1
|
Zhou Y, Jiao JJ, Huang H, Liu YD, Zhong R, Yang X. Insights into C-C Bond Cleavage Mechanisms in Dichloroacetonitrile Formation during Chlorination of Long-Chain Primary Amines, Amino Acids, and Dipeptides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18834-18845. [PMID: 37183372 DOI: 10.1021/acs.est.2c07779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dichloroacetonitrile (DCAN) as one of the potentially prioritized regulated DBPs has drawn great attention; however, understanding its formation, especially the C-C bond cleavage mechanisms, is limited. In this study, DCAN formation mechanisms from long-chain primary amines, amino acids, and dipeptides during chlorination were investigated by a combined computational and experimental approach. The results indicate that nitriles initially generate for all of the above precursors, then they undergo β-C-hydroxylation or/and α-C-chlorination processes, and finally, DCAN is produced through the Cα-Cβ bond cleavage. For the first time, the underlying mechanism of the C-C bond cleavage was unraveled to be electron transfer from the O- anion into its attached C atom in the chlorinated nitriles, leading to the strongly polarized Cα-Cβ bond heterocleavage and DCAN- formation. Moreover, DCAN molar yields of precursors studied in the present work were found to be determined by their groups at the γ-site of the amino group, where the carbonyl group including -CO2-, -COR, and -CONHR, the aromatic group, and the -OH group can all dramatically facilitate DCAN formation by skipping over or promoting the time-consuming β-C-hydroxylation process and featuring relatively lower activation free energies in the C-C bond cleavage. Importantly, 4-amino-2-hydroxybutyric acid was revealed to possess the highest DCAN yield among all the known aliphatic long-chain precursors to date during chlorination. Additionally, enonitriles, (chloro-)isocyanates, and nitriles can be generated during DCAN formation and should be of concern due to their high toxicities.
Collapse
Affiliation(s)
- Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia-Jia Jiao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Dong H, Aziz MT, Richardson SD. Transformation of Algal Toxins during the Oxidation/Disinfection Processes of Drinking Water: From Structure to Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12944-12957. [PMID: 37603687 DOI: 10.1021/acs.est.3c01912] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
With the increase of algal blooms worldwide, drinking water resources are threatened by the release of various algal toxins, which can be hepatotoxic, cytotoxic, or neurotoxic. Because of their ubiquitous occurrence in global waters and incomplete removal in conventional drinking water treatment, oxidation/disinfection processes have become promising alternative treatment options to destroy both the structures and toxicity of algal toxins. This Review first summarizes the occurrence and regulation of algal toxins in source water and drinking water. Then, the transformation kinetics, disinfection byproducts (DBPs)/transformation products (TPs), pathways, and toxicity of algal toxins in water oxidation/disinfection processes, including treatment by ozonation, chlorination, chloramination, ultraviolet-based advanced oxidation process, and permanganate, are reviewed. For most algal toxins, hydroxyl radicals (HO•) exhibit the highest oxidation rate, followed by ozone and free chlorine. Under practical applications, ozone and chlorine can degrade most algal toxins to meet water quality standards. However, the transformation of the parent structures of algal toxins by oxidation/disinfection processes does not guarantee a reduction in toxicity, and the formation of toxic TPs should also be considered, especially during chlorination. Notably, the toxicity variation of algal toxins is associated with the chemical moiety responsible for toxicity (e.g., Adda moiety in microcystin-LR and uracil moiety in cylindrospermopsin). Moreover, the formation of known halogenated DBPs after chlorination indicates that toxicity in drinking water may shift from toxicity contributed by algal toxins to toxicity contributed by DBPs. To achieve the simultaneous toxicity reduction of algal toxins and their TPs, optimized oxidation/disinfection processes are warranted in future research, not only for meeting water quality standards but also for effective reduction of toxicity of algal toxins.
Collapse
Affiliation(s)
- Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Md Tareq Aziz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Huang J, Wu Y, Wu Y, Sheng D, Sun J, Bu L, Zhou S. Comparison of UV and UV/chlorine system on degradation of 2,4-diaminobutyric acid and formation of disinfection byproducts in subsequent chlorination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
4
|
Zhang J, Chen Y, Liao Y, Wang Q, Yu J. Studies on the degradation of trace phenol and indole odorants by chlorine and permanganate in drinking water treatment. CHEMOSPHERE 2022; 286:131551. [PMID: 34303909 DOI: 10.1016/j.chemosphere.2021.131551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/10/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The frequent detection of phenols and indoles in source water gives rise to concern about the taste and odor problems mainly caused by some chemicals. Exploration for the efficient removal of trace amounts of phenols and indoles in source water is imperative. This study investigated the removals and oxidation kinetics of 3-methylphenol (3-MP), 2,6-dichlorophenol (2,6-DCP), indole and 3-methylindole (3-MI) by NaClO and KMnO4. The results showed that the selected chemical odorants could be removed by NaClO and KMnO4. Meanwhile, the oxidation processes could be well described by the second-order kinetics model, in which kinetics constants of chemical odorants were from 1.44 × 104 to 1.45 × 106 L·mol-1·min-1 and followed the order 3-MI > indole> 3-MP> 2,6-DCP by NaClO. However, the kinetics constants for the selected chemical odorants were also determined from 1.10 × 103 to 2.25 × 104 L·mol-1·min-1 and in the order 2,6-DCP> 3-MI> 3-MP > indole by KMnO4. The phenols degradation mechanisms by NaClO are chlorine substitution, and the products generated are 3,4,6-trichloro-2-methylphenol, 2,4,6-trichlorophenol, etc. And that of indoles are chlorine substitution and hydroxylation by NaClO, which generated 6-chloroindole, 2,6-dichloroaniline, etc. The phenols degradation pathways are oxidative coupling reactions by KMnO4, and that of indoles are hydroxylation reactions by KMnO4. This study provides a further basis for NaClO and KMnO4 oxidation to remove trace phenols and indoles in drinking water pre-treatments.
Collapse
Affiliation(s)
- Junzhi Zhang
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Yisi Chen
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yu Liao
- Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Qi Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianwei Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
5
|
Sun J, Zhou S, Sheng D, Li N, Wang J, Jiang C. Elimination of β-N-methylamino-l-alanine (BMAA) during UV/chlorine process: Influence factors, transformation pathway and DBP formation. CHEMOSPHERE 2021; 284:131426. [PMID: 34323795 DOI: 10.1016/j.chemosphere.2021.131426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
As a new cyanobacterial neurotoxin generated by cyanobacteria, BMAA was closely related to amyotrophic lateral sclerosis-parkinsonism dementia complex (ALS/PDC). In this study, the degradation of BMAA by UV/chlorine process was investigated under the impacts of chlorine dosage, NOM dosage, pH and alkalinity. Results showed that only 10% of BMAA was removed by UV irradiation and 46.8% by chlorination in 5 min, however, 98.6% of BMAA was removed by UV/chlorine process in 5 min. The reaction rates were increased under alkaline conditions, but all achieved complete degradation in 5 min. Besides, HCO3- had slight inhibition, while NOM had significant inhibition on the degradation of BMAA. Furthermore, based on the detected degradation products of BMAA during UV/chlorine process, the possible degradation pathways were concluded. Overall, outcomes of this study exhibited that the use of the UV/chlorine process for BMAA degradation was appropriate in practical applications.
Collapse
Affiliation(s)
- Julong Sun
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Shiqing Zhou
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China.
| | - Da Sheng
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Nan Li
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Jue Wang
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha, 410082, China
| | - Changbo Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|
6
|
Zhou Y, Ye ZX, Huang H, Liu YD, Zhong R. Formation mechanism of chloropicrin from amines and free amino acids during chlorination: A combined computational and experimental study. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125819. [PMID: 33865110 DOI: 10.1016/j.jhazmat.2021.125819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Chloropicrin as one of the most frequently detected N-DBPs has drawn great attention due to its high toxicity. However, our understanding of its formation mechanism is still very limited. A combined computational and experimental approach was used in this study to reveal chloropicrin formation mechanism during chlorination. Ethylamine, n-propylamine, alanine and tryptophan along with the above two amines and their four derivatives substituted by -OH or/and -NO2 groups were chosen as computational and experimental model precursors, respectively. The results indicate that primary amines and free amino acids are more likely to share the same chloropicrin formation pathway including N-chlorination, imidization, β-C-alcoholization, N-nitration, α-C-chlorination and dealdehydation processes. Moreover, elimination of hydrochloric acid from N,N-dichloro-amine and electrophilic addition of N-chloroalkylimide with hypochlorous acid were found to be the rate-limiting steps among all the elementary reactions. By skipping over both of the above rate-limiting steps, RCH(OH)CH2NO2 and RCH(OH)CH2NH(OH) compounds were proposed to be potent chloropicrin precursors, and experiments confirmed that 2-nitroethanol and N-methylhydroxylamine have the highest chloropicrin yields in the chlorination among all the precursors reported to date. The findings of this work are helpful for expanding the knowledge of chloropicrin formation mechanisms and predicting the potential chloropicrin precursors.
Collapse
Affiliation(s)
- Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Zhao-Xi Ye
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huang Huang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
7
|
Yan B, Liu Z, Liu Y, Huang R, Xu Y, Liu D, Cui F, Shi W. Effects and mechanism on the removal of neurotoxin β-N-methylamino-l-alanine (BMAA) by chlorination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135513. [PMID: 31761374 DOI: 10.1016/j.scitotenv.2019.135513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/25/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
β-N-Methylamino-l-alanine (BMAA), a new cyanobacterial toxin, is found in different aquatic ecosystems worldwide and is to threaten the human nervous system. Therefore, it is important for water plants to develop feasible methods to counter the effects of BMAA. In this study, the removal of BMAA by chlorine, as well as its intermediate products, at different pH values and the mechanism of pH on the removal BMAA were investigated. The results showed that the chlorination of BMAA is in accordance with the second-order kinetics model. The reaction rate of chlorinated BMAA increased with the increase in the concentration of chlorine. The pH of the solution significantly affected the reaction rate. The apparent kinetic constant (kapp) decreased from 6.00 × 103 M-1·min-1 to 35.5 M-1·min-1 when the pH increased from 4.5 to 9 in the chlorine concentration of 32.23 μM. It is probable that the species distribution and proportion of BMAA and chlorine at different pH values were the main causes of this phenomenon. Additionally, the chlorination reaction consisted of four elementary reactions and hydrogen ions were beneficial to the reaction. The temperature also affected the reaction rate and the activation energy of the reaction was 16.6 ± 1.99 kJ·M-1. A variety of degradation products were detected and the path of degradation was speculated. Chlorination, dechlorination, and decarboxylation were the main processes of oxidative degradation. Furthermore, the composition of the degradation products was the same at different pH values.
Collapse
Affiliation(s)
- Boyin Yan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Ying Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fuyi Cui
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Wenxin Shi
- School of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
8
|
Chen YT, Chen WR, Lin TF. Oxidation of cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) with chlorine, permanganate, ozone, hydrogen peroxide and hydroxyl radical. WATER RESEARCH 2018; 142:187-195. [PMID: 29879656 DOI: 10.1016/j.watres.2018.05.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/19/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Beta-N-methylamino-L-alanine (BMAA), a new cyanobacterial neurotoxin produced by more than 20 genera of cyanobacteria, has been associated with amyotrophic lateral sclerosis/parkinsonism-dementia complex (ALS/PDC) or Alzheimer's disease. Although BMAA has been shown to be removed in drinking water treatment plants (DWTPs), studies regarding the reactions between BMAA and the commonly used oxidants in DWTPs are limited to chlorine under specific conditions. In this study, the reaction kinetics between BMAA and five oxidants commonly used in DWTPs, including chlorine, potassium permanganate, ozone, hydrogen peroxide and hydroxyl radical were investigated. The oxidation of BMAA by chlorine, ozone or OH radical followed the second order reaction rate law, and the reaction rate was in the order of OH radicals > ozone >> chlorine. The rate constants increased by 20 times from 2 × 103 M-1s-1 at pH 5.8 to 4.93 × 104 M-1s-1 at pH 7, and kept in a relatively stable level at pH 7-9.5; rate constants of OH radicals were 1.11 × 108 M-1s-1 at pH 6.5 and 5.51 × 109- 1.35 × 1010 M-1s-1 at pH > 6.5. For both permanganate and H2O2 only, the removal of BMAA was negligible. The pH dependency of chlorine and the OH radical may be attributed to the neutral form of BMAA with free lone pair electrons readily to be attacked by oxidants. However, for ozonation of BMAA, the rate constants were 1.88 × 106-3.72 × 1010 M-1s-1, with a linear dependency on pH, implying that the hydroxide concentration governs the reaction. In addition, the rate of BMAA degradation was found to be slower in natural water if compared with that in deionized water.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Tsair-Fuh Lin
- Department of Environmental Engineering and Global Water Quality Research Center, National Cheng Kung University, Tainan City, 70101, Taiwan.
| |
Collapse
|
9
|
von Gunten U. Oxidation Processes in Water Treatment: Are We on Track? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5062-5075. [PMID: 29672032 DOI: 10.1021/acs.est.8b00586] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chemical oxidants have been applied in water treatment for more than a century, first as disinfectants and later to abate inorganic and organic contaminants. The challenge of oxidative abatement of organic micropollutants is the formation of transformation products with unknown (eco)toxicological consequences. Four aspects need to be considered for oxidative micropollutant abatement: (i) Reaction kinetics, controlling the efficiency of the process, (ii) mechanisms of transformation product formation, (iii) extent of formation of disinfection byproducts from the matrix, (iv) oxidation induced biological effects, resulting from transformation products and/or disinfection byproducts. It is impossible to test all the thousands of organic micropollutants in the urban water cycle experimentally to assess potential adverse outcomes of an oxidation. Rather, we need multidisciplinary and automated knowledge-based systems, which couple predictions of kinetics, transformation and disinfection byproducts and their toxicological consequences to assess the overall benefits of oxidation processes. A wide range of oxidation processes has been developed in the last decades with a recent focus on novel electricity-driven oxidation processes. To evaluate these processes, they have to be compared to established benchmark ozone- and UV-based oxidation processes by considering the energy demands, economics, the feasibilty, and the integration into future water treatment systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Ueberlandstrasse 133 , 8600 Duebendorf , Switzerland
- School of Architecture, Civil and Environmental Engineering (ENAC) , École Polytechnique Fédérale de Lausanne (EPFL) , 1015 , Lausanne , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zurich , 8092 Zurich , Switzerland
| |
Collapse
|
10
|
Zhang T, Xu B, Wang A, Cui C. Degradation kinetics of organic chloramines and formation of disinfection by-products during chlorination of creatinine. CHEMOSPHERE 2018; 195:673-682. [PMID: 29289012 DOI: 10.1016/j.chemosphere.2017.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Organic chloramines can interfere with the measurement of effective combined chlorine in chlorinated water and are potential intermediate products of highly toxic disinfection by-products (DBPs). In order to know more about the degradation and transformation of organic chloramines, a typical organic chloramine precursor creatinine was selected for investigation and a corresponding individual organic chloramine chlorocreatinine was prepared in this study. The preparation condition of chlorocreatinine by chlorination was established as chlorine/creatinine = 1 M/M, reaction time = 2 h and pH = 7.0. Then the degradation kinetics of chlorocreatinine during further chlorination was studied, and a second-order rate constant of 1.16 (±0.14) M-1 s-1 was obtained at pH 7.0. Solution pH significantly influenced the degradation rate, and the elementary rate constants of chlorocreatinine with HOCl+H+, HOCl, OCl- and chlorocreatinine- with OCl- were calculated as 2.43 (±1.55) × 104 M-2 s-1, 1.05 (±0.09) M-1 s-1, 2.86 (±0.30) M-1 s-1 and 3.09 (±0.24) M-1 s-1, respectively. Besides, it was found that chlorocreatinine could be further converted into several C-DBPs (chloroform and trichloroacetone) and N-DBPs (dichloroacetonitrile (DCAN) and trichloronitromethane (TCNM)) during chlorination. The total yield of DBPs increased obviously with increasing pH, especially for TCNM. In addition, the presence of humic acid in creatinine solution could increase the formation of DCAN obviously during chlorination. Based on the UPLC-Q-TOF-MS analysis, the conversion pathways of chlorocreatinine were proposed. Several kinds of intermediate products were also identified as organic chloramines and some of them could even exist stably during the further chlorination.
Collapse
Affiliation(s)
- Tianyang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
11
|
Yan B, Liu Z, Huang R, Xu Y, Liu D, Lin TF, Cui F. Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water. Anal Chem 2017; 89:10991-10998. [DOI: 10.1021/acs.analchem.7b02867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Boyin Yan
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiquan Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Huang
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yongpeng Xu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tsair-Fuh Lin
- Department
of Environmental Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Fuyi Cui
- State
Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|