining feature of redox heterogeneity in bulk oxic soils and sediments, are zones of oxygen depletion in otherwise oxic environments. In this review, we suggest that anoxic microsites represent a critical component of soil function and that appreciating anoxic microsites promises to advance our understanding of soil and sediment biogeochemistry. In sections 1 and 2, we define anoxic microsites and highlight their dynamic properties, specifically anoxic microsite distribution, redox gradient magnitude, and temporality. In section 3, we describe the influence of anoxic microsites on several key elemental cycles, organic carbon, nitrogen, iron, manganese, and sulfur. In section 4, we evaluate methods for identifying and characterizing anoxic microsites, and in section 5, we highlight past and current approaches to modeling anoxic microsites. Finally, in section 6, we suggest steps for incorporating anoxic microsites and redox heterogeneities more broadly into our understanding of soils and sediments.
Collapse
Affiliation(s)
- Emily M. Lacroix
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Meret Aeppli
- Institut
d’ingénierie de l’environnement (IIE), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Kristin Boye
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Eoin Brodie
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Scott Fendorf
- Department
of Earth System Science, Stanford University, Stanford, California 94305, United States
| | - Marco Keiluweit
- Institut
des Dynamiques de la Surface Terrestre (IDYST), Université de Lausanne, 1015 Lausanne, Switzerland
| | - Hannah R. Naughton
- Lawrence
Berkeley Laboratory, Earth and Environmental
Sciences Area, Berkeley, California 94720, United States
| | - Vincent Noël
- Environmental
Geochemistry Group, SLAC National Accelerator
Laboratory, Menlo Park, California 94025, United States
| | - Debjani Sihi
- Department
of Environmental Sciences, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Feng Q, An C, Chen Z, Wang Z. New Perspective on the Mobilization of Microplastics through Capillary Fringe Fluctuation in a Tidal Aquifer Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:929-938. [PMID: 36603902 DOI: 10.1021/acs.est.2c04686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The presence of plastic fragments in the environment is a growing global concern. In this study, we explored the effects of dynamic fluctuations of capillary fringe on the transport of microplastics (MPs) in the substrate combining various environmental and MP properties. Both experimental and Hydrus-2D modeling results confirmed that increasing cycles of water table fluctuation led to the rise of capillary fringe. An increase in the cycles of water table fluctuations did not significantly change the overall MP retention percentages in 0.5 mm substrate but altered the MP distribution along the column. In 1 and 2 mm substrate, the increase in cycle numbers enhanced the MP transport from substrate to the water below. In terms of the size of the MPs, more 20-25 μm polyethylene (PE2) were retained in the substrate compared to 4-6 μm polyethylene (PE1) under the same number of fluctuation cycles. High-density polytetrafluoroethylene (PTFE, 5-6 μm) exhibited higher retention percentages compared to PE1 particles. Ultraviolet aging for 60 days enhanced PE1 transport along the column, while 60 days of seawater aging did not affect PE1 transport greatly. For PTFE, ultraviolet and seawater aging enhanced its retention in the substrate. The retention percentages of both PE1 and PTFE in the column increased with the elevated ionic strength and the decrease of fluctuation velocity. This work highlights that capillary fringe fluctuation can serve as a pathway to relocate MPs to the tidal aquifer.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, MontrealQC H3G 1M8, Canada
| |
Collapse
|
4
|
Zhang Z, Furman A. Soil redox dynamics under dynamic hydrologic regimes - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143026. [PMID: 33143917 DOI: 10.1016/j.scitotenv.2020.143026] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Electron transfer (redox) reactions, mediated by soil microbiota, modulate elemental cycling and, in part, establish the redox poise of soil systems. Understanding soil redox processes significantly improves our ability to characterize coupled biogeochemical cycling in soils and aids in soil health management. Redox-sensitive species exhibit different reactivity, mobility, and toxicity subjected to their redox state. Thus, it is crucial to quantify the redox potential (Eh) in soils and to characterize the dominant redox couples therein. Several, often coupled, external drivers, can influence Eh. Among these factors, soil hydrology dominates. It controls soil physical properties that in turn further regulates Eh. Soil spatial heterogeneity and temporally dynamic hydrologic regimes yield complex distributions of Eh. Soil redox processes have been studied under various environmental conditions, including relatively static and dynamic hydrologic regimes. Our focus here is on dynamic, variably water-saturated environments. Herein, we review previous studies on soil redox dynamics, with a specific focus on dynamic hydrologic regimes, provide recommendations on knowledge gaps, and targeted future research needs and directions. We review (1) the role of soil redox conditions on the soil chemical-species cycling of organic carbon, nitrogen, phosphorus, redox-active metals, and organic contaminants; (2) interactions between microbial activity and redox state in the near-surface and deep subsurface soil, and biomolecular methods to reveal the role of microbes in the redox processes; (3) the effects of dynamic hydrologic regimes on chemical-species cycling and microbial dynamics; (4) the experimental setups for mimicking different hydrologic regimes at both laboratory and field scales. Finally, we identify the current knowledge gaps related to the study of soil redox dynamics under different hydrologic regimes: (1) fluctuating conditions in the deep subsurface; (2) the use of biomolecular tools to understand soil biogeochemical processes beyond nitrogen; (3) limited current field measurements and potential alternative experimental setups.
Collapse
Affiliation(s)
- Zengyu Zhang
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Alex Furman
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
5
|
Xie W, Yuan S, Tong M, Ma S, Liao W, Zhang N, Chen C. Contaminant Degradation by •OH during Sediment Oxygenation: Dependence on Fe(II) Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2975-2984. [PMID: 32023045 DOI: 10.1021/acs.est.9b04870] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been documented that contaminants could be degraded by hydroxyl radicals (•OH) produced upon oxygenation of Fe(II)-bearing sediments. However, the dependence of contaminant degradation on sediment characteristics, particularly Fe(II) species, remains elusive. Here we assessed the impact of the abundance of Fe(II) species in sediments on contaminant degradation by •OH during oxygenation. Three natural sediments with different Fe(II) contents and species were oxygenated. During 10 h oxygenation of 200 g/L sediment suspension, 2 mg/L phenol was negligibly degraded for sandbeach sediment (Fe(II): 9.11 mg/g), but was degraded by 41% and 52% for lakeshore (Fe(II): 9.81 mg/g) and farmland (Fe(II): 19.05 mg/g) sediments, respectively. •OH produced from Fe(II) oxygenation was the key reactive oxidant. Sequential extractions, X-ray diffraction, Mössbauer, and X-ray absorption spectroscopy suggest that surface-adsorbed Fe(II) and mineral structural Fe(II) contributed predominantly to •OH production and phenol degradation. Control experiments with specific Fe(II) species and coordination structure analysis collectively suggest the likely rule that Fe(II) oxidation rate and its competition for •OH increase with the increase in electron-donating ability of the atoms (i.e., O) complexed to Fe(II), while the •OH yield decreases accordingly. The Fe(II) species with a moderate oxidation rate and •OH yield is most favorable for contaminant degradation.
Collapse
Affiliation(s)
- Wenjing Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Man Tong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Sicong Ma
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Wenjuan Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Na Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, Wuhan 430074, PR P. R. China
| | - Chunmei Chen
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
6
|
Marín P, Martirani‐Von Abercron SM, Urbina L, Pacheco‐Sánchez D, Castañeda‐Cataña MA, Retegi A, Eceiza A, Marqués S. Bacterial nanocellulose production from naphthalene. Microb Biotechnol 2019; 12:662-676. [PMID: 31087504 PMCID: PMC6559018 DOI: 10.1111/1751-7915.13399] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/29/2022] Open
Abstract
Polycyclic aromatic compounds (PAHs) are toxic compounds that are released in the environment as a consequence of industrial activities. The restoration of PAH-polluted sites considers the use of bacteria capable of degrading aromatic compounds to carbon dioxide and water. Here we characterize a new Xanthobacteraceae strain, Starkeya sp. strain N1B, previously isolated during enrichment under microaerophilic conditions, which is capable of using naphthalene crystals as the sole carbon source. The strain produced a structured biofilm when grown on naphthalene crystals, which had the shape of a half-sphere organized over the crystal. Scanning electron microscopy (SEM) and GC-MS analysis indicated that the biofilm was essentially made of cellulose, composed of several micron-long nanofibrils of 60 nm diameter. A cellulosic biofilm was also formed when the cells grew with glucose as the carbon source. Fourier transformed infrared spectroscopy (FTIR) confirmed that the polymer was type I cellulose in both cases, although the crystallinity of the material greatly depended on the carbon source used for growth. Using genome mining and mutant analysis, we identified the genetic complements required for the transformation of naphthalene into cellulose, which seemed to have been successively acquired through horizontal gene transfer. The capacity to develop the biofilm around the crystal was found to be dispensable for growth when naphthalene was used as the carbon source, suggesting that the function of this structure is more intricate than initially thought. This is the first example of the use of toxic aromatic hydrocarbons as the carbon source for bacterial cellulose production. Application of this capacity would allow the remediation of a PAH into such a value-added polymer with multiple biotechnological usages.
Collapse
Affiliation(s)
- Patricia Marín
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Sophie Marie Martirani‐Von Abercron
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Leire Urbina
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Daniel Pacheco‐Sánchez
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Mayra Alejandra Castañeda‐Cataña
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| | - Aloña Retegi
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Arantxa Eceiza
- Materials + Technologies Research Group (GMT)Department of Chemical and Environmental EngineeringFaculty of Engineering of GipuzkoaUniversity of the Basque CountryPza Europa 1Donostia‐San Sebastian20018Spain
| | - Silvia Marqués
- Estación Experimental del ZaidínDepartment of Environmental ProtectionConsejo Superior de Investigaciones CientíficasCalle Profesor Albareda, 1Granada18008Spain
| |
Collapse
|
7
|
Gassen N, Griebler C, Werban U, Trauth N, Stumpp C. High Resolution Monitoring Above and Below the Groundwater Table Uncovers Small-Scale Hydrochemical Gradients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13806-13815. [PMID: 29131645 DOI: 10.1021/acs.est.7b03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrochemical solute concentrations in the shallow subsurface can be spatially highly variable within small scales, particularly at interfaces. However, most monitoring systems fail to capture these small scale variations. Within this study, we developed a high resolution multilevel well (HR-MLW) with which we monitored water across the interface of the unsaturated and saturated zone with a vertical resolution of 0.05-0.5 m. We installed three of these 4 m deep HR-MLWs in the riparian zone of a third-order river and analyzed for hydrochemical parameters and stable water isotopes. The results showed three distinct vertical zones (unsaturated zone, upper saturated zone, lower saturated zone) within the alluvial aquifer. A 2 m thick layer influenced by river water (upper saturated zone) was not captured by existing monitoring wells with higher screen length. Hydrochemical data (isotopes, total ions) were consistent in all HR-MLWs and showed similar variation over time emphasizing the reliability of the installed monitoring system. Further, the depths zones were also reflected in the NO3-N concentrations; with high spatial variabilities between the three wells. The zonation was constant over time, with seasonal variability in the upper saturated zone due to the influence of river water. This study highlights the use of high resolution monitoring for identifying the spatial and temporal variability of hydrochemical parameters present in many aquifer systems. Possible applications range from riparian zones, agricultural field sites to contaminated site studies, wherever an improved understanding of biogeochemical turnover processes is necessary.
Collapse
Affiliation(s)
- N Gassen
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - C Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - U Werban
- Department Monitoring and Exploration Technologies, Helmholtz Center for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - N Trauth
- Department of Hydrogeology, Helmholtz Center for Environmental Research - UFZ , Permoserstrasse 15, 04318 Leipzig, Germany
| | - C Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH) , Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|