1
|
Li J, Cen X, Zheng Q, Zhao Z, Ren J, Khan S, Duan H, Thai P, Zheng M. Impact of long-term and short-term magnesium hydroxide dosing on transformation of chemical biomarkers in the sewer systems. WATER RESEARCH 2025; 279:123426. [PMID: 40056472 DOI: 10.1016/j.watres.2025.123426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/18/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Magnesium hydroxide (Mg(OH)₂) dosing is widely applied for sewer odour control. However, its impact on the fate of biomarkers used for wastewater-based epidemiology (WBE) has been overlooked. This study investigated the long-term and short-term impact of Mg(OH)₂ dosing on in-sewer transformation of 20 biomarkers. The dosing duration and amount of Mg(OH)₂ were specifically controlled in laboratory-scale sewer reactors, which led to long-term biofilm adaptation and instant change of wastewater pH. Mg(OH)₂ dosing rapidly inhibited H₂S at high pH levels and changed microbial community structure after long-term exposure. The transformation of biomarkers was a combined result of pH-driven abiotic process and biodegradation in the dosing-impacted sewers. The high stability of biomarkers like acesulfame and carbamazepine was unaffected by Mg(OH)₂ dosing. Most unstable biomarkers like caffeine, codeine and nicotine presented less degradation and extended half-lives in sewers received either long-term or short-term dosing, compared to their rapid losses under normal sewer conditions. This study provides a comprehensive understanding of both instant and lasting impacts of Mg(OH)₂ dosing on microbial community, biological activity, and biomarker stability in sewers. The longer half-lives of biomarkers in Mg(OH)2-dosed sewers benefited WBE application due to the improved detection reliability and less uncertainty related to biomarker loss, suggesting that chemical dosing information is required for accurate WBE estimation within a catchment.
Collapse
Affiliation(s)
- Jiaying Li
- The School of Civil Engineering, The University of Sydney, New South Wales, Australia; Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zeyang Zhao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jianan Ren
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Stuart Khan
- The School of Civil Engineering, The University of Sydney, New South Wales, Australia
| | - Haoran Duan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Phong Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
2
|
Xia X, Mu H, Du Y, Shao S, Li Y, Li D, Zhao Q, Wei L. Could chloroxylenol be used as WBE biomarker in gravity sewers? Fates, behaviors and feasible conditions. WATER RESEARCH 2025; 278:123376. [PMID: 40015221 DOI: 10.1016/j.watres.2025.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
Understanding the in-sewer stability of chemical biomarkers is crucial for effective wastewater-based epidemiology (WBE) studying. Sewer conditions, including environmental and biological factors, significantly influence biomarker transformations. This study investigated the stability of chloroxylenol (PCMX) under different levels of pH, temperature, shear force, and ventilation status, and then clarified the fate and behavior of PCMX in gravity sewers (GS). Results indicated the stability of PCMX obviously increased with higher pH and shear force, and lower temperature in both well- and partially-ventilated GS reactors. In poorly-ventilated GS reactors, the highest degradation rates occurred under normal conditions (pH = 7.0, T = 20 °C, shear = 1.15 N/m2). Biological activity (MPR>SPR) and dissolved oxygen (DO) primarily drove PCMX transformation, with minimal effects from pH, temperature, and shear force. A positive correlation existed between PCMX transformation and DO, and a negative correlation existed between PCMX transformation and biological activity. Mass balance analysis indicated that adsorption and bioaccumulation dominated PCMX transformation in GS, while biotransformation occurred with the increasing of DO and prolongation of HRT. Additionally, the suitability of PCMX as a WBE biomarker under different GS conditions was assessed. PCMX was viable as a biomarker in partially-ventilated GS under pH 8 or shears force of 0.48 N/m2 conditions, and in poorly-ventilated GS under pH 6 or shears force of 0.48 N/m2 conditions. This study enhances understanding of factors affecting PCMX stability and supports its application as a WBE biomarker in community health assessments.
Collapse
Affiliation(s)
- Xinhui Xia
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huizhi Mu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yujia Du
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuocheng Shao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yaqun Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China..
| |
Collapse
|
3
|
Tao W, Zheng X, Liu P, Zhang Y, Di B, Qiao H. Occurrence and removal of pharmaceuticals in hospital wastewater and the contribution to wastewater treatment plants. ENVIRONMENTAL RESEARCH 2025; 279:121752. [PMID: 40311897 DOI: 10.1016/j.envres.2025.121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
The pervasive presence of drugs in aquatic environments has emerged as a pressing global issue, with hospital wastewater (HWW) recognized as a significant pollution source. This study evaluates the occurrence, removal efficiency, and environmental risks of 21 common pharmaceuticals or their metabolites in HWW. The 21 compounds included opioids, methylxanthines, β-blockers, non-steroidal anti-inflammatory drugs (NSAIDs), antihistamines, β-adrenoceptor agonists, phenylethylamines, benzodiazepines, organic amine compounds, neuraminidase inhibitors, and amide local anesthetics. Additionally, the contribution of HWW discharges to the influent concentrations of downstream wastewater treatment plants (WWTPs) was assessed. In HWW, opioid concentrations varied from 0 ng/L to 7263 ng/L (tramadol) in influent samples and from 0 ng/L to 4163 ng/L (tramadol) in effluent samples. NSAID concentrations in the hospital influents ranged from 0 ng/L to 47,299 ng/L (acetaminophen), while effluent concentrations ranged from 0 ng/L to 58,520 ng/L (acetaminophen). Other compounds ranged from 0 ng/L to 11,956 ng/L (caffeine) in influents and from 0 ng/L to 10,804 ng/L (caffeine) in effluents. Removal efficiencies for various compounds ranged from negative values to 100 %, with significant variability across hospitals and compound types. Opioid removal varied between -49.63 % (pethidine) and 100 %. For NSAIDs, the range was -28.08 % (naproxen) to 100 %. Other compounds exhibited removal efficiencies spanning from -37.90 % (methoxyphenamine) to 100 %. These findings underscore the ineffectiveness of conventional wastewater treatment processes in removing pharmaceutical contaminants. The overall contribution of the HWW effluent to downstream WWTPs drugs loads varied significantly. Opioid contributions ranged from 0 % to 69.46 % (tramadol), while NSAIDs contributions ranged from 0 % to 12.12 % (acetaminophen). Other compounds showed contributions ranging from 0 % to 18.58 % (lidocaine). Environmental risk assessments indicated that four compounds posed high-risk, three presented moderate-risk and fourteen constituted low-risk. This study aims to improve HWW control in China and reduce uncertainties in drug-related early warning systems, thereby supporting broader anti-drug initiatives.
Collapse
Affiliation(s)
- Wenjia Tao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China
| | - Xiaoyu Zheng
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China, Beijing, 100193, PR China
| | - Peipei Liu
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China, Beijing, 100193, PR China
| | - Yu Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China; Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China.
| | - Hongwei Qiao
- Office of China National Narcotics Control Commission-China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, Beijing, 100193, PR China; Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, PR China, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. A novel data-driven screening method of antidepressants stability in wastewater and the guidance of environmental regulations. ENVIRONMENT INTERNATIONAL 2025; 198:109427. [PMID: 40188602 DOI: 10.1016/j.envint.2025.109427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/05/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
Wastewater-based epidemiology (WBE) represents a powerful technique for quantifying the attenuation characteristics and consumption of pharmaceuticals. In addition to WBE, no further methods have been developed to assess the wastewater stability related to antidepressants (ADs). In this study, the biodegradability, solubility, and adsorption or partition of 66 ADs were objectively scored according to the relevant guidelines of the Organisation for Economic Cooperation and Development. An assessment framework and the MSSL-RealFormer classification model of ADs wastewater stability were constructed based on physicochemical properties to predict the ADs wastewater stability and the quantitative structure-activity relationship. The constructed MSSL-RealFormer classification model exhibited a markedly higher prediction accuracy than traditional methods. Furthermore, 15 high-stable ADs in wastewater with low biodegradability, high solubility, and low adsorption or partition were identified. SHapley Additive exPlanation method demonstrated that group hydrophobicity, electrostatic and van der Waals forces exerted a significant influence on the ADs wastewater stability. And molecular stability was found to be significantly correlated with the ADs wastewater stability. A combination of density functional theory and MSSL-RealFormer classification model was employed to identify 17 high-stable transformation products of nine medium- and low-stable ADs in wastewater. The Ecological Structure Activity Relationships model demonstrated that bupropion, tapentadol and chlorpheniramine exhibited significant acute toxicity to the aquatic food chain. In this study, a novel deep learning model was constructed to rapidly screen the correlation between the ADs wastewater stability and their molecular structures. It is anticipated to prove a favorable tool for optimizing the wastewater stability screening of pharmaceuticals.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China.
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Xiao Y, Yuan S, Luo R, Tang Y, Wang X, Xiang P, Di B. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:389-402. [PMID: 39308124 DOI: 10.1080/10934529.2024.2403280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 11/05/2024]
Abstract
The ketamine (KET) and its analogs consumed by humans are becoming emerging contaminants (ECs), as they at present in surface waters after being carried through wastewater systems. Drugs in wastewater can be analyzed using the direct-injection method, a simple wastewater analysis (WWA) method that can provide objective, continuous and nearly to real-time findings. This article describes an ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the simultaneous quantification and confirmation of seven KET-based ECs in wastewater by direct injection. After optimization of the UPLC-MS/MS and sample pretreatment conditions, the method was validated and applied to samples (n = 157) collected from several wastewater treatment plants (WWTPs) in southern China in which KET had the highest detection rate. The established direct-injection method was not only simple to perform but also had better sensitivity, shorter detection times, and analyzed more KET-based ECs than currently published methods, meeting the requirements for the monitoring and high-throughput analysis of common KET-based ECs. We also analyzed the fragmentation pathway of KET-based ECs to obtain product ion information on other unknown substances. Additional studies are needed to establish a comprehensive direct-injection screening method of ECs in wastewater on model-based assessment.
Collapse
Affiliation(s)
- Yue Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Shuai Yuan
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ruxin Luo
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Yiling Tang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Xin Wang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Ping Xiang
- Department of Forensic Toxicology, Academy of Forensic Science, Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Science Platform, Key Laboratory of Forensic Sciences, Ministry of Justice, Shanghai, P.R. China
| | - Bin Di
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
6
|
Aghaei M, Khoshnamvand N, Janjani H, Dehghani MH, Karri RR. Exposure to environmental pollutants: A mini-review on the application of wastewater-based epidemiology approach. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:65-74. [PMID: 38887772 PMCID: PMC11180043 DOI: 10.1007/s40201-024-00895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 06/20/2024]
Abstract
Wastewater-based epidemiology (WBE) is considered an innovative and promising tool for estimating community exposure to a wide range of chemical and biological compounds by analyzing wastewater. Despite scholars' interest in WBE studies, there are uncertainties and limitations associated with this approach. This current review focuses on the feasibility of the WBE approach in assessing environmental pollutants, including pesticides, heavy metals, phthalates, bisphenols, and personal care products (PCPs). Limitations and challenges of WBE studies are initially discussed, and then future perspectives, gaps, and recommendations are presented in this review. One of the key limitations of this approach is the selection and identification of appropriate biomarkers in studies. Selecting biomarkers considering the basic requirements of a human exposure biomarker is the most important criterion for validating this new approach. Assessing the stability of biomarkers in wastewater is crucial for reliable comparisons of substance consumption in the population. However, directly analyzing wastewater does not provide a clear picture of biomarker stability. This uncertainty affects the reliability of temporal and spatial comparisons. Various uncertainties also arise from different steps involved in WBE. These uncertainties include sewage sampling, exogenous sources, analytical measurements, back-calculation, and estimation of the population under investigation. Further research is necessary to ensure that measured pollutant levels accurately reflect human excretion. Utilizing data from WBE can support healthcare policy in assessing exposure to environmental pollutants in the general population. Moreover, WBE seems to be a valuable tool for biomarkers that indicate healthy conditions, lifestyle, disease identification, and exposure to pollutants. Although this approach has the potential to serve as a biomonitoring tool in large communities, it is necessary to monitor more metabolites from wastewater to enhance future studies.
Collapse
Affiliation(s)
- Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Nahid Khoshnamvand
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosna Janjani
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| |
Collapse
|
7
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Chen C, Huang J, Yu G. In-sewer stability assessment of 140 pharmaceuticals, personal care products, pesticides and their metabolites: Implications for wastewater-based epidemiology biomarker screening. ENVIRONMENT INTERNATIONAL 2024; 184:108465. [PMID: 38324926 DOI: 10.1016/j.envint.2024.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The monitoring of pharmaceuticals, personal care products (PCPs), pesticides, and their metabolites through wastewater-based epidemiology (WBE) provides timely information on pharmaceutical consumption patterns, chronic disease treatment rates, antibiotic usage, and exposure to harmful chemicals. However, before applying them for quantitative WBE back-estimation, it is necessary to understand their stability in the sewer system to screen suitable WBE biomarkers thereby reducing research uncertainty. This study investigated the in-sewer stability of 140 typical pharmaceuticals, PCPs, pesticides, and their metabolites across 15 subcategories, using a series of laboratory sewer sediment and biofilm reactors. For the first time, stability results for 89 of these compounds were reported. Among the 140 target compounds, 61 biomarkers demonstrated high stability in all sewer reactors, while 41 biomarkers were significantly removed merely by sediment processes. For biomarkers exhibiting notable attenuation, the influence of sediment processes was generally more pronounced than biofilm, due to its stronger microbial activities and more pronounced diffusion or adsorption processes. Adsorption emerged as the predominant factor causing biomarker removal compared to biodegradation and diffusion. Significantly different organic carbon-water partitioning coefficient (Koc) and distribution coefficient at pH = 7 (logD) values were observed between highly stable and unstable biomarkers, with most hydrophobic substances (Koc > 100 or logD > 2) displaying instability. In light of these findings, we introduced a primary biomarker screening process to efficiently exclude inappropriate candidates, achieving a commendable 77 % accuracy. Overall, this study represents the first comprehensive report on the in-sewer stability of 89 pharmaceuticals, PCPs, pesticides, and their metabolites, and provided crucial reference points for understanding the intricate sewer sediment processes.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
8
|
Li J, Choi PM, Gao J, Ren J, O'Brien JW, Thomas KV, Mueller JF, Thai PK, Jiang G. In-sewer stability of 31 human health biomarkers and suitability for wastewater-based epidemiology. WATER RESEARCH 2024; 249:120978. [PMID: 38071905 DOI: 10.1016/j.watres.2023.120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Monitoring urinary markers of dietary, disease, and stress by wastewater-based epidemiology (WBE) is a promising tool to better understand population health and wellbeing. However, common urinary biomarkers are subject to degradation in sewer systems and their fates have to be assessed before they can be used in WBE. This study investigated the stability of 31 urinary biomarkers (12 food biomarkers, 8 vitamins, 9 oxidative stress biomarkers, and 1 histamine biomarker) in a laboratory sewer sediment reactor and evaluated their suitability for WBE, considering their detectability in real wastewater and in-sewer stability. These biomarkers showed various transformation patterns, among which 16 compounds had half-lives <2 h while other 15 compounds presented moderate to high stability (2 to >500 h). Thirteen biomarkers showed potential for WBE because of their consistently measurable concentrations in untreated wastewater and sufficient in-sewer stability. Eighteen biomarkers were unsuitable due to their rapid in-sewer degradation and/or undetectable concentration levels in untreated wastewater using previous methods. Transformation rates of these biomarkers showed generally weak relationships with molecular properties but relatively higher correlations with biological activities in sewers. Overall, this study determined in-sewer stability of 31 health-related biomarkers through laboratory experiments, providing new findings to WBE for population health assessment.
Collapse
Affiliation(s)
- Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia; Water Unit, Health Protection and Regulation Branch, Queensland Public Health and Scientific Services, Queensland Health, Herston, QLD 4006, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, China
| | - Jianan Ren
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia; Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4103, Australia.
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architectural Engineering, University of Wollongong, Australia
| |
Collapse
|
9
|
Gerrity D, Crank K, Oh EC, Quinones O, Trenholm RA, Vanderford BJ. Wastewater surveillance of high risk substances in Southern Nevada: Sucralose normalization to translate data for potential public health action. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168369. [PMID: 37951274 DOI: 10.1016/j.scitotenv.2023.168369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The COVID-19 pandemic highlighted the value of wastewater surveillance in providing unbiased assessments of incidence/prevalence for infectious disease targets, ultimately leading to the development of local, state, and national programs across the United States. To address the growing epidemic of drug abuse, there have been calls to extend these programs to high risk substances (HRS) and metabolites, while leveraging the experience gained during the pandemic and from ongoing efforts in other countries. This study further advances the science of wastewater surveillance for HRS by (1) highlighting analytical and sewer transport considerations, (2) proposing sucralose normalization to adjust for varying human urine/fecal load and confounded population estimates (e.g., high tourism areas), and (3) characterizing temporal and geographic trends in HRS use. This one-year study across eight sewersheds in Southern Nevada (208 total samples) monitored concentrations of 17 pharmaceuticals and personal care products (PPCPs) and 22 HRS and metabolites, including natural, semi-synthetic, and synthetic opioids. The data indicated a ∼200 % increase in heroin and methamphetamine use since 2010, a stark increase in fentanyl consumption beginning in October 2022, and statistically significant differences in HRS consumption patterns between sewersheds and on certain dates. Notably, the latter outcome highlights the potential for wastewater surveillance data to be strategically translated into public health action to reduce and/or more rapidly respond to overdoses.
Collapse
Affiliation(s)
- Daniel Gerrity
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States.
| | - Katherine Crank
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Edwin C Oh
- Laboratory of Neurogenetics and Precision Medicine, Nevada Institute of Personalized Medicine, Department of Internal Medicine, UNLV School of Medicine, University of Nevada, Las Vegas, Las Vegas, NV 89154, United States
| | - Oscar Quinones
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Rebecca A Trenholm
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| | - Brett J Vanderford
- Applied Research and Development Center, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, United States
| |
Collapse
|
10
|
Leonhardt S, Baumann S, Jürgensen C, Hüter L, Leonhardt J. Role of intravenous ketamine in the pathogenesis of secondary sclerosing cholangitis in critically ill patients: perpetrator or innocent bystander? Answers provided by forensic toxicology. Intensive Care Med 2023; 49:1549-1551. [PMID: 37943301 PMCID: PMC10709220 DOI: 10.1007/s00134-023-07257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Silke Leonhardt
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sven Baumann
- Department of Forensic Toxicology, Institute of Legal Medicine, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| | - Christian Jürgensen
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Campus Charité Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Lars Hüter
- Department of Anesthesiology and Intensive Care Medicine, Klinikum Frankfurt/Oder GmbH, Müllroser Chaussee 7, 15236, Frankfurt (Oder), Germany
| | - Julia Leonhardt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena and Center for Sepsis Control and Care, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
11
|
Wen J, Duan L, Wang B, Dong Q, Liu Y, Huang J, Yu G. Stability and WBE biomarkers possibility of 17 antiviral drugs in sewage and gravity sewers. WATER RESEARCH 2023; 238:120023. [PMID: 37150064 PMCID: PMC10149109 DOI: 10.1016/j.watres.2023.120023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Wastewater-based epidemiology (WBE) is a promising technique for monitoring the rapidly increasing use of antiviral drugs during the COVID-19 pandemic. It is essential to evaluate the in-sewer stability of antiviral drugs in order to determine appropriate biomarkers. This study developed an analytical method for quantification of 17 typical antiviral drugs, and investigated the stability of target compounds in sewer through 4 laboratory-scale gravity sewer reactors. Nine antiviral drugs (lamivudine, acyclovir, amantadine, favipiravir, nevirapine, oseltamivir, ganciclovir, emtricitabine and telbivudine) were observed to be stable and recommended as appropriate biomarkers for WBE. As for the other 8 unstable drugs (abacavir, arbidol, ribavirin, zidovudine, ritonavir, lopinavir, remdesivir and efavirenz), their attenuation was driven by adsorption, biodegradation and diffusion. Moreover, reaction kinetics revealed that the effects of sediments and biofilms were regarded to be independent in gravity sewers, and the rate constants of removal by biofilms was directly proportional to the ratio of surface area against wastewater volume. The study highlighted the potential importance of flow velocity for compound stability, since an increased flow velocity significantly accelerated the removal of unstable biomarkers. In addition, a framework for graded evaluation of biomarker stability was proposed to provide reference for researchers to select suitable WBE biomarkers. Compared with current classification method, this framework considered the influences of residence time and different removal mechanisms, which additionally screened four antiviral drugs as viable WBE biomarkers. This is the first study to report the stability of antiviral drugs in gravity sewers.
Collapse
Affiliation(s)
- Jiaqi Wen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Lei Duan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Bin Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Qian Dong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China
| | - Gang Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory for Environmental Frontier Technologies, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
12
|
Varga L, Fenner K, Singer H, Honti M. From market to environment - consumption-normalised pharmaceutical emissions in the Rhine catchment. WATER RESEARCH 2023; 239:120017. [PMID: 37172372 DOI: 10.1016/j.watres.2023.120017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 05/14/2023]
Abstract
Direct and indirect threats by organic micropollutants can only be reliably assessed and prevented if the exposure to these chemicals is known, which in turn requires a confident estimate of their emitted amounts into the environment. APIs (Active Pharmaceutical Ingredients) enter surface waters mostly through the sewer system and wastewater treatment plants (WWTPs). However, their effluent fluxes are highly variable and influenced by several different factors that challenge robust emission estimates. Here, we defined a dimensionless, theoretically consumption-independent 'escape factor' (kesc) for estimating the amount of APIs (expected to be) present in WWTP effluents. The factor is determined as the proportion of marketed and actually emitted amounts of APIs. A large collection of German and Swiss monitoring datasets were analyzed to calculate stochastic kesc values for 31 APIs, reflecting both the magnitude and uncertainty of consumption-normalised emissions. Escape factors provide an easy-to-use tool for the estimation of average API emissions and expected variability from numerous WWTPs given that consumption data are provided, thereby supporting simulation modeling of the fate of APIs in stream networks or exposure assessments.
Collapse
Affiliation(s)
- Laura Varga
- Department of Sanitary and Environmental Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
| | - Kathrin Fenner
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; Department of Chemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Heinz Singer
- Eawag, Swiss Federal Institute for Aquatic Science and Technology, Dübendorf CH-8600, Switzerland
| | - Mark Honti
- Eötvös Loránd Research Network, ELKH-BME Water Research Group, Budapest H-1111, Hungary
| |
Collapse
|
13
|
Sharma E, Sivakumar M, Kelso C, Zhang S, Shi J, Gao J, Gao S, Zhou X, Jiang G. Effects of sewer biofilms on the degradability of carbapenems in wastewater using laboratory scale bioreactors. WATER RESEARCH 2023; 233:119796. [PMID: 36863281 DOI: 10.1016/j.watres.2023.119796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbapenems are last-resort antibiotics used to treat bacterial infections unsuccessfully treated by most common categories of antibiotics in humans. Most of their dosage is secreted unchanged as waste, thereby making its way into the urban water system. There are two major knowledge gaps addressed in this study to gain a better understanding of the effects of their residual concentrations on the environment and environmental microbiome: development of a UHPLC-MS/MS method of detection and quantification from raw domestic wastewater via direct injection and study of their stability in sewer environment during the transportation from domestic sewers to wastewater treatment plants. The UHPLC-MS/MS method was developed for four carbapenems: meropenem, doripenem, biapenem and ertapenem, and validation was performed in the range of 0.5-10 μg/L for all analytes, with limit of detection (LOD) and limit of quantification (LOQ) values ranging from 0.2-0.5 μg/L and 0.8-1.6 μg/L respectively. Laboratory scale rising main (RM) and gravity sewer (GS) bioreactors were employed to culture mature biofilms with real wastewater as the feed. Batch tests were conducted in RM and GS sewer bioreactors fed with carbapenem-spiked wastewater to evaluate the stability of carbapenems and compared against those in a control reactor (CTL) without sewer biofilms, over a duration of 12 h. Significantly higher degradation was observed for all carbapenems in RM and GS reactors (60 - 80%) as opposed to CTL reactor (5 - 15%), which indicates that sewer biofilms play a significant role in the degradation. First order kinetics model was applied to the concentration data along with Friedman's test and Dunn's multiple comparisons analysis to establish degradation patterns and differences in the degradation observed in sewer reactors. As per Friedman's test, there was a statistically significant difference in the degradation of carbapenems observed depending on the reactor type (p = 0.0017 - 0.0289). The results from Dunn's test indicate that the degradation in the CTL reactor was statistically different from that observed in either RM (p = 0.0033 - 0.1088) or GS (p = 0.0162 - 0.1088), with the latter two showing insignificant difference in the degradation rates observed (p = 0.2850 - 0.5930). The findings contribute to the understanding about the fate of carbapenems in urban wastewater and the potential application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Elipsha Sharma
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Muttucumaru Sivakumar
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Celine Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia; Molecular Horizons, University of Wollongong, Australia
| | - Shuxin Zhang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia
| | - Jiahua Shi
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia
| | - Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzen University, Shenzen, 518060, China
| | - Shuhong Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangming Jiang
- School of Civil, Mining, Environmental & Architectural Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Australia.
| |
Collapse
|
14
|
Zillien C, Posthuma L, Roex E, Ragas A. The role of the sewer system in estimating urban emissions of chemicals of emerging concern. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2022; 21:957-991. [PMID: 36311376 PMCID: PMC9589831 DOI: 10.1007/s11157-022-09638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/02/2022] [Indexed: 05/28/2023]
Abstract
UNLABELLED The use of chemicals by society has resulted in calls for more effective control of their emissions. Many of these chemicals are poorly characterized because of lacking data on their use, environmental fate and toxicity, as well as lacking detection techniques. These compounds are sometimes referred to as contaminants of emerging concern (CECs). Urban areas are an important source of CECs, where these are typically first collected in sewer systems and then discharged into the environment after being treated in a wastewater treatment plant. A combination of emission estimation techniques and environmental fate models can support the early identification and management of CEC-related environmental problems. However, scientific insight in the processes driving the fate of CECs in sewer systems is limited and scattered. Biotransformation, sorption and ion-trapping can decrease CEC loads, whereas enzymatic deconjugation of conjugated metabolites can increase CEC loads as metabolites are back-transformed into their parent respective compounds. These fate processes need to be considered when estimating CEC emissions. This literature review collates the fragmented knowledge and data on in-sewer fate of CECs to develop practical guidelines for water managers on how to deal with in-sewer fate of CECs and highlights future research needs. It was assessed to what extent empirical data is in-line with text-book knowledge and integrated sewer modelling approaches. Experimental half-lives (n = 277) of 96 organic CECs were collected from literature. The findings of this literature review can be used to support environmental modelling efforts and to optimize monitoring campaigns, including field studies in the context of wastewater-based epidemiology. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11157-022-09638-9.
Collapse
Affiliation(s)
- Caterina Zillien
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Leo Posthuma
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Erwin Roex
- Centre for Zoonoses and Environmental Microbiology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ad Ragas
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Gao J, Burgard DA, Tscharke BJ, Lai FY, O'Brien JW, Nguyen HD, Zheng Q, Li J, Du P, Li X, Wang D, Castiglioni S, Cruz-Cruz C, Baz-Lomba JA, Yargeau V, Emke E, Thomas KV, Mueller JF, Thai PK. Refining the estimation of amphetamine consumption by wastewater-based epidemiology. WATER RESEARCH 2022; 225:119182. [PMID: 36215836 DOI: 10.1016/j.watres.2022.119182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Consumption of amphetamine and methamphetamine, two common illicit drugs, has been monitored by wastewater-based epidemiology (WBE) in many countries over the past decade. There is potential for the estimated amount of amphetamine used to be skewed at locations where methamphetamine is also consumed, because amphetamine is also excreted to wastewater following methamphetamine consumption. The present study aims to review the available data in the literature to identify an average ratio of amphetamine/methamphetamine (AMP/METH) that is excreted to wastewater after methamphetamine consumption. This ratio could then be used to refine the estimation of amphetamine consumption in catchments where there is both amphetamine and methamphetamine use. Using data from more than 6000 wastewater samples from Australia where methamphetamine is the dominant illicit amphetamine-type substance on the market, we were able to subtract the contribution of legal sources of amphetamine contribution and obtain the median AMP/METH ratio in wastewater of 0.09. Using this value, the amphetamine derived from methamphetamine consumption can be calculated and subtracted from the total amphetamine mass loads in wastewater samples. Without considering the contribution of amphetamine from methamphetamine use, selected European catchments with comparable consumption of amphetamine and methamphetamine showed up to 83% overestimation of amphetamine use. For catchments with AMP/METH ratio greater than 1.00, the impact of amphetamine from methamphetamine would be negligible; for catchments with AMP/METH ratio in the range of 0.04-0.19, it will be difficult to accurately estimate amphetamine consumption.
Collapse
Affiliation(s)
- Jianfa Gao
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Daniel A Burgard
- Chemistry and Biochemistry Department, University of Puget Sound, Tacoma Washington, 98416, United States.
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-75007 Uppsala, Sweden
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Hien D Nguyen
- School of Mathematics and Physics, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116023, China
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Copytzy Cruz-Cruz
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública. Cuernavaca, Mexico; Servicios de Atención Psiquiatrica. Secretaría de Salud, Mexico
| | | | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610, University St., Montreal, H3A 0C5, QC, Canada
| | - Erik Emke
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, the Netherlands
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, Brisbane, Australia
| |
Collapse
|
16
|
Chappell A, Armstrong B, Jay E, Phung K, McCormick S, Grigg S, Waite B. Illicit drug consumption estimated using wastewater analysis and compared by settlement size in New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156956. [PMID: 35760179 DOI: 10.1016/j.scitotenv.2022.156956] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Estimation of consumption of illicit drugs by wastewater-based epidemiology provides estimates of community drug-use patterns. This study describes monitoring data of three illicit drugs in New Zealand using wastewater-based epidemiology. Wastewater samples were collected at monthly intervals for larger (population ~ 50,000+) cities or in smaller towns where more data was required by authorities. In other smaller towns, samples were collected every 2 months. Samples were extracted and analysed for parent compounds and metabolites of methamphetamine, MDMA, cocaine, heroin and fentanyl consumption using solid-phase extraction followed by liquid chromatography coupled with tandem-mass spectrometry (LC-MS/MS) detection. Back calculations were performed to estimate the consumption of each drug in each catchment area. Methamphetamine was the drug measured with the highest estimated mean consumption rates (724 mg/1000 people per day) in New Zealand. North Island small urban settlements had the highest estimated mean methamphetamine consumption rates (1259 mg/1000 people/day). Cocaine had the lowest estimated consumption rates (9.4 mg/1000 people/day). The highest estimated mean cocaine consumption rate was in North Island major urban settlements (24.4 mg/1000 people/day). Major urban settlements had the highest estimated mean MDMA (420 mg/1000 people/day) and cocaine consumption rates (18.8 mg/1000 people/day). South Island medium urban settlements had unexpectedly high estimated mean consumption rates of MDMA (533 mg/1000 people/day) and cocaine (17.0 mg/1000 people/day). The higher-than-expected estimated cocaine consumption was from one medium urban settlement that is also a popular tourist destination in the South Island. Heroin biomarkers were not detected at any locations, and fentanyl was detected around or below the limit of reporting. This research provides information for appropriate responses for improved social and health investment to support social services associated with illicit drug consumption.
Collapse
Affiliation(s)
- Andrew Chappell
- Institute of Environmental Science and Research Ltd., New Zealand.
| | | | - Emma Jay
- Institute of Environmental Science and Research Ltd., New Zealand
| | - Kaitlyn Phung
- Institute of Environmental Science and Research Ltd., New Zealand
| | - Sara McCormick
- Institute of Environmental Science and Research Ltd., New Zealand
| | - Susie Grigg
- Institute of Environmental Science and Research Ltd., New Zealand
| | - Ben Waite
- Institute of Environmental Science and Research Ltd., New Zealand
| |
Collapse
|
17
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
18
|
Liu A, Lin W, Ming R, Guan W, Wang X, Hu N, Ren Y. Stability of 28 typical prescription drugs in sewer systems and interaction with the biofilm bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129142. [PMID: 35594665 DOI: 10.1016/j.jhazmat.2022.129142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Identifying the attenuation characteristics of drugs in sewage and sewers is one of the important factors to improve the accuracy of wastewater-based epidemiology (WBE) application. In this study, 28 drugs including antidepressants, cardiovascular drugs, antihistamines, anticonvulsants and some of their human metabolites were chosen as the targets to study the hydrolysis, adsorption, and biodegradation at different temperatures in sewage and sewers. The interaction between drugs degradation and community structure of biofilm was also investigated. In the simulated sewers, the removal percentages of 12 parent or drug metabolites are 0-20%, such as demethylvenlafaxine, fluvoxamine, etc., which are highly stable chemicals and suitable to be chosen as biomarkers for WBE back-calculation under appropriate circumstances. Fourteen drugs including venlafaxine and citalopram have removal percentages of 20-60%. While paroxetine and sertraline, with removal percentage of 100%, are the most unstable and cannot be used as biomarkers. Among the 28 drugs, there are 25 drugs that have a higher loss rate in the aerobic sewer than that in the anaerobic sewer in this study. During drug exposure in anaerobic biofilms, species abundance first decreased and then increased. Species abundance and diversity in aerobic biofilm generally showed a decreasing trend. In addition, Proteobacteria and Spirochaetota were the dominant phyla in both sewers.
Collapse
Affiliation(s)
- Anchen Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ruiliang Ming
- Guangzhou CAS Test Technical Services Co., Ltd, Guangzhou 510650, PR China
| | - Wenqi Guan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xinying Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ningyi Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou 510006, PR China.
| |
Collapse
|
19
|
Li Y, Bräunig J, Thai PK, Rebosura M, Mueller JF, Yuan Z. Formation and fate of perfluoroalkyl acids (PFAAs) in a laboratory-scale urban wastewater system. WATER RESEARCH 2022; 216:118295. [PMID: 35316679 DOI: 10.1016/j.watres.2022.118295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/16/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The fate and formation of perfluoroalkyl acids (PFAAs) have been investigated during wastewater treatment processes but studies for the entire urban wastewater system comprising the sewage transport and wastewater and sludge treatment processes are scarce. This work performs an integrated assessment of the formation and fate of PFAAs in the urban wastewater system together with their behavior in separate components of the system. To achieve this, PFAAs were monitored over five weeks in a laboratory-scale urban wastewater system comprising sewer reactors, a wastewater treatment reactor, and an anaerobic sludge digester. The system was fed with real domestic wastewater. The total mass of 11 PFAAs flowing out of the laboratory wastewater system significantly (p < 0.05) increased by 112 ± 14 (mean ± standard error)% compared to that entering the system. Formation of PFAAs was observed in all three biological processes of the system. In anaerobic sewer process, perfluoropentanoic acid (PFPeA), perfluoroheptanoic acid (PFHpA), and perfluorooctane sulfonate (PFOS) exhibited significant formation (p < 0.05) with the mass flow increased by 79 ± 24%, 109 ± 31%, and 57 ± 17%, respectively. During the wastewater treatment process, perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), and perfluorododecanoic acid (PFDoDA) demonstrated significant increase (p < 0.05) in their mass flows by 176 ± 56%, 92 ± 21%, and 516 ± 184%, respectively. In contrast, only PFHxA was found to significantly (p < 0.05) increase by 130 ± 40% during anaerobic digestion process. The total mass of 11 PFAAs discharged through the effluent (201 ± 24 ng day-1) was 5 times higher than that through the digested sludge (29 ± 6 ng day-1).
Collapse
Affiliation(s)
- Yijing Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jennifer Bräunig
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mario Rebosura
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Pagsuyoin SA, Luo J, Chain FJ. Effects of sewer biofilm on the degradation of drugs in sewage: A microcosm study. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127666. [PMID: 34774351 DOI: 10.1016/j.jhazmat.2021.127666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
A thorough understanding of the in-sewer stability of chemical biomarkers is critical in applying wastewater-based surveillance of community drug use. In this study, we examined the effects of sewer biofilm on the degradation of commonly abused drugs, namely, morphine, fentanyl, cocaine, and amphetamine, in wastewater using 48-h batch degradation tests. The experiments were designed to distinguish among abiotic, biochemical, and physical degradation processes, and used mature biofilm obtained from an actual sewer line. Parallel microcosm tests were conducted using wastewater with and without suspended biofilm. Results indicate that first order kinetics describe the degradation of the drugs in both wastewater and wastewater-biofilm microcosms. Amphetamine was most stable in all microcosms, with a maximum removal of only 34% after 48 h. Abiotic chemical transformation played a major role in the degradation of morphine (kab = 0.018 h-1), fentanyl (kab = 0.022 h-1) and cocaine (kab = 0.049 h-1) in wastewater. Fentanyl removal from wastewater was also influenced by the presence of biofilm (kf = 0.015 h-1). This study is the first to report on the effect of sewer biofilm on fentanyl degradation, and highlights the need to account for in-sewer drug stability in wastewater-based drug use estimation, particularly for chemicals with high affinity for organics.
Collapse
Affiliation(s)
- Sheree A Pagsuyoin
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA.
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| | - Frédéric J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, One University Ave, Lowell, MA 01854, USA
| |
Collapse
|
21
|
Shimko KM, O'Brien JW, Li J, Tscharke BJ, Brooker L, Thai PK, Choi PM, Samanipour S, Thomas KV. In-Sewer Stability Assessment of Anabolic Steroids and Selective Androgen Receptor Modulators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1627-1638. [PMID: 35060377 DOI: 10.1021/acs.est.1c03047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater-based epidemiology is a potential complementary technique for monitoring the use of performance- and image-enhancing drugs (PIEDs), such as anabolic steroids and selective androgen receptor modulators (SARMs), within the general population. Assessing in-sewer transformation and degradation is critical for understanding uncertainties associated with wastewater analysis. An electrospray ionization liquid chromatography mass spectrometry method for the quantification of 59 anabolic agents in wastewater influent was developed. Limits of detection and limits of quantification ranged from 0.004 to 1.56 μg/L and 0.01 to 4.75 μg/L, respectively. Method performance was acceptable for linearity (R2 > 0.995, few exceptions), accuracy (68-119%), and precision (1-21%RSD), and applicability was successfully demonstrated. To assess the stability of the selected biomarkers in wastewater, we used laboratory-scale sewer reactors to subject the anabolic agents to simulated realistic sewer environments for 12 h. Anabolic agents, including parent compounds and metabolites, were spiked into freshly collected wastewater that was then fed into three sewer reactor types: control sewer (no biofilm), gravity sewer (aerobic conditions), and rising main sewer (anaerobic conditions). Our results revealed that while most glucuronide conjugates were completely transformed following 12 h in the sewer reactors, 50% of the investigated biomarkers had half-lives longer than 4 h (mean residence time) under gravity sewer conditions. Most anabolic agents were likely subject to biofilm sorption and desorption. These novel results lay the groundwork for any future wastewater-based epidemiology research involving anabolic steroids and SARMs.
Collapse
Affiliation(s)
- Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Lance Brooker
- Australian Sports Drug Testing Laboratory (ASDTL), National Measurement Institute (NMI), 105 Delhi Road, North Ryde, NSW 2113, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
- Water Unit, Health Protection Branch, Queensland Health, 15 Butterfield Street, Herston, QLD 4006, Australia
| | - Saer Samanipour
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
- University of Amsterdam, Van't Hoff Institute for Molecular Sciences, Science Park, Amsterdam 904, The Netherlands
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo 0349, Norway
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
22
|
Li J, Gao J, Zheng Q, Thai PK, Duan H, Mueller JF, Yuan Z, Jiang G. Effects of pH, Temperature, Suspended Solids, and Biological Activity on Transformation of Illicit Drug and Pharmaceutical Biomarkers in Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8771-8782. [PMID: 34157837 DOI: 10.1021/acs.est.1c01516] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In-sewer stability of biomarkers is a critical factor for wastewater-based epidemiology, as it could affect the accuracy of the estimated prevalence of substances in the community. The spatiotemporal variations of environmental and biological conditions in sewers can influence the transformation of biomarkers. To date, the relationship between environmental variables and biomarker stability in sewers is poorly understood. Therefore, this study evaluated the transformation of common illicit drug and pharmaceutical biomarkers in laboratory sewer reactors with different levels of pH, temperature, and suspended solids. The correlations between degradation rates of 14 biomarkers, 3 controlled environmental variables (pH, temperature, and suspended solids concentration), and 3 biological activity indicators (sulfide production rate, methane production rate, and the removal rate of soluble chemical oxygen demand (SCOD)) were assessed using correlation matrix, stepwise regression method, and principal component analysis. The consistent results affirmed the dominant effects of biological activities and pH on biomarker transformation in sewers, particularly for labile compounds, whereas the impact of temperature or suspended solids was less significant. This study enhances the understanding of factors affecting the fate of micropollutants in sewer systems and facilitates the interpretation of WBE results for assessing drug use and public health in communities.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen, 518060, China
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Haoran Duan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
23
|
Lin X, Choi PM, Thompson J, Reeks T, Verhagen R, Tscharke BJ, O'Malley E, Shimko KM, Guo X, Thomas KV, O'Brien JW. Systematic Evaluation of the In-Sample Stability of Selected Pharmaceuticals, Illicit Drugs, and Their Metabolites in Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7418-7429. [PMID: 34014086 DOI: 10.1021/acs.est.1c00396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The in-sample stability of selected pharmaceuticals, illicit drugs, and their metabolites in wastewater was assessed under six different conditions-untreated, addition of hydrochloric acid or sodium metabisulfite solution, combined with or without sterile filtration, and at four representative temperatures, at 35 °C for up to 28 days, 22 °C for 56 days, and 4 °C and -20 °C for 196 days, or freeze/thaw cycles for 24 weeks. Paracetamol, 6-monoacetylmorphine, morphine, and cocaine were poorly stable in untreated wastewater-e.g., with 50% transformation within 1.2-8.1 days at 22 °C, and acidification reduced their in-sample transformations. Acesulfame, carbamazepine, cotinine, methamphetamine, 3,4-methylenedioxy-methamphetamine (MDMA), ketamine, norfentanyl, 3,4-methylenedioxy-N-ethylamphetamine (MDEA), and norbuprenorphine were highly or moderately stable over the observed period, even in untreated wastewater. Fitting of pseudo-first-order kinetics and the Arrhenius equation was used to develop a multistage transformation estimation model combined with an interactive tool to evaluate possible transformation scenarios of selected biomarkers for the processes from sampling to preanalysis. However, as the wastewater composition can vary between sites and over time, the variability of in-sample stability requires further exploration.
Collapse
Affiliation(s)
- Xialu Lin
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Phil M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Jack Thompson
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Timothy Reeks
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Rory Verhagen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Benjamin J Tscharke
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Elissa O'Malley
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Katja M Shimko
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Xiong Guo
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| | - Jake W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, 20 Cornwall Street, Woolloongabba 4102, Queensland, Australia
| |
Collapse
|
24
|
Escolà Casas M, Schröter NS, Zammit I, Castaño-Trias M, Rodriguez-Mozaz S, Gago-Ferrero P, Corominas L. Showcasing the potential of wastewater-based epidemiology to track pharmaceuticals consumption in cities: Comparison against prescription data collected at fine spatial resolution. ENVIRONMENT INTERNATIONAL 2021; 150:106404. [PMID: 33578067 DOI: 10.1016/j.envint.2021.106404] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 01/15/2021] [Indexed: 05/13/2023]
Abstract
While the extent of pharmaceutical consumption within a society/community is of high relevance to its health, economy and general wellbeing, this data is often not readily available. Herein, we strengthen a wastewater-based epidemiology (WBE) approach as a way to track the consumption of pharmaceuticals within the sampled community. This method is less laborious than established questionnaire or databases approaches and allows a higher temporal and spatial resolution. The WBE approach was conducted by sampling influent wastewater from two wastewater treatment plants of different size. A total of 39 targeted compounds were quantified by liquid chromatography coupled with tandem mass spectrometry. The number of prescriptions and the defined daily doses for each prescription was obtained from the reference database of The Catalan Health System to validate the wastewater-based approach. The wastewater sampling and the data inquiry were both executed during the same period (October 2019) and standardised for comparison to treatments per 1,000 inhabitants per day. The back-calculation parameters were improved from previous studies by including the faecal excretion rate of the pharmaceuticals. For prescription only pharmaceuticals, where prescription numbers are expected to be a good estimate of consumption, our WBE approach agreed with 27 out of 32 (<0.7 order of magnitude). Common over-the-counter pharmaceuticals such as acetaminophen, ibuprofen and naproxen showed much higher values for treatments per day per 1,000 inhabitant in wastewater than prescribed, reflecting the usefulness of WBE in obtaining an estimate of the total consumption i.e. with and without a prescription.
Collapse
Affiliation(s)
- M Escolà Casas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - N S Schröter
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain; Forensic Science of the Institute for Interdisciplinary Studies (IIS) of the Faculty of Science, Universiteit van Amsterdam, Science Park 904, 1098XH Amsterdam, the Netherlands
| | - I Zammit
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - M Castaño-Trias
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - S Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - P Gago-Ferrero
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Ll Corominas
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| |
Collapse
|
25
|
Bade R, White JM, Chen J, Baz-Lomba JA, Been F, Bijlsma L, Burgard DA, Castiglioni S, Salgueiro-Gonzalez N, Celma A, Chappell A, Emke E, Steenbeek R, Wang D, Zuccato E, Gerber C. International snapshot of new psychoactive substance use: Case study of eight countries over the 2019/2020 new year period. WATER RESEARCH 2021; 193:116891. [PMID: 33582495 DOI: 10.1016/j.watres.2021.116891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
There is considerable concern around the use of new psychoactive substances (NPS), but still little is known about how much they are really consumed. Analysis by forensics laboratories of seized drugs and post-mortem samples as well as hospital emergency rooms are the first line of identifying both 'new' NPS and those that are most dangerous to the community. However, NPS are not necessarily all seized by law enforcement agencies and only substances that contribute to fatalities or serious afflictions are recorded in post-mortem and emergency room samples. To gain a better insight into which NPS are most prevalent within a community, complementary data sources are required. In this work, influent wastewater was analysed from 14 sites in eight countries for a variety of NPS. All samples were collected over the 2019/2020 New Year period, a time which is characterized by celebrations and parties and therefore a time when more NPS may be consumed. Samples were extracted in the country of origin following a validated protocol and shipped to Australia for final analysis using two different mass spectrometric strategies. In total, more than 200 were monitored of which 16 substances were found, with geographical differences seen. This case study is the most comprehensive wastewater analysis study ever carried out for the identification of NPS and provides a starting point for future, ongoing monitoring of these substances.
Collapse
Affiliation(s)
- Richard Bade
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jason M White
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | - Jingjing Chen
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia
| | | | - Frederic Been
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Daniel A Burgard
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, United States
| | - Sara Castiglioni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Noelia Salgueiro-Gonzalez
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Alberto Celma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Avda, Sos Baynat s/n, E-12071 Castellón, Spain
| | - Andrew Chappell
- Institute of Environmental Science and Research Limited (ESR), Christchurch Science Centre: 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | - Erik Emke
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Ruud Steenbeek
- KWR Water Research Institute, 3433 PE Nieuwegein, the Netherlands
| | - Degao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, P. R. China, 116026
| | - Ettore Zuccato
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Environmental Sciences, Via Mario Negri 2, 20156, Milan Italy
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide 5001, South Australia, Australia.
| |
Collapse
|
26
|
Lin W, Huang Z, Gao S, Luo Z, An W, Li P, Ping S, Ren Y. Evaluating the stability of prescription drugs in municipal wastewater and sewers based on wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142414. [PMID: 33254861 DOI: 10.1016/j.scitotenv.2020.142414] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Wastewater-based epidemiology (WBE) is considered as an effective tool for monitoring drug consumption, which is often obtained by back-calculation using the influent concentration and other parameters of wastewater treatment plants. Lack of information on the transformation of drugs in municipal wastewater and sewers may lead to inaccurate consumption estimation. Fourteen prescription drugs in four major categories of diseases (cardiovascular, diabetes, depression, and asthma) were selected to study their adsorption and biodegradation in wastewater and biofilm sewers under different temperatures, pH and biofilms conditions. The result demonstrated that the decay percentage of drugs in wastewater is increased with temperature. Within 72 h, eleven of these 14 drugs, such as metformin, metoprolol, bezafibrate, etc., have decay percentages below 20% in wastewater, which are considered as stable drugs; and the decay percentages of the other three, monluster, paroxetine, and sertraline, are greater than 20%, which are the most unstable drugs. In lab-scale aerobic and anaerobic sewers, the decay percentages of metformin, glipizide, metoprolol, gemfibrozil, and atorvastatin are less than 20% within 24 h. The decay percentages of venlafaxine, citalopram, fluoxetine, salmeterol, and salbutamol within 24 h are 20%-60% and paroxetine and sertraline are close to or even exceed 80% within 6 h. Biodegradation of drugs in sewers with aerobic or anaerobic biofilms is higher than that in wastewater systems without biofilms. The results showed that when the per capita consumption of drugs is estimated by using the WBE method, the stability of drugs in wastewater and different types of sewers will significantly affect their residual concentrations.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhishan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shiyu Gao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhifeng Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Wenxuan An
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Senwen Ping
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, PR China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, PR China.
| |
Collapse
|
27
|
Li J, Gao J, Thai PK, Mueller JF, Yuan Z, Jiang G. Transformation of Illicit Drugs and Pharmaceuticals in Sewer Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13056-13065. [PMID: 32951431 DOI: 10.1021/acs.est.0c04266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In-sewer stability of human excreted biomarkers is a critical factor of wastewater-based epidemiology in back-estimating illicit drug and pharmaceutical use in the community. Biomarker stability has been investigated in sewers with the presence of biofilms, but the understanding in sewer sediments is still lacking. This study for the first time employed a laboratory sediment reactor to measure 18 illicit drug and pharmaceutical biomarkers under gravity sewer environments with the presence of sediments. Biomarkers exhibited various stability patterns due to transformation processes occurring in the bulk wastewater and sediments. The attenuation of a biomarker by sediments is driven by complex processes involving biodegradation, diffusion, and sorption, which is directly proportional to the ratio of sediment surface area against wastewater volume. The sediment-driven transformation coefficients of biomarkers are higher than the accordingly biofilm-mediated rates because of stronger microbial activities in sediments. Additionally, the stability of most biomarkers was insensitive to the natural pH variation in sewers, except for a few compounds (e.g., methadone, ketamine, and paracetamol) susceptible to pH changes. In general, this study delineates the stability data of various biomarkers in gravity sewers with sediments, which are novel and long-missing information for wastewater-based epidemiology and improve the reliability of back-estimation in complex sewer networks.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
- College of Chemistry and Environmental Engineering, Shenzhen University, 1066 Xueyuan Avenue, Shenzhen 518060, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| |
Collapse
|
28
|
Anderson JC, Jabari P, Parajas A, Loeb E, Luong KH, Vahedi A, Wong CS. Evaluation of cold-weather wastewater nitrification technology for removal of polar chemicals of emerging concern from rural Manitoba wastewaters. CHEMOSPHERE 2020; 253:126711. [PMID: 32464769 DOI: 10.1016/j.chemosphere.2020.126711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Aerated lagoons, typically used by small communities, often provide limited removal of wastewater nutrients. Given increasingly stringent wastewater standards, it is imperative that effective, but economical and easy-to-operate, treatment technologies be developed. The Submerged Attached Growth Reactor (SAGR®) is a treatment process developed to perform nitrification near freezing temperatures. Previous tests on full-scale installations have shown that SAGR could consistently remove ammonia to below current Canadian standards and provide additional total suspended solids and biochemical oxygen demand removal. In this study, we evaluated removal of polar chemicals of emerging concern (CECs), including pharmaceuticals, personal care products, and pesticides, at SAGR installations in two Manitoba First Nations communities (MCN and LPFN) under cold winter conditions. Both showed some removal of diclofenac, naproxen, clarithromycin, metoprolol, and trimethoprim, likely by biotransformation. Average naproxen removal was 21% (2.53 × 103 ng L-1) in MCN and 64% (1.58 × 103 ng L-1) in LPFN. Atenolol was well-removed by SAGR, by 80% on average (range of 64%-94%). Clarithromycin, metoprolol, and trimethoprim removal was similar within and between systems, ranging from 54% to 76% (30.8-3.07 × 102 ng L-1 removed). Carbamazepine was detected in nearly all samples, but was not well-removed, consistent with other treatment studies. Overall, results showed that SAGR technology could moderately remove CECs, while providing the designed treatment performance for other parameters. This work will help to improve our understanding of wastewater treatment in small and/or remote communities with limited infrastructure and challenging cold-weather conditions.
Collapse
Affiliation(s)
- J C Anderson
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - P Jabari
- Nexom Inc., Winnipeg, MB, R2J 3R8, Canada
| | - A Parajas
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - E Loeb
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - K H Luong
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - A Vahedi
- Red River College, Department of Civil Engineering Technology, Winnipeg, MB, R3H 0J9, Canada
| | - C S Wong
- Richardson College for the Environment, The University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada; Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, USA; Jinan University, School of Environment, Guangzhou, 510632, China.
| |
Collapse
|
29
|
Zhang Y, Duan L, Wang B, Liu CS, Jia Y, Zhai N, Blaney L, Yu G. Efficient multiresidue determination method for 168 pharmaceuticals and metabolites: Optimization and application to raw wastewater, wastewater effluent, and surface water in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114113. [PMID: 32044613 DOI: 10.1016/j.envpol.2020.114113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/19/2020] [Accepted: 01/30/2020] [Indexed: 05/23/2023]
Abstract
New analytical methods are needed to efficiently measure the growing list of priority pharmaceuticals in environmental samples. In this regard, a rapid, sensitive, and robust method was developed for quantitation of 168 pharmaceuticals and pharmaceutical metabolites using solid-phase extraction (SPE) and liquid chromatography with tandem mass spectrometry. The extraction protocol and instrumental efficiency were specifically addressed to increase analytical workload and throughput. The optimized protocols, which are five times more efficient than US EPA Method 1694, enabled analyte recoveries that ranged from 77% to 117% for 162 analytes with method quantitation limits (MQLs) as low as 0.1 ng L-1. To verify the suitability of the improved analytical method for environmental samples, 24-h composite samples of raw wastewater and wastewater effluent, along with downstream surface water, were analyzed. Overall, 143/168 target compounds were identified in at least one of the samples, and 130/168 analytes were present at concentrations above their MQLs. The total mass concentration of the measured analytes decreased by 93% during wastewater treatment. The analyte concentrations in the wastewater effluent were comparable to those measured in surface water 1 km downstream of the wastewater discharge point. Ultimately, the comprehensive method will serve as an important tool to inform the occurrence, fate, transport, and toxicity of a large suite of priority pharmaceuticals and pharmaceutical metabolites in natural and engineered systems.
Collapse
Affiliation(s)
- Yizhe Zhang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Lei Duan
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China.
| | - Cristina Su Liu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanbo Jia
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd Beijing Branch Company, Beijing, 100015, China
| | - Nannan Zhai
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd Beijing Branch Company, Beijing, 100015, China
| | - Lee Blaney
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD, 21250, United States
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| |
Collapse
|
30
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
31
|
Du P, Zheng Q, Thomas KV, Li X, Thai PK. A revised excretion factor for estimating ketamine consumption by wastewater-based epidemiology - Utilising wastewater and seizure data. ENVIRONMENT INTERNATIONAL 2020; 138:105645. [PMID: 32203805 DOI: 10.1016/j.envint.2020.105645] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The rate of drug excretion (excretion factor) is a critical parameter for monitoring drug consumption in the population by wastewater-based epidemiology (WBE). Previous studies have refined excretion factors for common illicit drugs, such as cocaine, amphetamine, methamphetamine, heroin, to improve the accuracy and reduce uncertainty in back-calculating consumption. Nevertheless, for ketamine, one of the most prevalent psychoactive substances, a careful review of its excretion factors has not been performed due to limited pharmacokinetic data. Here we review WBE studies and seizure data to refine and validate the excretion factors for ketamine and norketamine. The average ketamine/norketamine ratio in wastewater (5.36) was much higher than that found in urine (0.64), which means that the excretion factors derived only from pharmacokinetics data are not appropriate. Based on the comparison of the ratio between estimated consumptions of ketamine and methamphetamine by WBE with their corresponding ratio in official seizure data, a revised WBE excretion factor of 20% was proposed for ketamine following this review and applied to estimate the ketamine consumption in China. The revised estimates of ketamine consumption corresponded well with drug statistics. This suggests that the revised ketamine excretion factor is appropriate for estimating ketamine consumption by WBE. Systematic review of WBE studies is a suitable approach to refine the excretion factors for substances with inadequate pharmacokinetic data.
Collapse
Affiliation(s)
- Peng Du
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China; Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qiuda Zheng
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Xiqing Li
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland 4102, Australia.
| |
Collapse
|
32
|
Choi PM, Li J, Gao J, O'Brien JW, Thomas KV, Thai PK, Jiang G, Mueller JF. Considerations for assessing stability of wastewater-based epidemiology biomarkers using biofilm-free and sewer reactor tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136228. [PMID: 31887516 DOI: 10.1016/j.scitotenv.2019.136228] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology is an increasingly popular method for analysing drugs or metabolites excreted by populations. The in-sewer transformation of biomarkers is important but often receives little consideration in published studies. Many studies publish stability under biofilm-free conditions only, which do not represent actual sewer conditions. This study aims to fill a gap in the field by comparing the wastewater stability of 33 licit drug and pharmaceutical biomarkers in biofilm-free (BFF) conditions to stability in sewer biofilm reactors. All but one biomarker was stable under BFF conditions, whereas most transformed in sewer biofilm reactors. Sewer reactor results tended to overestimate the degradation in pilot and actual sewers, whereas BFF stability had no clear relationship to stability in pilot and actual sewers. Our results provide additional basis for more informed interpretation of biofilm-free and sewer reactor stability results for past and future WBE studies.
Collapse
Affiliation(s)
- Phil Min Choi
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia.
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Jake William O'Brien
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Kevin Victor Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Phong Khanh Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Jochen Friedrich Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
33
|
Bijlsma L, Burgard DA, Been F, Ort C, Matias J, Yargeau V. The estimation of cannabis consumption through wastewater analysis. ANALYSIS OF CANNABIS 2020. [DOI: 10.1016/bs.coac.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
O'Brien JW, Choi PM, Li J, Thai PK, Jiang G, Tscharke BJ, Mueller JF, Thomas KV. Evaluating the stability of three oxidative stress biomarkers under sewer conditions and potential impact for use in wastewater-based epidemiology. WATER RESEARCH 2019; 166:115068. [PMID: 31542546 DOI: 10.1016/j.watres.2019.115068] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
Wastewater contains a wealth of information about the population who contribute to it including biological and chemical markers of human activity and exposures. F2-isoprostanes have been proposed as oxidative stress biomarkers that can be measured in wastewater to provide a measure of oxidative stress at the population level. While an association between tobacco use and their level in wastewater has been demonstrated, an in-sewer stability assessment has not been conducted to support their use as oxidative stress biomarkers for wastewater-based epidemiology studies. In this study we investigated the stability of 8-iso-prostaglandin F2α (PGF2α), its metabolite dinor-11β-Prostaglandin F2α (dnPGF2α) and Prostaglandin E2 (PGE2) (representative of other classes of prostaglandins) in laboratory-scale sewer reactors simulating real sewers. PGF2α, dnPGF2α and PGE2 were all found to be sufficiently stable under typical sewer conditions therefore satisfying the stability requirement of wastewater-based epidemiology population health biomarkers.
Collapse
Affiliation(s)
- Jake W O'Brien
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| | - Phil M Choi
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jiaying Li
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia
| | - Phong K Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Guangming Jiang
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD, 4072, Australia; School of Civil, Mining & Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, NSW, 2522, Australia
| | - Benjamin J Tscharke
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Kevin V Thomas
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| |
Collapse
|
35
|
Delli Compagni R, Polesel F, von Borries KJF, Zhang Z, Turolla A, Antonelli M, Vezzaro L. Modelling micropollutant fate in sewer systems - A new systematic approach to support conceptual model construction based on in-sewer hydraulic retention time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 246:141-149. [PMID: 31176178 DOI: 10.1016/j.jenvman.2019.05.139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/11/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Conceptual sewer models are useful tools to assess the fate of micropollutants (MPs) in integrated wastewater systems. However, the definition of their model structure is highly subjective, and obtaining a realistic simulation of the in-sewer hydraulic retention time (HRT) is a major challenge without detailed hydrodynamic information or with limited measurements from the sewer network. This study presents an objective approach for defining the structure of conceptual sewer models in view of modelling MP fate in large urban catchments. The proposed approach relies on GIS-based information and a Gaussian mixture model to identify the model optimal structure, providing a multi-catchment conceptual model that accounts for HRT variability across urban catchment. This approach was tested in a catchment located in a highly urbanized Italian city and it was compared against a traditional single-catchment conceptual model (using a single average HRT) for the fate assessment of reactive MPs. Results showed that the multi-catchment model allows for a successful simulation of dry weather flow patterns and for an improved simulation of MP fate compared to the classical single-catchment model. Specifically, results suggested that a multi-catchment model should be preferred for (i) degradable MPs with half-life lower than the average HRT of the catchment and (ii) MPs undergoing formation from other compounds (e.g. human metabolites); or (iii) assessing MP loads entering the wastewater treatment plant from point sources, depending on their location in the catchment. Overall, the proposed approach is expected to ease the building of conceptual sewer models, allowing to properly account for HRT distribution and consequently improving MP fate estimation.
Collapse
Affiliation(s)
- Riccardo Delli Compagni
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Fabio Polesel
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark; DHI A/S, Agern Allé, 2970, Hørsholm, Denmark
| | - Kerstin J F von Borries
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Zhen Zhang
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark
| | - Andrea Turolla
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy
| | - Manuela Antonelli
- Department of Civil and Environment Engineering (DICA), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20129, Milan, Italy.
| | - Luca Vezzaro
- DTU Environment, Technical University of Denmark, Bygningstorvet, Building 115, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
36
|
Thai PK, O'Brien JW, Banks APW, Jiang G, Gao J, Choi PM, Yuan Z, Mueller JF. Evaluating the in-sewer stability of three potential population biomarkers for application in wastewater-based epidemiology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:248-253. [PMID: 30928753 DOI: 10.1016/j.scitotenv.2019.03.231] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/21/2019] [Accepted: 03/15/2019] [Indexed: 05/21/2023]
Abstract
Endogenous chemicals specific to human metabolism have been suggested to be good candidates for markers of population size in wastewater-based epidemiology (WBE). So far, creatinine is the only endogenous chemical to be assessed against the criteria of in-sewer stability. This study thus aimed to evaluate the fate of three other endogenous compounds, 5-hydroxy indole acetic acid (5-HIAA), cortisol and androstenedione, under different sewer conditions using laboratory-scale sewer reactors. The results showed that while all compounds were stable in wastewater only (i.e. without biofilm), cortisol and androstenedione degraded quickly in sewers with the presence of sewer biofilms. The degradation followed first-order kinetics similar to that of creatinine. In contrast, 5-HIAA was relatively stable in sewer reactors. This study also recognised the impact of wastewater pH on the detectability of 5-HIAA using a LC-MS/MS direct injection method. In samples acidified to pH 2, the method did not allow routine detection/quantification of 5-HIAA whereas in non-acidified samples the method was sufficiently sensitive for routine quantification of 5-HIAA. The stability of 5-HIAA in sewers and the possibility to measure it using a simple and rapid analytical method corroborate that 5-HIAA may be a suitable biomarker for estimation of population size in WBE.
Collapse
Affiliation(s)
- Phong K Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| | - Jake W O'Brien
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Andrew P W Banks
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Guangming Jiang
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Jack Gao
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Phil M Choi
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Zhiguo Yuan
- The University of Queensland, Advanced Water Management Centre, St Lucia, QLD 4072, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
37
|
Kulandaivelu J, Gao J, Song Y, Shrestha S, Li X, Li J, Doederer K, Keller J, Yuan Z, Mueller JF, Jiang G. Removal of Pharmaceuticals and Illicit Drugs from Wastewater Due to Ferric Dosing in Sewers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6245-6254. [PMID: 31067854 DOI: 10.1021/acs.est.8b07155] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ferric (Fe3+) salt dosing is an efficient sulfide control strategy in the sewer network, with potential for multiple benefits including phosphorus removal in the biological reactors and sulfide emission control in the anaerobic digesters of wastewater treatment plant (WWTP). This paper extends the knowledge on the benefit of iron dosing by exploring its impact on the fate of organic micropollutants (MPs) in the wastewater using sewer reactors simulating a rising main sewer pipe. The sulfide produced by the sewer biofilms reacted with Fe3+ forming black colored iron sulfide (FeS). Among the selected MPs, morphine, methadone, and atenolol had >90% initial rapid removal within 5 min of ferric dosing in the sewer reactor. The ultimate removal after 6 h of retention time in the reactor reached 93-97%. Other compounds, ketamine, codeine, carbamazepine, and acesulfame had 30-70% concentration decrease. The ultimate removal varied between 35 and 70% depending on the biodegradability of those MPs. In contrast, paracetamol had no initial removal. The rapid removal of MPs was likely due to adsorption to the FeS surface, which is further confirmed by batch tests with different FeS concentrations. The results showed a direct relationship between the removal of MPs and FeS concentration. The transformation kinetics of these compounds in the reactor without Fe3+ dosing is in good agreement with biodegradation associated with the sewer biofilms in the reactor. This study revealed a significant additional benefit of dosing ferric salts in sewers, that is, the removal of MPs before the sewage enters the WWTP.
Collapse
Affiliation(s)
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Woollongabba , Queensland 4072 , Australia
| | - Yarong Song
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Sohan Shrestha
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Xuan Li
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jiaying Li
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Katrin Doederer
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jurg Keller
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Woollongabba , Queensland 4072 , Australia
| | - Guangming Jiang
- Advanced Water Management Centre , The University of Queensland , St. Lucia , Queensland 4072 , Australia
- Department of Chemistry and Chemical Engineering , Sichuan University of Arts and Science , Sichuan , China
- School of Civil, Mining and Environmental Engineering , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
38
|
Li J, Gao J, Thai PK, Shypanski A, Nieradzik L, Mueller JF, Yuan Z, Jiang G. Experimental Investigation and Modeling of the Transformation of Illicit Drugs in a Pilot-Scale Sewer System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4556-4565. [PMID: 30852889 DOI: 10.1021/acs.est.8b06169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In-sewer stability of illicit drug biomarkers has been evaluated by several reactor-based studies, but less has been done in sewer pipes. Experiments conducted in sewer pipes have advantages over lab-scale reactors in providing more realistic biomarker stability due to the flow and biological dynamics. This study assessed the transportation and transformation of seven illicit drug biomarker compounds in a pilot-scale rising main and a gravity sewer pipe. Biomarkers presented diverse stability patterns in the pilot sewers, based on which a drug transformation model was calibrated. This model was subsequently validated using transformation data sets from the literature, aiming to demonstrate the predictability of the pilot-based transformation coefficients under varying sewer conditions. Furthermore, transformation coefficients for five investigated biomarkers were generated from four studies, and their prediction capabilities under the pilot-sewer conditions were jointly assessed using performance statistics. The transformation model was successful in simulating the in-sewer stability for most illicit drugs. However, further study is required to delineate the sources and pathways for those compounds with potential formations to be simulated in the transformation model. Overall, the transformation model calibrated using the pilot-sewer data is a credible tool for the application of wastewater-based epidemiology.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Adam Shypanski
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Ludwika Nieradzik
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences , The University of Queensland , Brisbane , Queensland 4102 , Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Guangming Jiang
- Advanced Water Management Centre , The University of Queensland , St Lucia , Queensland 4072 , Australia
- Department of Chemistry and Chemical Engineering , Sichuan University of Arts and Science , Sichuan , China
- School of Civil, Mining and Environmental Engineering , University of Wollongong , Wollongong , New South Wales 2522 , Australia
| |
Collapse
|
39
|
Gao J, Li J, Jiang G, Shypanski AH, Nieradzik LM, Yuan Z, Mueller JF, Ort C, Thai PK. Systematic evaluation of biomarker stability in pilot scale sewer pipes. WATER RESEARCH 2019; 151:447-455. [PMID: 30641462 DOI: 10.1016/j.watres.2018.12.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Transformation of biomarkers (or their stability) during sewer transport is an important issue for wastewater-based epidemiology (WBE). Most studies so far have been conducted in the laboratory, which usually employed unrealistic conditions. In the present study, we utilized a pilot sewer system including a gravity pipe and a rising main pipe to investigate the fate of 24 pharmaceutical biomarkers. A programmable logic controller was used to control and monitor the system including sewer operational conditions and wastewater properties. Sequential samples were collected that can represent hydraulic retention time (HRT) of up to 8 h in a rising main and 4 h in a gravity sewer. Wastewater parameters and biomarker concentrations were analysed to evaluate the stability and transformation kinetics. The wastewater parameters of the pilot system were close to the conditions of real sewers. The findings of biomarker transformation were also close to real sewer data with seventeen biomarkers reported as stable while buprenorphine, caffeine, ethyl-sulfate, methadone, paracetamol, paraxanthine and salicylic acid degraded to variable extents. Both zero-order and first-order kinetics were used to model the degradation of unstable biomarkers and interestingly the goodness of fit R2 for the zero-order model was higher than the first-order model for all unstable biomarkers in the rising main. The pilot sewer system simulates more realistic conditions than benchtop laboratory setups and may provide a more accurate approach for assessing the in-sewer transformation kinetics and stability of biomarkers.
Collapse
Affiliation(s)
- Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Jiaying Li
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Adam H Shypanski
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ludwika M Nieradzik
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland
| | - Phong K Thai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
40
|
Ramin P, Polesel F, Brock AL, Plósz BG. The impact of temperature on the transformation of illicit drug biomarkers in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1612-1616. [PMID: 30743873 DOI: 10.1016/j.scitotenv.2018.06.307] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 06/09/2023]
Abstract
Temperature is one of the key factors, influencing the transformation kinetics of organic chemicals. In the context of wastewater-based epidemiology, however, temperature differences among sewer catchments and within the same catchment (due to, e.g., seasonal variations) have been neglected to date as a factor influencing the estimation of illicit drug consumption. In this study, we assessed the influence of temperature on the transformation of biomarkers in wastewater and its ensuing implications on the back-calculation of chemical consumption rate in urban catchments using the example of selected illicit drugs. Literature data, obtained in laboratory-scale experiments, on the stability of drug biomarkers in untreated wastewater at trace levels was systematically reviewed, and transformation rates obtained at different temperatures were collected. Arrhenius-based equations were fitted to empirical data and identified to describe the transformation of selected cocaine and morphine biomarkers at applicability temperature range (from 2-9 °C to 30-31 °C), with estimated exponential Arrhenius coefficients between 1.04 and 1.18. These empirically-derived relationships were used to assess the influence of temperature on the transformation of drug biomarkers during in-sewer transport and its effect on the back-calculation of drug consumption rate in hypothetical urban catchment scenario simulations. Up to 4-fold increase in removal efficiency was estimated when wastewater temperature increased from 15 °C to 25 °C. Findings from this study can help reducing the uncertainty intrinsic to wastewater-based epidemiology studies, and will be beneficial in comparing chemical consumption estimates from different catchments worldwide.
Collapse
Affiliation(s)
- Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark.
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
41
|
Kinyua J, Negreira N, McCall AK, Boogaerts T, Ort C, Covaci A, van Nuijs ALN. Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:331-340. [PMID: 29627557 DOI: 10.1016/j.scitotenv.2018.03.253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 05/24/2023]
Abstract
Recent studies have demonstrated the role of biofilms on the stability of drug residues in wastewater. These factors are pertinent in wastewater-based epidemiology (WBE) when estimating community-level drug use. However, there is scarce information on the biotransformation of drug residues in the presence of biofilms and the potential use of transformation products (TPs) as biomarkers in WBE. The purpose of this work was to investigate the formation of TPs in sewage reactors in the presence of biofilm mimicking conditions during in-sewer transport. Synthetic cathinones (methylenedioxypyrovalerone, methylone, mephedrone) and phenethylamines (4-methoxy-methamphetamine and 4-methoxyamphetamine) were incubated in individual reactors over a 24h period. Analysis of parent species and TPs was carried out using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToFMS). Identification of TPs was done using suspect and non-target workflows. In total, 18 TPs were detected and identified with reduction of β-keto group, demethylenation, demethylation, and hydroxylation reactions observed for the synthetic cathinones. For the phenethylamines, N- and O-demethylation reactions were identified. Overall, the experiments showed varying stability for the parent species in wastewater in the presence of biofilms. The newly identified isomeric forms of TPs particularly for methylone and mephedrone can be used as potential target biomarkers for WBE studies due to their specificity and detectability within a 24h residence time.
Collapse
Affiliation(s)
- Juliet Kinyua
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Noelia Negreira
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Tim Boogaerts
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Alexander L N van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
42
|
Gao J, Li J, Jiang G, Yuan Z, Eaglesham G, Covaci A, Mueller JF, Thai PK. Stability of alcohol and tobacco consumption biomarkers in a real rising main sewer. WATER RESEARCH 2018; 138:19-26. [PMID: 29571085 DOI: 10.1016/j.watres.2018.03.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 05/27/2023]
Abstract
Since alcohol and tobacco consumption are among the leading causes of population health harm, it is very important to understand the consumption behaviour to develop effective harm reduction strategies. Wastewater-based epidemiology (WBE) is a potential tool for estimating their consumption, but there are several uncertainties that need to be determined, including the stability of biomarkers in the sewer. Utilizing a real rising main sewer, this study investigated the stability of alcohol and tobacco consumption biomarkers. Rhodamine and acesulfame were used as flow tracer and benchmarker to understand the transportation of wastewater in the sewer with a hydraulic retention time between 2.7 and 5.0 h. Ethyl sulphate (EtS) and ethyl glucuronide (EtG), two biomarkers of alcohol consumption, were found to have different in-sewer stability, with EtS much more stable than EtG. The degradation rate of EtS is approximately 8% per hour, while EtG has a half-life of 1.9 h. Formation of nicotine, cotinine and trans-3'-hydroxycotinine, three biomarkers for tobacco consumption, was observed during the experiment, probably due to deconjugation of their glucuronide chemicals. The deconjugation process has prevented the determination of actual stability of the three chemicals. However, it is suggested that cotinine is relatively stable, while nicotine and trans-3'-hydroxycotinine degrade to a certain degree in the sewer system. According to our findings, the in-sewer degradation is more important during the interpretation of alcohol consumption estimation than for tobacco consumption estimation.
Collapse
Affiliation(s)
- Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Jiaying Li
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Geoff Eaglesham
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Phong K Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
43
|
Causanilles A, Rojas Cantillano D, Emke E, Bade R, Baz-Lomba JA, Castiglioni S, Castrignanò E, Gracia-Lor E, Hernández F, Kasprzyk-Hordern B, Kinyua J, McCall AK, van Nuijs ALN, Plósz BG, Ramin P, Rousis NI, Ryu Y, Thomas KV, de Voogt P. Comparison of phosphodiesterase type V inhibitors use in eight European cities through analysis of urban wastewater. ENVIRONMENT INTERNATIONAL 2018; 115:279-284. [PMID: 29621715 DOI: 10.1016/j.envint.2018.03.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 05/11/2023]
Abstract
In this work a step forward in investigating the use of prescription drugs, namely erectile dysfunction products, at European level was taken by applying the wastewater-based epidemiology approach. 24-h composite samples of untreated wastewater were collected at the entrance of eight wastewater treatment plants serving the catchment within the cities of Bristol, Brussels, Castellón, Copenhagen, Milan, Oslo, Utrecht and Zurich. A validated analytical procedure with direct injection of filtered aliquots by liquid chromatography-tandem mass spectrometry was applied. The target list included the three active pharmaceutical ingredients (sildenafil, tadalafil and vardenafil) together with (bio)transformation products and other analogues. Only sildenafil and its two human urinary metabolites desmethyl- and desethylsildenafil were detected in the samples with concentrations reaching 60 ng L-1. The concentrations were transformed into normalized measured loads and the estimated actual consumption of sildenafil was back-calculated from these loads. In addition, national prescription data from five countries was gathered in the form of the number of prescribed daily doses and transformed into predicted loads for comparison. This comparison resulted in the evidence of a different spatial trend across Europe. In Utrecht and Brussels, prescription data could only partly explain the total amount found in wastewater; whereas in Bristol, the comparison was in agreement; and in Milan and Oslo a lower amount was found in wastewater than expected from the prescription data. This study illustrates the potential of wastewater-based epidemiology to investigate the use of counterfeit medication and rogue online pharmacy sales.
Collapse
Affiliation(s)
- Ana Causanilles
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Daniela Rojas Cantillano
- Centro de Recursos Hídricos para Centroamérica y El Caribe (HIDROCEC), Sede Regional Chorotega, Universidad Nacional, Costa Rica
| | - Erik Emke
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Richard Bade
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Sara Castiglioni
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Erika Castrignanò
- University of Bath, Department of Chemistry, Faculty of Science, Bath BA2 7AY, United Kingdom
| | - Emma Gracia-Lor
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain; IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Félix Hernández
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | | | - Juliet Kinyua
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Alexander L N van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Benedek G Plósz
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, DK-2800 Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, DK-2800 Kgs. Lyngby, Denmark; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark
| | - Nikolaos I Rousis
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy
| | - Yeonsuk Ryu
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349 Oslo, Norway; Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 39 Kessels Road, Coopers Plains, QLD 4108, Australia
| | - Pim de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Banks APW, Lai FY, Mueller JF, Jiang G, Carter S, Thai PK. Potential impact of the sewer system on the applicability of alcohol and tobacco biomarkers in wastewater-based epidemiology. Drug Test Anal 2018; 10:530-538. [PMID: 28688172 DOI: 10.1002/dta.2246] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/19/2017] [Accepted: 07/05/2017] [Indexed: 01/01/2023]
Abstract
Understanding the actual consumption of alcohol and tobacco in the population is important for forming public health policy. For this purpose, wastewater-based epidemiology has been applied as a complementary method to estimate the overall alcohol and tobacco consumption in different communities. However, the stability of their consumption biomarkers - ethyl sulfate, ethyl glucuronide, cotinine, and trans-3'-hydroxycotinine - in the sewer system has not yet been assessed. This study aimed to conduct such assessment using sewer reactors mimicking conditions of rising main, gravity sewer, and wastewater alone, over a 12-hour period. The results show that cotinine and trans-3'-hydroxycotinine are relatively stable under all sewer conditions while ethyl sulfate was only stable in wastewater alone and gradually degraded in rising main and gravity sewer conditions. Ethyl glucuronide quickly degraded in all reactors. These findings suggest that cotinine and trans-3'-hydroxycotinine are good biomarkers to estimate tobacco consumption; ethyl sulfate may be used as a biomarker to estimate alcohol consumption, but its in-sewer loss should be accounted for in the calculation of consumption estimates. Ethyl glucuronide, and probably most of glucuronide compounds, are not suitable biomarkers to be used in wastewater-based epidemiology due to their in-sewer instability.
Collapse
Affiliation(s)
- Andrew P W Banks
- Queensland Alliance for Environmental Health Sciences (QAEHS), Coopers Plains QLD, The University of Queensland, Australia
| | - Foon Yin Lai
- Queensland Alliance for Environmental Health Sciences (QAEHS), Coopers Plains QLD, The University of Queensland, Australia
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Belgium
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), Coopers Plains QLD, The University of Queensland, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Steve Carter
- Queensland Health Forensic Scientific Services, Queensland Government, Coopers Plains, QLD, Australia
| | - Phong K Thai
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
45
|
Castrignanò E, Yang Z, Bade R, Baz-Lomba JA, Castiglioni S, Causanilles A, Covaci A, Gracia-Lor E, Hernandez F, Kinyua J, McCall AK, van Nuijs ALN, Ort C, Plósz BG, Ramin P, Rousis NI, Ryu Y, Thomas KV, de Voogt P, Zuccato E, Kasprzyk-Hordern B. Enantiomeric profiling of chiral illicit drugs in a pan-European study. WATER RESEARCH 2018; 130:151-160. [PMID: 29216482 DOI: 10.1016/j.watres.2017.11.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 06/07/2023]
Abstract
The aim of this paper is to present the first study on spatial and temporal variation in the enantiomeric profile of chiral drugs in eight European cities. Wastewater-based epidemiology (WBE) and enantioselective analysis were combined to evaluate trends in illicit drug use in the context of their consumption vs direct disposal as well as their synthetic production routes. Spatial variations in amphetamine loads were observed with higher use in Northern European cities. Enantioselective analysis showed a general enrichment of amphetamine with the R-(-)-enantiomer in wastewater indicating its abuse. High loads of racemic methamphetamine were detected in Oslo (EF = 0.49 ± 0.02). This is in contrast to other European cities where S-(+)-methamphetamine was the predominant enantiomer. This indicates different methods of methamphetamine synthesis and/or trafficking routes in Oslo, compared with the other cities tested. An enrichment of MDMA with the R-(-)-enantiomer was observed in European wastewaters indicating MDMA consumption rather than disposal of unused drug. MDA's chiral signature indicated its enrichment with the S-(+)-enantiomer, which confirms its origin from MDMA metabolism in humans. HMMA was also detected at quantifiable concentrations in wastewater and was found to be a suitable biomarker for MDMA consumption. Mephedrone was only detected in wastewater from the United Kingdom with population-normalised loads up to 47.7 mg 1000 people-1 day-1. The enrichment of mephedrone in the R-(+)-enantiomer in wastewater suggests stereoselective metabolism in humans, hence consumption, rather than direct disposal of the drug. The investigation of drug precursors, such as ephedrine, showed that their presence was reasonably ascribed to their medical use.
Collapse
Affiliation(s)
- Erika Castrignanò
- Department of Chemistry, Faculty of Science, University of Bath, Bath, BA2 7AY, UK.
| | - Zhugen Yang
- Department of Chemistry, Faculty of Science, University of Bath, Bath, BA2 7AY, UK; Division of Biomedical Engineering, School of Engineering, University of Glasgow, Oakfield Road, Glasgow G12 8LT, UK
| | - Richard Bade
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Jose A Baz-Lomba
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway
| | - Sara Castiglioni
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy
| | - Ana Causanilles
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium
| | - Emma Gracia-Lor
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain; IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy
| | - Felix Hernandez
- Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain
| | - Juliet Kinyua
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium
| | - Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Alexander L N van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk-Antwerp, Belgium
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dübendorf, Switzerland
| | - Benedek G Plósz
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800M, Kgs. Lyngby, Denmark; Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, DK-2800M, Kgs. Lyngby, Denmark; Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark
| | - Nikolaos I Rousis
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy
| | - Yeonsuk Ryu
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalleen 21, 0349, Oslo, Norway; Queensland Alliance for Environmental Health Science (QAEHS), University of Queensland, 39 Kessels Road, Coopers Plains, QLD, 4108, Australia
| | - Pim de Voogt
- KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB, Nieuwegein, The Netherlands; IBED-University of Amsterdam, The Netherlands
| | - Ettore Zuccato
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy
| | | |
Collapse
|
46
|
Li J, Gao J, Thai PK, Sun X, Mueller JF, Yuan Z, Jiang G. Stability of Illicit Drugs as Biomarkers in Sewers: From Lab to Reality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1561-1570. [PMID: 29285935 DOI: 10.1021/acs.est.7b05109] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Systematic sampling and analysis of wastewater samples are increasingly adopted for estimating drug consumption in communities. An understanding of the in-sewer transportation and transformation of illicit drug biomarkers is critical for reducing the uncertainty of this evidence-based estimation method. In this study, biomarkers stability was investigated in lab-scale sewer reactors with typical sewer conditions. Kinetic models using the Bayesian statistics method were developed to simulate biomarkers transformation in reactors. Furthermore, a field-scale study was conducted in a real pressure sewer pipe with the systematical spiking and sampling of biomarkers and flow tracers. In-sewer degradation was observed for some spiked biomarkers over typical hydraulic retention time (i.e., a few hours). Results indicated that sewer biofilms prominently influenced biomarker stability with the retention time in wastewater. The fits between the measured and the simulated biomarkers transformation demonstrated that the lab-based model could be extended to estimate the changes of biomarkers in real sewers. Results also suggested that the variabilities of biotransformation and analytical accuracy are the two major contributors to the overall estimation uncertainty. Built upon many previous lab-scale studies, this study is one critical step forward in realizing wastewater-based epidemiology by extending biomarker stability investigations from laboratory reactors to real sewers.
Collapse
Affiliation(s)
- Jiaying Li
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland , Brisbane, Queensland 4108, Australia
| | - Phong K Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology , Brisbane, Queensland 4001, Australia
| | - Xiaoyan Sun
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland , Brisbane, Queensland 4108, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Centre, The University of Queensland , St. Lucia, Queensland 4072, Australia
| |
Collapse
|
47
|
Gao J, Banks A, Li J, Jiang G, Lai FY, Mueller JF, Thai PK. Evaluation of in-sewer transformation of selected illicit drugs and pharmaceutical biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1172-1181. [PMID: 28787791 DOI: 10.1016/j.scitotenv.2017.07.231] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 05/14/2023]
Abstract
Wastewater-based epidemiology (WBE) is considered to be a useful tool for monitoring chemical consumption in the population. However, the lack of information on potential transformation of biomarkers in the sewer system can compromise the accuracy of the consumption estimation. The present study contributes to addressing this issue by investigating the in-sewer stability of biomarkers from a number of commonly used drugs using laboratory sewer reactors that can mimic different sewer conditions. A stable and an unstable chemical (carbamazepine and caffeine) were also used as benchmarking chemicals to reflect the chemical degradation potential in different sewer conditions. The results suggested that ketamine and norketamine were unstable in gravity and rising main sewers, ketamine was unstable in bulk liquid while norketamine was stable under the same condition. Similarly, mephedrone and methylone were unstable in sewer conditions with considerable deviation. Significant loss of buprenorphine, methadone, oxycodone and codeine was observed in the rising main sewer. Morphine and codeine glucuronide were found to be deconjugated from their glucuronides quickly in the presence of biofilms. This study indicates that it is important to evaluate the stability of biomarkers in the sewer system before using them in WBE for estimating consumption/exposure to reduce uncertainties.
Collapse
Affiliation(s)
- Jianfa Gao
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Andrew Banks
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Jiaying Li
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Foon Yin Lai
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia; Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD 4108, Australia
| | - Phong K Thai
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
48
|
Causanilles A, Baz-Lomba JA, Burgard DA, Emke E, González-Mariño I, Krizman-Matasic I, Li A, Löve AS, McCall AK, Montes R, van Nuijs AL, Ort C, Quintana JB, Senta I, Terzic S, Hernandez F, de Voogt P, Bijlsma L. Improving wastewater-based epidemiology to estimate cannabis use: focus on the initial aspects of the analytical procedure. Anal Chim Acta 2017; 988:27-33. [DOI: 10.1016/j.aca.2017.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 11/29/2022]
|
49
|
McCall AK, Palmitessa R, Blumensaat F, Morgenroth E, Ort C. Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology. WATER RESEARCH 2017; 122:655-668. [PMID: 28651217 DOI: 10.1016/j.watres.2017.05.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/20/2023]
Abstract
To which extent illicit drugs are transformed during in-sewer transport, depends on a number of factors: i) substance-specific transformation rates, ii) environmental conditions, iii) point of discharge (location of drug user) and iv) sewer network properties, primarily hydraulic residence time (HRT) and the ratio of biofilm contact area to wastewater volume (A/Veq). Assessing associated uncertainties typically requires numerous simulations. Therefore, we propose a new two-step modeling framework: 1) Quantify hydrodynamic conditions. This computationally demanding step was performed once in SWMM to derive HRT and A/Veq for each potential point of discharge (node) in three catchments of different size. 2) Estimate biomarker loss. In this step, Monte Carlo simulations were performed for defined scenarios. Depending on assumptions about drug user distribution and prevalence, a number of nodes was sampled. For each node an empirical first-order transformation model was applied with flow-path-corresponding HRT and A/Veq from step 1. Biotic and abiotic transformation rates were sampled from distributions combining variability of different biofilms. In our modeling study, median losses were >30% for amphetamine, 6-monoacetylmorphine and 6-acetylcodeine in all three catchments with high uncertainty (5%-100% loss), which would imply a systematic underestimation of consumption when neglecting in-sewer processes. Median losses for 21 other investigated biomarkers were <10% with different uncertainty ranges - "no substantial transformation" was confirmed for nine substances in a real sewer segment with a 2-h residence time. Transferability of these results must be tested for other catchments. To further reduce uncertainty, mainly additional knowledge on transformation rates, particularly in biofilm, and their distribution across a sewer network is needed to update model input objectively. Our approach allows efficient testing and, furthermore, can be expanded for many other human biomarkers. Accounting for biomarker stability during in-sewer transport will avoid biased estimates and further improve wastewater-based epidemiology.
Collapse
Affiliation(s)
- Ann-Kathrin McCall
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland
| | | | - Frank Blumensaat
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Christoph Ort
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland.
| |
Collapse
|
50
|
Ramin P, Brock AL, Causanilles A, Valverde-Pérez B, Emke E, de Voogt P, Polesel F, Plósz BG. Transformation and Sorption of Illicit Drug Biomarkers in Sewer Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10572-10584. [PMID: 28673083 DOI: 10.1021/acs.est.6b06277] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In-sewer transformation of drug biomarkers (excreted parent drugs and metabolites) can be influenced by the presence of biomass in suspended form as well as attached to sewer walls (biofilms). Biofilms are likely the most abundant and biologically active biomass fraction in sewers. In this study, 16 drug biomarkers were selected, including the parent forms and the major human metabolites of mephedrone, methadone, cocaine, heroin, codeine, and tetrahydrocannabinol (THC). Transformation and sorption of these substances were assessed in targeted batch experiments using laboratory-scale biofilm reactors operated under aerobic and anaerobic conditions. A one-dimensional model was developed to simulate diffusive transport, abiotic and biotic transformation, and partitioning of drug biomarkers. Model calibration to experimental results allowed estimating biotransformation rate constants in sewer biofilms, which were compared to those obtained for suspended biomass. Our results suggest that sewer biofilms can enhance the biotransformation kinetics of most selected compounds. Through scenario simulations, we demonstrated that the estimation of biotransformation rate constants in biofilm can be significantly biased if the boundary layer thickness is not accurately estimated. This study complements our previous investigation on the transformation and sorption of drug biomarkers in the presence of only suspended biomass in untreated sewage. A better understanding of the role of sewer biofilms-also relative to the in-sewer suspended solids-and improved prediction of associated fate processes can result in more accurate estimation of daily drug consumption in urban areas in wastewater-based epidemiological assessments.
Collapse
Affiliation(s)
- Pedram Ramin
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby, Denmark
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark , Building 229, 2800 Kgs. Lyngby, Denmark
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Ana Causanilles
- KWR Watercycle Research Institute , P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Erik Emke
- KWR Watercycle Research Institute , P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
| | - Pim de Voogt
- KWR Watercycle Research Institute , P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam , P.O. Box 94248, 1090 GE Amsterdam, The Netherlands
| | - Fabio Polesel
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby, Denmark
| | - Benedek Gy Plósz
- Department of Environmental Engineering, Technical University of Denmark (DTU) , Bygningstorvet, Bygning 115, 2800 Kgs. Lyngby, Denmark
- Department of Chemical Engineering, University of Bath , Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|