1
|
Wei Q, Cui C, Wang Z, Chand H, Wang D, You S, Zhang C. Enhanced phosphate removal and recovery from wastewater by flow-electrode capacitive deionization (FCDI): Role of [Fe(CN) 6] 3-/4- redox couple. WATER RESEARCH 2025; 277:123304. [PMID: 40043485 DOI: 10.1016/j.watres.2025.123304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
Flow-electrode capacitive deionization (FCDI) emerges as a promising technology for phosphorus (P) recovery from low/medium-strength wastewaters. Conventional activated carbon flow electrodes (ACFEs) face challenges in terms of poor dispersion and weak conductivity, which inhibits their cost-effectiveness, efficiency and stability. To address these issues, we introduce the [Fe(CN)6]3-/4- redox couple into ACFEs mixture to enhance the charge transfer rate and P recovery, achieving stable long-term operation. The results showed that the addition of 10 mM [Fe(CN)6]3-/4- significantly improved the average P removal rate (APRR) achieving 9.2 μg P min-1 cm-2 with low energy of 3.5 kWh kg-1 P. This improvement was particularly evident over 10 successive cycles, where a consistent 90 % P recovery was obtained in each cycle. The improved performance can be attributed to the formation of continuous conductive channels, reduced internal resistance, as well as fast and stable electron transfer facilitated by [Fe(CN)6]3-/4-, leading to more efficient P adsorption and desorption. Futhermore, a highpurity CaP product was extracted from P-rich electrolyte by using simple filtration and crystallization process. The FCDI with [Fe(CN)6]3-/4- redox couple achieved 84.2 % P recovery from real domestic wastewater, demonstrating the potential of FCDI process for waste-to-resource applications. This study provides a proof-of-concept demonstration of enhanced FCDI by introducing [Fe(CN)6]3-/4- redox couple. Application of redox couple in FCDI process overcomes the limitations of traditional ACFEs, by enhancing P recovery and reducing energy consumption, making resource recovery and wastewater treatment more efficient, more economic and more sustainable.
Collapse
Affiliation(s)
- Qiang Wei
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Chuanjian Cui
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhanling Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hameer Chand
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dejin Wang
- School of Resources and Environment, Anqing Normal University, Anqing 246011, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Changyong Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Wang H, Shi C, Zhu G, He K, Tang K. Two-Phase flow model-driven optimization of charge percolation in flow-electrode capacitive deionization. WATER RESEARCH 2025; 276:123283. [PMID: 39985943 DOI: 10.1016/j.watres.2025.123283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Flow electrode capacitive deionization (FCDI) is a simple and efficient desalination technology but is limited by high energy consumption due to the high resistance of the flow-electrode. In this study, we simulated the collision and charge transfer processes within the flow-electrode using a CFD-DEM-based two-phase flow model. The model accurately simulated the conductivity of flow-electrodes in both long straight and serpentine channels under various flow rates and carbon loadings, revealing that particle-collector collisions play a decisive role in electrode conductivity. Based on these findings, we proposed two optimized flow channels to increase the effective collisions between carbon particles and collector plates: a serpentine channel with a central cylindrical obstacle (FCDI-O) and a zigzag-shaped channel (FCDI-Z). The results demonstrate that both FCDI-O and FCDI-Z significantly enhance flow-electrode conductivity (80.4% for FCDI-O and 188.3% for FCDI-Z) and reduce desalination energy consumption (21.3% for FCDI-O and 25.1% for FCDI-Z), compared to the original FCDI serpentine channel. We further analyzed the energy consumption distribution across FCDI components using a steady-state electrochemical model. The results indicate that, under various operating conditions, the total energy consumption decreases, and the proportion of energy consumed by the flow-electrode is lower in the FCDI-Z channel than in the FCDI-O channel. However, the flow-electrode remains the largest energy consumer in the FCDI desalination process. This study provides valuable insights for the development and practical application of new flow channels for FCDI desalination.
Collapse
Affiliation(s)
- Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Chufeng Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Kai He
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China
| | - Kexin Tang
- Center of Water Resources and Environment, School of Civil Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, PR China.
| |
Collapse
|
3
|
Mishra SK, Sengupta S, Das SK. Exploring the potential of flow-electrode capacitive deionization for domestic and industrial wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36069-0. [PMID: 40025267 DOI: 10.1007/s11356-025-36069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Flow-electrode capacitive deionization (FCDI) is an innovative approach for removing charged ions from untreated water, utilizing the interaction between ions and flow carbon electrodes. A review of recent publications on FCDI reveals a predominant focus on salt removal from water (desalination) and electro-sorption processes. Though desalination is just one step in improving the water quality, it is worthwhile looking at the research in the context of FCDI techniques that involve other water treatment methods. This paper offers a detailed review of recent literature on FCDI applications in wastewater treatment. Given the broad scope of wastewater treatment, the specific areas where FCDI shows promise, including removal of heavy metal and radioactive elements, organic micropollutant elimination, halogen removal, and resource recovery, are addressed. Additionally, we assess the current research landscape and propose potential future directions in this evolving field.
Collapse
Affiliation(s)
- Shubham Kumar Mishra
- Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India
| | | | - Sarit K Das
- Heat Transfer and Thermal Power Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
4
|
Yin H, Huang L, Dai Y, Zheng Z, Li Y, Tang B, Wang X, Shi L. In-situ redox processes of electrosorption-based systems during As, Cr detoxification and recovery: mechanisms, applications and challenges. CHEMICAL ENGINEERING JOURNAL 2025; 503:157946. [DOI: 10.1016/j.cej.2024.157946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Xie R, Schrage BR, Jiang J, Ziegler CJ, Peng Z. Ferrocene Bis(Sulfonate) Salt as Redoxmer for Fast and Steady Redox Flow Desalination. Molecules 2024; 29:2506. [PMID: 38893381 PMCID: PMC11173638 DOI: 10.3390/molecules29112506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Desalination is considered a promising solution to alleviate water shortages, yet current methods are often restricted, due to challenges like high energy consumption, significant cost, or limited desalination capacity. In this study, we present a novel approach of redox flow desalination (RFD) utilizing the highly aqueous-soluble and reversible redox-active compound, potassium 1,1'-bis(sulfonate) ferrocene (1,1'-FcDS). This water-soluble organic compound yielded stable and rapid desalination, sustaining extended operation without notable decay and achieving an impressive desalination rate of up to 457.5 mmol·h-1·m-2 and energy consumption as low as 40.2 kJ·molNaCl-1. Specifically, the RFD device effectively desalinated a 50 mM NaCl solution to potable standards within 6000 s using 1,1'-FcDS. It maintained an average energy consumption of 178.16 kJ·molNaCl-1 and exhibited negligible deterioration in desalination rate, energy efficiency, and charge efficiency throughout a rigorous 12,000 s cycling test. Furthermore, the versatility of this method was demonstrated by effectively treating saline water with varying initial concentrations from 10 mM to 50 mM, showcasing its potential across a broad spectrum of applications.
Collapse
Affiliation(s)
- Rongxuan Xie
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| | - Briana R. Schrage
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA;
| | - Junhua Jiang
- Advanced and Energy Materials Department, Savannah River National Laboratory, Aiken, SC 29808, USA;
| | | | - Zhenmeng Peng
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
6
|
Xu L, Zhang Y, Li T, Peng S, Wu D. Simultaneous desalination and molecular resource recovery from wastewater using an electrical separation system integrated with a supporting liquid membrane. WATER RESEARCH 2023; 246:120706. [PMID: 37820511 DOI: 10.1016/j.watres.2023.120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Separating molecular substances from wastewater has always been a challenge in wastewater treatment. In this study, we propose a new strategy for simultaneous desalination and selective recovery of molecular resources, by introducing a supported liquid membrane (SLM) with molecular selectivity into an asymmetric flow-electrode capacitive deionization. Salts and molecular substances in wastewater are removed after passing through the ion separation chamber and the molecular separation chamber, respectively. Faradaic reactions, i.e., the electrolysis of water with OH-, occurred in the electrochemical cathode electrode provides a sufficient and continuous chemical potential gradient for the cross-SLM transport of phenol (a model molecule substance). By optimizing the formulation of the liquid membrane and the pore size of the support membrane, we obtained the SLM with the best performance for separating phenol. In continuous experiment tests, the electrochemical membrane system showed stable separation performance and long-term stability for simultaneous salts removal and phenol (sodium phenol) recovery from wastewater. Finally, we demonstrate the potential application of this technology for the recovery of different carbon resources. Overall, the electrochemical system based on SLM is suitable for various wastewater treatment needs and provides a new approach for the recovery of molecular resources in wastewater.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunqian Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Tingting Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai 200092, China.
| |
Collapse
|
7
|
Shamsvand N, Varmaghani F, Karimi B, Hassanaki H. Insight into the role of nitrogen in N-doped ordered mesoporous carbons for the spontaneous non-covalent attachment and electrografting of redox-active materials. Analyst 2023; 148:1309-1321. [PMID: 36852542 DOI: 10.1039/d3an00176h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The role of nitrogen functional groups in nitrogen-doped ordered mesoporous carbons (OMCs) toward the spontaneous non-covalent and electrografting was investigated using two home-made ionic liquid-derived ordered mesoporous carbons having different nitrogen concentrations (guanine-rich ionic liquid-derived ordered mesoporous carbon (GIOMC) and ionic liquid-derived ordered mesoporous carbon (IOMC)). The carbonaceous materials were fabricated by the carbonization of a mixture of ionic liquid (1-methyl-3-phenethyl-1H-imidazolium hydrogen sulfate) as a carbon source using SBA-15 as a hard template. Guanine was used during the carbonization of GIOMC as a nitrogen source. The electrode was modified with either GIOMC or IOMC followed by electrochemical surface functionalization with a few electro-active precursors as redox-active molecular models bearing different substituents and electronic properties. The high surface coverage of 5.6(±0.3) × 10-9 mol cm-2 for 4,4-biphenol was obtained for the GIOMC-modified electrode. We seek to explain whether the nitrogen content could indeed exert a dramatic impact on loading electroactive species on the electrode surface. The non-covalent anchoring studies indicated that at higher pH values the loading of electro-active moieties was significantly influenced by the content of nitrogen on the employed OMCs. The adsorption capacity (mg g-1) of the OMCs was studied for catechol as a typical electro-active species in the range of 0.050-0.165 mg ml-1. The adsorption capacity of 0.11 mg g-1 catechol was 42(±4) and 26(±3) mg g-1 for GIOMC and IOMC, respectively. In addition, our observations revealed that electro-grafting efficiency via diazonium ion was restricted by the protonation of nitrogen in the reaction media. Further, the fabricated redox-active/N-doped OMC electrodes showed sensitivity to pH, which was accompanied by either a Nernstian shift of the redox peak potentials (60(±3) mV per pH) in the pH range of 2-13 in the buffer solutions or variations of the redox peak currents (9.7(±0.3) μA per pH) in the pH range of 1-5.5 in the unbuffered situations. The resulting electrodes as voltammetric pH probes showed a simple response to pH in both buffer and unbuffered solutions. In addition, we introduced the fabricated electrode as a zero-gap generator/collector electrode system using a single electrode to recognize proton-dependent electron transfer from the proton-independent electrode process by detecting pH changes quite close to the surface of the electrode. The detailed descriptions are outlined.
Collapse
Affiliation(s)
- Nasim Shamsvand
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Fahimeh Varmaghani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. .,Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Babak Karimi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. .,Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Hamzeh Hassanaki
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| |
Collapse
|
8
|
Wang T, Zhang Z, Gu Z, Hu C, Qu J. Electron Transfer of Activated Carbon to Anode Excites and Regulates Desalination in Flow Electrode Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2566-2574. [PMID: 36719078 DOI: 10.1021/acs.est.2c09506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The desalination performance of flow electrode capacitive deionization (FCDI) is determined by the ion adsorption on the powdered activated carbon (PAC) and the electron transfer between the current collector and PAC. However, a comprehensive understanding of rate-limiting steps is lacking, let alone to enhance FCDI desalination by regulating the PAC characteristics. This study showed that the electron transfer between PAC and the current collector on the anode side was the rate-limiting step of FCDI desalination. Compared with W900, the desalination performance of FCDI decreased by 95% when W1200 with weak electron transfer ability was used as a flow electrode. The PAC selected in this study transferred electrons directly through the conductive carbon matrix in FCDI and was mainly affected by graphitization. The desalination performance of FCDI was improved by 20 times when the graphitization degree of PAC increased from 0.69 to 1.03. The minimum energy required for electrons to escape from the PAC surface was reduced by the high degree of graphitization, from 4.27 to 3.52 eV, thus improving the electron transfer capacity of PAC on the anode side. This study provides a direction for the optimization of flow electrodes and further promotes the development of FCDI.
Collapse
Affiliation(s)
- Tianyu Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing100085, China
| | - Zijian Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing100085, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
9
|
Shi C, Ma J, Wu H, Luo J, Liu Y, Li K, Zhou Y, Wang K. Evaluation of pH regulation in carbohydrate-type municipal waste anaerobic co-fermentation: Roles of pH at acidic, neutral and alkaline conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158327. [PMID: 36037891 DOI: 10.1016/j.scitotenv.2022.158327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study investigated and evaluated the roles of acidic (pH 4.0), neutral (pH 7.0) and alkaline (pH 10.0) in anaerobic co-fermentation of sewage sludge and carbohydrate-type municipal waste. CO2, CH4 and H2 are produced in acidic, neutral and alkaline fermentation, respectively. The neutral co-fermentation contained the vast number of aqueous metabolites as total of 22.12 g/L, with the advantage of over 50 % biodegradable components in extracellular polymeric substance and over 80 % hydrolysis rate. Acidic and alkaline pH facilitated ammonia release, with the max concentration of 0.46 g/L and 0.44 g/L, respectively. Microbial analysis indicated that pH is the key parameter to impact microbial activity and drive microbial community transition. The high abundance of Lactobacillus, Bifidobacterium and Clostridium was associated with harvest of ethanol, lactic acid and acetate in acidic, neutral and alkaline fermentation. Meanwhile, the floc feature showed better dewaterability (zeta potential -8.48 mV) and poor nutrient convey (distribution spread index 1.03) in acidic fermentation. In summary, acidic and alkaline fermentation were prioritised for targeted spectrum. Neutral fermentation was prioritised for high production. This study presented an upgraded understanding of the pH role in fermentation performance, microbial structure and sludge behaviour, which benefits the development of fermentation processing unit.
Collapse
Affiliation(s)
- Chuan Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jinyuan Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Houkai Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Juan Luo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yue Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kun Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yuexi Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
10
|
Alkhadra M, Su X, Suss ME, Tian H, Guyes EN, Shocron AN, Conforti KM, de Souza JP, Kim N, Tedesco M, Khoiruddin K, Wenten IG, Santiago JG, Hatton TA, Bazant MZ. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem Rev 2022; 122:13547-13635. [PMID: 35904408 PMCID: PMC9413246 DOI: 10.1021/acs.chemrev.1c00396] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Agricultural development, extensive industrialization, and rapid growth of the global population have inadvertently been accompanied by environmental pollution. Water pollution is exacerbated by the decreasing ability of traditional treatment methods to comply with tightening environmental standards. This review provides a comprehensive description of the principles and applications of electrochemical methods for water purification, ion separations, and energy conversion. Electrochemical methods have attractive features such as compact size, chemical selectivity, broad applicability, and reduced generation of secondary waste. Perhaps the greatest advantage of electrochemical methods, however, is that they remove contaminants directly from the water, while other technologies extract the water from the contaminants, which enables efficient removal of trace pollutants. The review begins with an overview of conventional electrochemical methods, which drive chemical or physical transformations via Faradaic reactions at electrodes, and proceeds to a detailed examination of the two primary mechanisms by which contaminants are separated in nondestructive electrochemical processes, namely electrokinetics and electrosorption. In these sections, special attention is given to emerging methods, such as shock electrodialysis and Faradaic electrosorption. Given the importance of generating clean, renewable energy, which may sometimes be combined with water purification, the review also discusses inverse methods of electrochemical energy conversion based on reverse electrosorption, electrowetting, and electrokinetic phenomena. The review concludes with a discussion of technology comparisons, remaining challenges, and potential innovations for the field such as process intensification and technoeconomic optimization.
Collapse
Affiliation(s)
- Mohammad
A. Alkhadra
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiao Su
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Matthew E. Suss
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Wolfson
Department of Chemical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
- Nancy
and Stephen Grand Technion Energy Program, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| | - Huanhuan Tian
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eric N. Guyes
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Amit N. Shocron
- Faculty
of Mechanical Engineering, Technion—Israel
Institute of Technology, Haifa 3200003, Israel
| | - Kameron M. Conforti
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - J. Pedro de Souza
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Nayeong Kim
- Department
of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Michele Tedesco
- European
Centre of Excellence for Sustainable Water Technology, Wetsus, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung, Jl. Ganesha no. 10, Bandung, 40132, Indonesia
- Research
Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
| | - Juan G. Santiago
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - T. Alan Hatton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Martin Z. Bazant
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mathematics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Xu L, Peng S, Wu K, Tang L, Wu M, Zong Y, Mao Y, Wu D. Precise manipulation of the charge percolation networks of flow-electrode capacitive deionization using a pulsed magnetic field. WATER RESEARCH 2022; 222:118963. [PMID: 35970008 DOI: 10.1016/j.watres.2022.118963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Magnetic field is a simple and powerful means that enables controlled the transport of electrode particles in flow electrode capacitive deionization (FCDI). However, the magnetic particles are easily stripped from hybrid suspension electrodes and the precise manipulation of the charge percolation network remains challenging. In this study, a programmable magnetic field was introduced into the FCDI system to enhance the desalination performance and operational stability of magnetic FCDI, with core-shell magnetic carbon (MC) used as an alternative electrode additive. The results showed that the pulsed magnetic field (PMF) was more effective in enhancing the average salt removal rate (ASRR) compared to the constant magnetic field (CMF), with 51.6% and 67.7% enhancement, respectively, compared to the magnetic field-free condition. The outstanding advantage of the PMF lies in the enhancement in the trapping and mediating effects in the switching magnetic field, which keeps the concentration of the electrode particles near the current collector at a high level and greatly facilitates electron transport. In long-term operation (20,000 cycles), the pulsed magnetic FCDI achieved a stable desalinating rate of 0.4-0.68 μmol min-1 cm-2 and a charge efficiency of >96%. In brief, our study introduces a new approach for the precise manipulation of charge percolation networks of the suspension electrodes and provides insight into the charging mechanism of the magnetic FCDI.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Ke Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
12
|
Luo L, He Q, Yi D, Zu D, Ma J, Chen Y. Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI. WATER RESEARCH 2022; 220:118688. [PMID: 35661514 DOI: 10.1016/j.watres.2022.118688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Reversible electrochemical separation based on flow electrodes (e.g., flow-electrode capacitive deionization (FCDI)) is promising to desalinate brackish water, a reliable alternative source of freshwater. The deployment of redox mediators (RMs) in FCDI offers an energy-efficient means to improve the process performance, but the nature of the RMs-mediated charge transfer remains poorly understand. We therefore systematically investigated commonly-used RMs including sodium anthraquinone-2-sulfonate (AQS), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), hydroquinone (HQ) and ferricyanide ([Fe(CN)6]3-). Results showed that the desalination rate could be increased by over 260% with the addition of 10 mM [Fe(CN)6]3-. The lowest efficiency of AQS among the RMs should be ascribed to its reduction potential of -0.84 V (vs. Ag/AgCl) exceeding the potential (-0.48 V) of the negatively charged current collector at 1.2 V. While aqueous TEMPO and HQ could facilitate salt removal, their loss of efficiencies upon sorption onto the carbon surface indicated the insignificant pseudocapacitive contribution to ion migration. In-situ cyclic voltammetry measurements demonstrated the crucial role of the indirect charging of the flowable carbon materials to enhance the desalination performance in RMs-mediated FCDI. To sum up, results of this work pave a way to understand the RMs-mediated charge transfer and ion migration in FCDI, which would serve the purpose of design and optimization of the flow electrode systems for wider environmental applications.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Zhang X, Zhou H, He Z, Zhang H, Zhao H. Flow-electrode capacitive deionization utilizing three-dimensional foam current collector for real seawater desalination. WATER RESEARCH 2022; 220:118642. [PMID: 35635913 DOI: 10.1016/j.watres.2022.118642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The three-dimensional (3D) carbon coated nickel foam was utilized as current collector in a flow-electrode capacitive deionization (CF-FCDI) device to strengthen the charge transfer ability of FCDI device, achieving distinguished desalination efficiency for real seawater. Utilizing 30 ppi carbon coated nickel foam as current collector with 12.5 wt% AC content at 1.2 V to treat 3.5 g L-1 NaCl solution, the CF-FCDI achieved 99.8% of salt removal efficiency (SRE), 3.29 µmol cm-2 min-1 of average salt removal rate (ASRR) and 97.0% of charge efficiency (CE), surpassing most desalination performances in previous reports. Compared with the titanium mesh (TM-FCDI) and graphite plate (GP-FCDI) current collector, the three-dimensional electric field and computational fluid dynamics (CFD) simulations demonstrated that 3D foam current collector has obvious stronger competitiveness. Its intrinsic 3D interconnected open-pore structure as flow channel and 3D electric field could not only enlarge the charge contact area between the current collector and flow-electrode, but also eliminate the restriction of 0.75 mm effective charging range within the carbon slurry in traditional serpentine flow channels. Finally, the excellent desalination performance of CF-FCDI device was also verified by treating simulated seawater, real seawater samples from Yellow Sea and South China Sea with a high SRE of 99.9%, 99.8%, and 99.9%, respectively. This work introduced a new strategy for enhancing charge transfer ability and overall desalination efficiency of FCDI device by utilizing a novel 3D foam-structured current collector for real seawater desalination.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031 PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031 PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China.
| | - Zhen He
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031 PR China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031 PR China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, PR China.
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
14
|
Luo L, He Q, Chen S, Yang D, Chen Y. Metal-organic framework derived carbon nanoarchitectures for highly efficient flow-electrode CDI desalination. ENVIRONMENTAL RESEARCH 2022; 208:112727. [PMID: 35063431 DOI: 10.1016/j.envres.2022.112727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) has shown a robust desalination performance, in which the electrode materials play a crucial role. However, commercial activated carbon (AC) commonly with relatively poor conductivity, which can be a limit to the desalination process. To address this issue, we successfully prepared ZIF-8 derived nanocarbon materials (Zx, X = 0, 1, 2, 3, the number representing the activator ratio) via a pyrolysis activation procedure as electrode materials for FCDI desalination. The results manifested that Z3 achieved desalination rates of 0.0403 and 0.094 mg min-1 cm-2 in the isolated closed cycle (ICC) and the short-circuited closed cycle (SCC) mode, respectively, at 1.2 V with only 5 wt% carbon loading. The desalination rate of Z3 in the SCC mode was improved with flow rates and influent salt concentrations increase, reaching 0.278 mg min-1 cm-2 under a continuous operation. In the ICC mode, it was found that the adsorption capacity of the Zx sample was positively correlated with its specific surface area. The superior performance of Z3 could be attributed to the high conductivity, large specific surface area and well-developed pores. Overall, this work provided new insights and references for electrode material's application to FCDI desalination.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| | - Siqi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400044, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
15
|
Particle Dynamics-Based Stochastic Modeling of Carbon Particle Charging in the Flow Capacitor Systems. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aqueous electrochemical flow capacitors (EFCs) have demonstrated high-power capabilities and safety at low cost, making them promising energy storage devices for grid applications. A primary performance metric of an EFC is the steady-state electrical current density it can accept or deliver. Performance prediction, design improvements, and up-scaling are areas in which modeling can be useful. In this paper, a novel stochastic superparticle (SP) modeling approach was developed and applied to study the charging of carbon electrodes in the EFC system, using computational superparticles representing real carbon particles. The model estimated the exact values of significant operating parameters of an EFC, such as the number of particles in the flow channel and the number of electrolytic ions per carbon particle. Optimized model parameters were applied to three geometrical designs of an EFC to estimate their performance. The modeling approach allowed study of the charge per carbon particle to form the electric double-layer structure. The linear relationship between the concentration of SPs and the ionic charge was observed when optimized at a constant voltage of 0.75 V. The simulation results are in excellent agreement with experimental data, providing a deep insight into the performance of an EFC and identifying limiting parameters for both engineers and material scientists to consider.
Collapse
|
16
|
Jiang H, Zhang J, Luo K, Xing W, Du J, Dong Y, Li X, Tang W. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150166. [PMID: 34517327 DOI: 10.1016/j.scitotenv.2021.150166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrated the suitability and effectiveness of utilizing flow-electrode capacitive deionization (FCDI) for treatment of fluoride-contaminated brackish groundwater. By comparing operational modes of short-circuited closed-cycle (SCC), isolated closed-cycle (ICC) and single cycle (SC), it was found that SCC mode was the most advantageous. In SCC configuration, the effects of different parameters on the removal of F- and Cl- were investigated including current density, hydraulic residence time (HRT), activated carbon (AC) loading and feed concentration of coexisting NaCl. Results indicated that the steady-state effluent Cl- concentration dropped with elevated applied current, and the decreasing rate got faster with the increase of HRT or AC loading. However, for the steady-state effluent F- concentration, it dropped to a value under a small applied current and maintained stable in spite of the increase in applied current, and both HRT and AC loading had insignificant effects on the steady-state effluent F- concentration. F- was preferentially removed from the treated water compared with Cl-, and a higher ion selectivity could be obtained at lower applied current and smaller HRT with the trade-off being that operation under these circumstances would generate outlet water with little change in conductivity compared to the influent. The removal efficiencies of F- and Cl- both decreased with increasing feed concentration of coexisting NaCl. This study should be of value in establishing FCDI as a viable technology for treatment of fluoride-contaminated brackish groundwater.
Collapse
Affiliation(s)
- Huan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Kunyue Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiaxin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xiaoting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
17
|
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Zhou J, Zhang X, Zhang Y, Wang D, Zhou H, Li J. Effective inspissation of uranium(VI) from radioactive wastewater using flow electrode capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Minh Phuoc N, Anh Thu Tran N, Minh Khoi T, Bin Jung H, Ahn W, Jung E, Yoo CY, Kang HS, Cho Y. ZIF-67 metal-organic frameworks and CNTs-derived nanoporous carbon structures as novel electrodes for flow-electrode capacitive deionization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Pan Z, An J, Wang P, Fan X, Shen T, Xu R, Song Y, Song C. Novel strategy to enhance the desalination performance of flow-electrode capacitive deionization process via the assistance of electro-catalytic water splitting. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Wang K, Du X, Liu Z, Geng B, Shi W, Liu Y, Dou X, Zhu H, Pan L, Yuan X. Bismuth oxychloride nanostructure coated carbon sponge as flow-through electrode for highly efficient rocking-chair capacitive deionization. J Colloid Interface Sci 2021; 608:2752-2759. [PMID: 34785052 DOI: 10.1016/j.jcis.2021.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Rocking-chair capacitive deionization (RCDI), as the next generation technique of capacitive deionization, has thrived to be one of the most promising strategies in the desalination community, yet was hindered mostly by its relatively low desalination rate and stability. Motivated by the goal of simultaneously enhancing the desalination rate and structural stability of the electrode, this paper reports an anion-driven flow-through RCDI (AFT-RCDI) system equipped with BiOCl nanostructure coated carbon sponge (CS@BiOCl for short; its backbone is derived from commercially available melamine foam with minimum capital cost) as the flow-through electrode. Owning to the rational design of the composite electrode material with minimum charge transfer resistance and ultrahigh structure stability as well as the superior flow-through cell architecture, the AFT-RCDI displays excellent desalination performance (desalination capacity up to 107.33 mg g-1; desalination rate up to 0.53 mg g-1s-1) with superior long-term stability (91.75% desalination capacity remained after 30 cycles). This work provides a new thought of coupling anion capturing electrode with flow-through cell architecture and employing a low-cost CS@BiOCl electrode with commercially available backbone material, which could shed light on the further development of low-cost electrochemical desalination systems.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xin Du
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zizhen Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Bo Geng
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Wenxue Shi
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yong Liu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China.
| | - Xinyue Dou
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Haiguang Zhu
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Xun Yuan
- School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| |
Collapse
|
22
|
Liu Y, Wang K, Xu X, Eid K, Abdullah AM, Pan L, Yamauchi Y. Recent Advances in Faradic Electrochemical Deionization: System Architectures versus Electrode Materials. ACS NANO 2021; 15:13924-13942. [PMID: 34498859 DOI: 10.1021/acsnano.1c03417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Capacitive deionization (CDI) is an energy-efficient desalination technique. However, the maximum desalination capacity of conventional carbon-based CDI systems is approximately 20 mg g-1, which is too low for practical applications. Therefore, the focus of research on CDI has shifted to the development of faradic electrochemical deionization systems using electrodes based on faradic materials which have a significantly higher ion-storage capacity than carbon-based electrodes. In addition to the common symmetrical CDI system, there has also been extensive research on innovative systems to maximize the performance of faradic electrode materials. Research has focused primarily on faradic reactions and faradic electrode materials. However, the correlation between faradic electrode materials and the various electrochemical deionization system architectures, i.e., hybrid capacitive deionization, rocking-chair capacitive deionization, and dual-ion intercalation electrochemical desalination, remains relatively unexplored. This has inhibited the design of specific faradic electrode materials based on the characteristics of individual faradic electrochemical desalination systems. In this review, we have characterized faradic electrode materials based on both their material category and the electrochemical desalination system in which they were utilized. We expect that the detailed analysis of the properties, advantages, and challenges of the individual systems will establish a fundamental correlation between CDI systems and electrode materials that will facilitate future developments in this field.
Collapse
Affiliation(s)
- Yong Liu
- School of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Kai Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Xingtao Xu
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kamel Eid
- Gas Processing Center, College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
23
|
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021; 203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Zixin Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China..
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
24
|
Yang F, He Y, Rosentsvit L, Suss ME, Zhang X, Gao T, Liang P. Flow-electrode capacitive deionization: A review and new perspectives. WATER RESEARCH 2021; 200:117222. [PMID: 34029869 DOI: 10.1016/j.watres.2021.117222] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Flow-electrode capacitive deionization (FCDI), as a novel electro-driven desalination technology, has attracted growing exploration towards brackish water treatment, hypersaline water treatment, and selective resource recovery in recent years. As a flow-electrode-based electrochemical technology, FCDI has similarities with several other electrochemical technologies such as electrochemical flow capacitors and semi-solid fuel cells, whose performance are closely coupled with the characteristics of the flow-electrodes. In this review, we sort out the potentially parallel mechanisms of electrosorption and electrodialysis in the FCDI desalination process, and make clear the importance of the flowable capacitive electrodes. We then adopt an equivalent circuit model to distinguish the resistances to ion transport and electron transport within the electrodes, and clarify the importance of electronic conductivity on the system performance based on a series of electrochemical tests. Furthermore, we discuss the effects of electrode selection and flow circulation patterns on system performance (energy consumption, salt removal rate), review the current treatment targets and system performance, and then provide an outlook on the research directions in the field to support further applications of FCDI.
Collapse
Affiliation(s)
- Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yunfei He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Leon Rosentsvit
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Matthew E Suss
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel; Faculty of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel.
| | - Xiaori Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Tie Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
25
|
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increasing severity of global water scarcity, a myriad of scientific activities is directed toward advancing brackish water desalination and wastewater remediation technologies. Flow-electrode capacitive deionization (FCDI), a newly developed electrochemically driven ion removal approach combining ion-exchange membranes and flowable particle electrodes, has been actively explored over the past seven years, driven by the possibility of energy-efficient, sustainable, and fully continuous production of high-quality fresh water, as well as flexible management of the particle electrodes and concentrate stream. Here, we provide a comprehensive overview of current advances of this interesting technology with particular attention given to FCDI principles, designs (including cell architecture and electrode and separator options), operational modes (including approaches to management of the flowable electrodes), characterizations and modeling, and environmental applications (including water desalination, resource recovery, and contaminant abatement). Furthermore, we introduce the definitions and performance metrics that should be used so that fair assessments and comparisons can be made between different systems and separation conditions. We then highlight the most pressing challenges (i.e., operation and capital cost, scale-up, and commercialization) in the full-scale application of this technology. We conclude this state-of-the-art review by considering the overall outlook of the technology and discussing areas requiring particular attention in the future.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyu Li
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
26
|
Xu L, Mao Y, Zong Y, Wu D. Scale-up desalination: Membrane-current collector assembly in flow-electrode capacitive deionization system. WATER RESEARCH 2021; 190:116782. [PMID: 33387952 DOI: 10.1016/j.watres.2020.116782] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Salt removal from seawater/wastewater using flow-electrode capacitive deionization (FCDI) is of particular interest, but scale-up desalination is limited by low water production, high energy consumption and complex cell configuration. In this study, an innovative FCDI system is described that uses integrated desalination modules equipped with membrane-current collector (MCC) assembly, and thereby named as MCC-FCDI system. A single desalination module design provides an average salt removal rate (ASRR, 0.3 - 0.44 µmol/(cm2·min)) close to that of the classic FCDI system (with a graphite current collector design), but the design requires a much lower infrastructure investment, device size and energy cost. More importantly, our design enables simultaneous operation of multiple modules in the shared flow-electrode tank, easily realizing scale-up desalination. Evidence is provided by the results of the multi-module operation: multi-modules isolated closed-cycle (MICC) and multi-modules short-circuited closed-cycle (MSCC). For instance, the MICC configuration showing nearly twice the desalination performance over ~ 50 h of operation compared to that of the single ICC operation. The results indicated that in addition to making the device suitable for practical application, the Ti-mesh MCC with a woven network enables the flow electrode to achieve substantial ion adsorption capacity due to the efficient update of fresh carbon particles. In short, the results of this study showed that MCC-FCDI is a promising desalination system for scale-up applications, providing a new reference and guidance for device design.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
27
|
Ashrafizadeh SN, Ganjizade A, Navapour A. A brief review on the recent achievements in flow-electrode capacitive deionization. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0677-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Xu L, Xie Y, Zong Y, Mao Y, Zhang B, Chu H, Wu D. Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Kong X, Ma J, Le-Clech P, Wang Z, Tang CY, Waite TD. Management of concentrate and waste streams for membrane-based algal separation in water treatment: A review. WATER RESEARCH 2020; 183:115969. [PMID: 32721703 DOI: 10.1016/j.watres.2020.115969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Frequent occurrence of harmful algal blooms (HABs) and red tides in freshwater and seawater poses serious threats to water treatment and drives the application of membrane-based technologies in algal separation. Despite the high removal efficiency of algal cells and their metabolites (e.g. organic matter and toxins) by membranes, the generation of concentrate and waste streams presents a major challenge. In this paper, we review the scenarios under which membrane-based processes are integrated with algal separation, with particular attention given to (i) drinking water production and desalination at low algal concentrations and (ii) cyanobacteria-laden water treatment/desalination. The concentrate and waste streams from backwashing and membrane cleaning in each scenario are characterised with this information facilitating a better understanding of the transport of algal cells and metabolites in membrane processes. Current strategies and gaps in managing concentrate and waste streams are identified with guidance and perspectives for future studies discussed in an Eisenhower framework.
Collapse
Affiliation(s)
- Xiangtong Kong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
30
|
Zhao X, Wei H, Zhao H, Wang Y, Tang N. Electrode materials for capacitive deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114416] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
|
32
|
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Tang K, Zhou K. Water Desalination by Flow-Electrode Capacitive Deionization in Overlimiting Current Regimes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5853-5863. [PMID: 32271562 DOI: 10.1021/acs.est.9b07591] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since flow-electrodes do not have a maximum allowable charge capacity, a high salt removal rate in flow-electrode capacitive deionization (FCDI) can be achieved theoretically by simply increasing the applied voltage. However, present attempts to run FCDI at high voltages are unsatisfactory because of the instability of the module occurring in the overlimiting current regimes. To implement FCDI in the overlimiting current regimes (namely, OLC-FCDI), in this work, we analyzed the voltage-current (V-I) characteristics of several FCDI units. We confirmed that a continuous, rapid, and stable desalination performance of OLC-FCDI can be attained when the employed FCDI unit possesses a linear V-I characteristic (only one ohmic regime), which is distinct from the three V-I regimes in electrodialysis (ohmic, limiting current, and water splitting regimes) and the two in membrane capacitive deionization (ohmic and water splitting regimes). Notably, the linearV-I characteristic of FCDI requires continuous charge percolation near the boundaries of ion-exchange membranes. Effective methods include increasing the carbon content in the flow-electrodes and introducing electrical (carbon cloth) or ionic (ion-exchange resins) conductive intermediates in the solution compartment, which result in corresponding upgraded FCDI units exhibiting extremely high salt removal rates (>100 mg m-2 s-1), good cycling stability, and rapid seawater desalination performance under typical OLC-FCDI operation condition (27-40 g L-1 NaCl, 500 mA). This study can guide future research of FCDI in terms of flow-electrode preparation and device configuration optimization.
Collapse
Affiliation(s)
- Kexin Tang
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Kun Zhou
- Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
34
|
Zhang C, Wu L, Ma J, Wang M, Sun J, Waite TD. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. WATER RESEARCH 2020; 173:115580. [PMID: 32065937 DOI: 10.1016/j.watres.2020.115580] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
While flow-electrode capacitive deionization (FCDI), one of the most popular CDI variants, possesses a number of advantages over conventional fixed-electrode CDI (e.g., large salt adsorption capacity, high flow efficiency and convenient management of the electrodes), challenges remain in constructing and operating an FCDI system such that it can operate continuously. Here we achieve effective continuous removal of salt from a brackish feed stream using flowing carbon electrodes which are regenerated in a closed-loop manner by using our previously introduced integrated FCDI/MF strategy. The performance of the FCDI/MF system is characterized over a two week period of operation with key factors influencing the desalination performance identified. Results show that the FCDI/MF system is capable of continuously desalinating brackish water (∼2 g L-1) to portable levels (<0.5 g L-1) whilst sustaining an extraordinary water recovery rate (∼92%) and relatively low energy consumption (∼0.5 kWh m-3). No obvious deterioration in performance or membrane fouling was observed during the 14-day operation. While the carbon particles used in the flow electrode exhibited only a minor increase in oxygen-containing groups over the 14 days of operation, a significant reduction in particle size was observed, likely as a consequence of the high-frequency collisions and associated friction between particles that occurred in the FCDI/MF system. Further studies regarding flowable electrode optimization, cell configuration design and process modelling are needed in order to realize the scale-up and practical implementation of this emerging technology.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai, 200092, PR China; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province, 214206, PR China.
| |
Collapse
|
35
|
Ma J, Zhang C, Yang F, Zhang X, Suss ME, Huang X, Liang P. Carbon Black Flow Electrode Enhanced Electrochemical Desalination Using Single-Cycle Operation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1177-1185. [PMID: 31829572 DOI: 10.1021/acs.est.9b04823] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow-electrode electrochemical desalination (FEED) processes (e.g., flow-electrode capacitive deionization), which use flowable carbon particles as the electrodes, have attracted increasing attention, holding the promise for continuous desalination and high desalting efficiency. While it is generally believed that carbon particles with abundant microporous and large specific capacitances (e.g., activated carbon, AC) should be ideal candidates for FEED electrodes, we provide evidence to the contrary, showing that highly conductive electrodes with low specific surface area can outperform microporous AC-based electrodes. This study revealed that FEED using solely high surface area AC particles (∼2000 m2 g-1, specific capacitance of ∼44 F g-1, average salt adsorption rate of ∼0.15 μmol cm-2 min-1) was vastly outperformed by electrodes based solely on low-surface area carbon black (CB, ∼70 m2 g-1, ∼0.5 F g-1, ∼0.75 μmol cm-2 min-1). Electrochemical impedance spectroscopy results suggest that the electrode formed by CB particles led to more effective electronic charge percolation, likely contributing to the improved desalination performance. In addition, we propose and demonstrate a novel operation mode, termed single cycle (SC), which greatly simplified the FEED cell configuration and enabled simultaneous charging and discharging. Using SC mode with CB flow electrodes delivered an increased average salt removal rate relative to the more traditional short-circuited closed cycle (SCC) mode, achieving up to 1.13 μmol cm-2 min-1. Further investigations demonstrate that up to 50% of energy input would be avoided when using CB flow electrodes operated under SC mode as compared to that of AC flow electrodes operated under SCC mode. In summary, the FEED process presented in this study provided an innovative and promising approach toward high-efficient and low-cost brackish water desalination.
Collapse
Affiliation(s)
- Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney NSW 2052 , Australia
| | - Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Xudong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Matthew E Suss
- Faculty of Mechanical Engineering Technoin , Israel Institute of Technology , Haifa 3200 , Israel
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , PR China
| |
Collapse
|
36
|
Ma J, Ma J, Zhang C, Song J, Dong W, Waite TD. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. WATER RESEARCH 2020; 168:115186. [PMID: 31655437 DOI: 10.1016/j.watres.2019.115186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is an attractive variant of CDI with distinct advantages over fixed electrode CDI including the capability for seawater desalination, high flow efficiency and easy management of the electrodes. Challenges exist however in increasing treatment capacity with this attempted here through use of a membrane stack configuration. By comparison of standardised metrics (in particular, average salt removal rate (ASRR), energy normalized removed salt (ENRS) and productivity), results show that that an FCDI system with two pairs of ion exchange membranes had the highest efficiency in desalting a brackish influent (1000 mg L-1) to potable levels (∼150 mg L-1) at higher ASRR and ENRS. Further increase in the number of membrane pairs resulted in a decrease in current efficiency, likely as a result of the dominance of electrodialysis. Results of this study provide proof of concept that (semi-)continuous desalination can be achieved in FCDI at high energy efficiency (13.8%-20.2%) and productivity (> 100 L m-2 h-1) and, importantly, provide insight into possible approaches to scaling up FCDI such that energy-efficient water desalination can be achieved.
Collapse
Affiliation(s)
- Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Junjun Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia; State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Wenjia Dong
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
37
|
Ma J, Ma J, Zhang C, Song J, Collins RN, Waite TD. Water Recovery Rate in Short-Circuited Closed-Cycle Operation of Flow-Electrode Capacitive Deionization (FCDI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13859-13867. [PMID: 31687806 DOI: 10.1021/acs.est.9b03263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
While flow-electrode CDI is a promising desalination technology that has major advantages when the electrodes are operated in the short-circuited closed-cycle (SCC) mode, little attention has been paid to the water recovery rate, which, in the SCC mode, is determined by the need for partial replacement of the saline electrolyte of the flow electrodes. Results of this study show that an extremely high water recovery rate of ∼95% can be achieved when desalting a 1000 mg NaCl L-1 brackish influent to a potable level of 150 mg L-1. The improved performance with regard to the electrical cost is related, at least in part, to the alleviated concentration polarization at the membrane/electrolyte interface during electrosorption. In effect, the current efficiency decreases with an increase in the water recovery rate. This finding is ascribed to inevitable co-ion leakage since the flow electrodes reject ions with the same charge. In addition, water transport across the ion exchange membranes also influences the water recovery rate. The effect of partial replacement of the saline electrolyte during (semi-)continuous operation requires particular consideration because the associated dilution of the carbon content in the flow electrodes results in a decrease in process performance.
Collapse
Affiliation(s)
- Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment , Tsinghua University , Beijing 100084 , P. R. China
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, School of Environment , Henan Normal University , Xinxiang 453007 , P.R. China
| | - Richard N Collins
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , NSW 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
| |
Collapse
|
38
|
Zhang C, Wu L, Ma J, Pham AN, Wang M, Waite TD. Integrated Flow-Electrode Capacitive Deionization and Microfiltration System for Continuous and Energy-Efficient Brackish Water Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13364-13373. [PMID: 31657549 DOI: 10.1021/acs.est.9b04436] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is an emerging electrochemically driven technology for brackish and/or sea water desalination with merits of large salt adsorption capacity, high flow efficiency, and easy electrode management. While FCDI holds promise for continuous operation, there are very few investigations with regard to the regeneration/reuse of flowable electrodes and the separation of brine from electrodes with these operation prerequisites for real nonintermittent water desalination. In this study, we propose a novel module design to achieve these critical steps involving integration of an FCDI cell and a ceramic microfiltration (MF) contactor. Our investigations reveal that the brine discharge rate is the dominant factor for stable and efficient operation of the integrated module. Results obtained show that the integrated FCDI/MF system can be used to successfully separate brackish water (of salinities 1, 2 and 5 g L-1) into both a potable stream (<0.5 g L-1) and a brine stream (concentrated by 2-20 times) in a continuous manner with extremely high water recovery rates (up to 97%) and reasonable energy consumption. Another notable characteristic of the integrated system is the high thermodynamic energy efficiency (∼30%) with such efficiencies 4-5 times larger than those of conventional capacitive deionization units and comparable to reverse osmosis and electrodialysis systems achieving similar separation efficiencies. In brief, the results of studies described here indicate that continuous and efficient operation of FCDI is a real possibility and pave the way for scale-up of this emerging technology.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - A Ninh Pham
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- Shanghai Institute of Pollution Control and Ecological Safety , Tongji University , Shanghai 200092 , P. R. China
- UNSW Centre for Transformational Environmental Technologies , Yixing , Jiangsu Province 214206 , P. R. China
| |
Collapse
|
39
|
Yang F, Ma J, Zhang X, Huang X, Liang P. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance. WATER RESEARCH 2019; 164:114904. [PMID: 31382149 DOI: 10.1016/j.watres.2019.114904] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study employed a titanium mesh-membrane assembly (MMA) as the current collector in flow-electrode capacitive deionization (FCDI) device (designated as M-FCDI), and obtained a much reduced charge transport distance as compared to traditional FCDI with plate-shaped current collectors located far from the exchange membrane. The average salt removal rate of M-FCDI was greatly improved by 76% under 10 wt% carbon content than the control experiment with graphite plate as current collector, and the charge efficiency remained over 75% even under low carbon loading. This improvement was attributed to the reduced resistance as revealed by electrochemical impedance spectroscopy tests. Further investigation on FCDI's performance with different specifications of titanium meshes showed that the implementation of MMA could provide a larger effective electron transfer area, which would lead to better desalting performance.
Collapse
Affiliation(s)
- Fan Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Junjun Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xudong Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
40
|
Yoon H, Lee J, Kim S, Yoon J. Review of concepts and applications of electrochemical ion separation (EIONS) process. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.12.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Wang L, Dykstra JE, Lin S. Energy Efficiency of Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3366-3378. [PMID: 30802038 DOI: 10.1021/acs.est.8b04858] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Capacitive deionization (CDI) as a class of electrochemical desalination has attracted fast-growing research interest in recent years. A significant part of this growing interest is arguably attributable to the premise that CDI is energy efficient and has the potential to outcompete other conventional desalination technologies. In this review, systematic evaluation of literature data reveals that while the absolute energy consumption of CDI is in general low, most existing CDI systems achieve limited energy efficiency from a thermodynamic perspective. We also analyze the causes for the relatively low energy efficiency and discuss factors that may lead to enhanced energy efficiency for CDI.
Collapse
Affiliation(s)
- Li Wang
- Department of Civil and Environmental Engineering , Vanderbilt University , Nashville , Tennessee 37235-1831 , United States
| | - J E Dykstra
- Department of Environmental Technology , Wageningen University , Bornse Weilanden 9 , 6708 WG Wageningen , The Netherlands
| | - Shihong Lin
- Department of Civil and Environmental Engineering , Vanderbilt University , Nashville , Tennessee 37235-1831 , United States
- Department of Chemical and Biomolecular Engineering , Vanderbilt University , Nashville , Tennessee 37235-1604 , United States
| |
Collapse
|
42
|
Song J, Ma J, Zhang C, He C, Waite TD. Implication of Non-electrostatic Contribution to Deionization in Flow-Electrode CDI: Case Study of Nitrate Removal From Contaminated Source Waters. Front Chem 2019; 7:146. [PMID: 30968014 PMCID: PMC6439345 DOI: 10.3389/fchem.2019.00146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
While flow-electrode capacitive deionization (FCDI) operated in short-circuited closed cycle (SCC) mode appears to hold promise for removal of salt from brackish source waters, there has been limited investigation on the removal of other water constituents such as nitrate, fluoride or bromide in combination with salt removal. Of particular concern is the effectiveness of FCDI when ions, such as nitrate, are recognized to non-electrostatically adsorb strongly to activated carbon particles thereby potentially rendering it difficult to regenerate these particles. In this study, SCC FCDI was used to desalt source waters containing nitrate at different concentrations. Results indicate that nitrate can be removed from source waters using FCDI to concentrations <1 mg NO3-N L-1 though a lower quality target such as 10 mg L-1 would be more cost-effective, particularly where the influent nitrate concentration is high (50 mg NO3-N L-1). Although studies of the fate of nitrate in the FCDI system show that physico-chemical adsorption of nitrate to the carbon initially plays a vital role in nitrate removal, the ongoing process of nitrate removal is not significantly affected by this phenomenon with this lack of effect most likely due to the continued formation of electrical double layers enabling capacitive nitrate removal. In contrast to conventional CDI systems, constant voltage mode is shown to be more favorable in maintaining stable effluent quality in SCC FCDI because the decrease in electrical potential that occurs in constant current operation leads to a reduction in the extent of salt removal from the brackish source waters. Through periodic replacement of the electrolyte at a water recovery of 91.4%, we show that the FCDI system can achieve a continuous desalting performance with the effluent NO3-N concentration below 1 mg NO3-N L-1 at low energy consumption (~0.5 kWh m-3) but high productivity.
Collapse
Affiliation(s)
- Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia.,College of Environmental Science and Engineering, Tongji University, Shanghai, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
43
|
Ma J, Zhang Y, Collins RN, Tsarev S, Aoyagi N, Kinsela AS, Jones AM, Waite TD. Flow-Electrode CDI Removes the Uncharged Ca-UO 2-CO 3 Ternary Complex from Brackish Potable Groundwater: Complex Dissociation, Transport, and Sorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2739-2747. [PMID: 30758954 DOI: 10.1021/acs.est.8b07157] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unacceptably high uranium concentrations in decentralized and remote potable groundwater resources, especially those of high hardness (e.g ., high Ca2+, Mg2+, and CO32- concentrations), are a common worldwide problem. The complexation of alkali earth metals, carbonate, and uranium(VI) results in the formation of thermodynamically stable ternary aqueous species that are predominantly neutrally charged (e.g ., Ca2(UO2)(CO3)30). The removal of the uncharged (nonadsorbing) complexes is a problematic issue for many water treatment technologies. As such, we have evaluated the efficacy of a recently developed electrochemical technology, termed flow-electrode capacitive deionization (FCDI), to treat a synthetic groundwater, the composition of which is comparable to groundwater resources in the Northern Territory, Australia (and elsewhere worldwide). Theoretical calculations and time-resolved laser fluorescence spectroscopy analyses confirmed that Ca2(UO2)(CO3)30 was the primary aqueous species followed by Ca(UO2)(CO3)32- (at circumneutral pH values). Results under different operating conditions demonstrated that FCDI is versatile in reducing uranium concentrations to <10 μg L-1 with low electrical consumption (e.g ., ∼0.1 kWh m-3). It is concluded that the capability of FCDI to remove uranium under these common conditions depends on the dissociation kinetics of the Ca2(UO2)(CO3)30 complex in the electrical field. The subsequent formation of the negatively charged Ca(UO2)(CO3)32- species results in the efficient transport of uranium across the anion exchange membrane followed by immobilization on the positively charged flow (anode) electrode.
Collapse
Affiliation(s)
- Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Yumeng Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Richard N Collins
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Sergey Tsarev
- Center for Energy Science and Technology , Skolkovo Institute of Science and Technology , Moscow , Oblast 121205 , Russia
| | - Noboru Aoyagi
- Advanced Science Research Center , Japan Atomic Energy Agency (JAEA) , Ibaraki 319-1184 , Japan
| | - Andrew S Kinsela
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Adele M Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
44
|
Tang W, Liang J, He D, Gong J, Tang L, Liu Z, Wang D, Zeng G. Various cell architectures of capacitive deionization: Recent advances and future trends. WATER RESEARCH 2019; 150:225-251. [PMID: 30528919 DOI: 10.1016/j.watres.2018.11.064] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Substantial consumption and widespread contamination of the available freshwater resources necessitate a continuing search for sustainable, cost-effective and energy-efficient technologies for reclaiming this valuable life-sustaining liquid. With these key advantages, capacitive deionization (CDI) has emerged as a promising technology for the facile removal of ions or other charged species from aqueous solutions via capacitive effects or Faradaic interactions, and is currently being actively explored for water treatment with particular applications in water desalination and wastewater remediation. Over the past decade, the CDI research field has progressed enormously with a constant spring-up of various cell architectures assembled with either capacitive electrodes or battery electrodes, specifically including flow-by CDI, membrane CDI, flow-through CDI, inverted CDI, flow-electrode CDI, hybrid CDI, desalination battery and cation intercalation desalination. This article presents a timely and comprehensive review on the recent advances of various CDI cell architectures, particularly the flow-by CDI and membrane CDI with their key research activities subdivided into materials, application, operational mode, cell design, Faradaic reactions and theoretical models. Moreover, we discuss the challenges remaining in the understanding and perfection of various CDI cell architectures and put forward the prospects and directions for CDI future development.
Collapse
Affiliation(s)
- Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Di He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jilai Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China.
| |
Collapse
|
45
|
Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Measurements of the electric conductivity of an electrode as it transitions between static and flowable modes. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Zhang C, Ma J, Song J, He C, Waite TD. Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018. [PMID: 30458615 DOI: 10.1021/acs.estlett.7b00534] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have previously described a novel flow-electrode capacitive deionization (FCDI) unit combined with a hydrophobic gas-permeable hollow fiber membrane contactor (designated "CapAmm") and presented results showing efficient recovery of ammonia from dilute synthetic wastewaters (Zhang et al., Environ. Sci. Technol. Lett. 2018, 5, 43-49). We extend this earlier study here with description of an FCDI system with integrated flat sheet gas permeable membrane with comprehensive assessment of ammonia recovery performance from both dilute and concentrated wastewaters. The integrated CapAmm cell exhibited excellent ammonia removal and recovery efficiencies (up to ∼90% and ∼80% respectively). The energy consumptions for ammonia recovery from low-strength (i.e., domestic) and high-strength (i.e., synthetic urine) wastewaters were 20.4 kWh kg-1 N and 7.8 kWh kg-1 N, respectively, with these values comparable to those of more conventional alternatives. Stable ammonia recovery and salt removal performance was achieved over more than two days of continuous operation with ammonia concentrated by ∼80 times that of the feed stream. These results demonstrate that the integrated CapAmm system described here could be a cost-effective technology capable of treating wastewaters and realizing both nutrient recovery and water reclamation in a sustainable manner.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai , 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
48
|
Zhang C, Ma J, Song J, He C, Waite TD. Continuous Ammonia Recovery from Wastewaters Using an Integrated Capacitive Flow Electrode Membrane Stripping System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14275-14285. [PMID: 30458615 DOI: 10.1021/acs.est.8b02743] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have previously described a novel flow-electrode capacitive deionization (FCDI) unit combined with a hydrophobic gas-permeable hollow fiber membrane contactor (designated "CapAmm") and presented results showing efficient recovery of ammonia from dilute synthetic wastewaters (Zhang et al., Environ. Sci. Technol. Lett. 2018, 5, 43-49). We extend this earlier study here with description of an FCDI system with integrated flat sheet gas permeable membrane with comprehensive assessment of ammonia recovery performance from both dilute and concentrated wastewaters. The integrated CapAmm cell exhibited excellent ammonia removal and recovery efficiencies (up to ∼90% and ∼80% respectively). The energy consumptions for ammonia recovery from low-strength (i.e., domestic) and high-strength (i.e., synthetic urine) wastewaters were 20.4 kWh kg-1 N and 7.8 kWh kg-1 N, respectively, with these values comparable to those of more conventional alternatives. Stable ammonia recovery and salt removal performance was achieved over more than two days of continuous operation with ammonia concentrated by ∼80 times that of the feed stream. These results demonstrate that the integrated CapAmm system described here could be a cost-effective technology capable of treating wastewaters and realizing both nutrient recovery and water reclamation in a sustainable manner.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - Jingke Song
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai , 200092 , P. R. China
- Shanghai Institute of Pollution Control and Ecological Security , Shanghai 200092 , P. R. China
| | - Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering , University of New South Wales , Sydney , New South Wales 2052 , Australia
| |
Collapse
|
49
|
Oladunni J, Zain JH, Hai A, Banat F, Bharath G, Alhseinat E. A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.06.046] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Ma J, He C, He D, Zhang C, Waite TD. Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. WATER RESEARCH 2018; 144:296-303. [PMID: 30053621 DOI: 10.1016/j.watres.2018.07.049] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 06/26/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
While flow-electrode capacitive deionization (FCDI) is a potential alternative to brackish and/or sea water desalination, there is limited understanding of both the fate of ions following migration across the ion exchange membranes and the mechanisms responsible for ion separation. In this study, we investigate the desalting performance of an FCDI system operated over a range of conditions. Results show that although ion transport as a result of electrodialysis is inevitable in FCDI (and is principally responsible for pH excursion in the flow electrode), the use of high carbon content ensures that a high proportion of the charge and counterions are retained in the electrical double layers of the flowing carbon particles, even at high charging voltages (e.g., 2.0 V) during the deionization process. Estimation of the portions of sodium and chloride ions adsorbed in the flow electrode after migration through the membranes suggests that the ongoing capacitive adsorption exhibits asymmetric behavior with the anodic particles demonstrating better affinity for Cl- (than the cathodic particles for Na+) during electrosorption. These findings provide an explanation for the change in electrode properties that are observed under imperfect adsorption scenarios and provide insight into aspects of the design and operation of flow electrode pairs that is critical to achieving effective desalination by FCDI.
Collapse
Affiliation(s)
- Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Calvin He
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Di He
- Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|