1
|
Zhao J, Xie X, Chen Z, Wang Q, Zhang H, Shen Y, Ye J, Zhang S, Wu C, Feng K. Electro-stimulated biodegradation of dimethyl disulfide: Insights from biofilm spatial structure and key functional genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125216. [PMID: 39477005 DOI: 10.1016/j.envpol.2024.125216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/06/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
As a typical sulfur-containing volatile organic compound, dimethyl disulfide (DMDS) is known for its high toxicity and resistance to degradation, necessitating efficient control in environmental media. To address the limitations of biological treatment in degradation capacity, this study employs electro-stimulation to promote DMDS elimination by a porous polyaniline@carbon nanotube bioanode developed on graphite sheet (PANI@CNT/GS). Compared with the unmodified GS bioanode, the PANI@CNT/GS bioanode demonstrates significant advantages in biofilm activity, redox property, and DMDS degradation efficiency. Kinetics analysis shows that the maximum degradation rate of the PANI@CNT/GS bioanode was 0.60 mM h-1, which is 1.36 times higher than that of the control. Characterization results reveal that the highly active biofilms in PANI@CNT/GS bioanode possess 1.40 times the amount of living cells and a 12.5% increase in thickness, contributing to the notable enhancement in DMDS degradation capacity. Additionally, functional gene annotation indicates that the PANI@CNT/GS electrode facilitates the motility and activity of microbial cells and enriches the genes encoding key enzymes involved in DMDS metabolism. This work validates the feasibility of electro-stimulation for enhancing DMDS degradation and further provides in-depth insights into the process intensification mechanism from the perspectives of biofilm spatial structure and key functional genes.
Collapse
Affiliation(s)
- Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China
| | - Xinyi Xie
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhangyu Chen
- Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China
| | - Qinlin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hanyu Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Shen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiexu Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chao Wu
- Zhejiang Ecology and Environment Group Co., Ltd., Hangzhou, 311100, China.
| | - Ke Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Tang L, Huang J, Zhuang C, Yang X, Sun L, Lu H. Biogenic sulfur recovery from sulfate-laden antibiotic production wastewater using a single-chamber up-flow bioelectrochemical reactor. WATER RESEARCH 2024; 256:121590. [PMID: 38631241 DOI: 10.1016/j.watres.2024.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.
Collapse
Affiliation(s)
- Lan Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Jiamei Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Chuanyan Zhuang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Xiaojing Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou, 510275, China.
| |
Collapse
|
3
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Yu J, You J, Lens PNL, Lu L, He Y, Ji Z, Chen J, Cheng Z, Chen D. Biofilm metagenomic characteristics behind high coulombic efficiency for propanethiol deodorization in two-phase partitioning microbial fuel cell. WATER RESEARCH 2023; 246:120677. [PMID: 37827037 DOI: 10.1016/j.watres.2023.120677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.
Collapse
Affiliation(s)
- Jian Yu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juping You
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Piet N L Lens
- National University of Ireland, Galway H91TK33, Ireland
| | - Lichao Lu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenyi Ji
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Shinde AH, Sharma A, Doshi S, Kumar MA, Haldar S. Isolation and screening of sulfur-oxidizing bacteria from coast of Bhavnagar, India, and formulation of consortium for bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54136-54149. [PMID: 35294687 DOI: 10.1007/s11356-022-19610-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Reduced sulfur compounds are a nuisance in coastal industries causing heavy economical as well as ecological loss. One such compound, hydrogen sulfide, is proven toxic to aquatic animals as it interferes with their respiration and metabolism as well as overall development, thereby causing direct increase in mortality. Typically, 96-h LC50 values to freshwater and marine fishes are 0-25µM and 525-700µM, respectively. Management of sulfide and other reduced sulfur compounds from aquaculture water and sediment using bioremediating sulfur-oxidizing bacteria as probiotics has attracted attention in recent decades due to its efficiency and minimized environmental effects. In the present study, 201 native and indigenous probiotic candidates were isolated, from various coastal environments. The prospective candidates were screened based on pH reduction and 19 sulfur-oxidizing bacteria were selected and tested for salt tolerance. Further screening was done based on biosafety, ability to produce sulfate by oxidizing thiosulfate, and 16S rRNA-based identification to obtain nine probiotic candidates. Three strains (Enterobacter ludwigii HS1-SOB, Pseudomonas stutzeri B6-SOB, and Cytobacillus firmus C8-SOB) exerting highest sulfate-ion production were selected for formulating a probiotic consortium using mixture design matrix. The optimal composition was determined to be equal ratios of the three isolates that yielded 0.083 mM of sulfate from thiosulfate broth medium at room temperature in 7 days. This is a standalone report of sulfur-oxidizing probiotic consortium composed of the said bacteria. The consortium may be used as a strong tool for remediation of reduced sulfur in aquaculture and associated coastal environments.
Collapse
Affiliation(s)
- Ambika H Shinde
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashwini Sharma
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Saksham Doshi
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Jia T, Zhang L, Zhao Q, Peng Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128638. [PMID: 35306408 DOI: 10.1016/j.jhazmat.2022.128638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/12/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Biofilm growth affects the oxygen transfer in biofilm and thus the oxidation pathway of sulfur and the synergy of microorganisms. In this study, the effect of biofilm growth on the oxidation pathway of H2S and the synergy of microorganisms in desulfurization reactors under different pH conditions was first discussed to enhance the understanding of desulfurization process. A biotrickling filter (BTF) was operated for 168 days under acidic condition (pH<4.7) and 32 days under alkaline condition (7.0 <pH<10.2). In acidic period, the average growth mass (AGM) of biofilm was 0.04 g/L-BTF/d, and most of S-H2S was converted to S-SO42- (>89.0%). In alkaline period, the AGM raised to 0.97 g/L-BTF/d, and 77.0% of S-H2S was transferred to elemental sulfur (S0) and polysulfanes (R-Sx-R) accumulated in biofilm. The increase of biofilm and sulfur-oxidizing bacteria activity limited the oxygen transfer in alkaline biofilm, leading to the accumulation of S0 and the emergence of an obligate anaerobe- Acetoanaerobium (8.1%). The formation of R-Sx-R may be due to the reaction of S0 with thiols produced by a thiol-producing bacterium- Pseudomonas (6.7%). The uneven distribution of oxygen in biofilm caused by biofilm growth complicated the transfer pathway of sulfur and the synergy of microorganisms in desulfurization system.
Collapse
Affiliation(s)
- Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
7
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Kiragosyan K, Picard M, Timmers PHA, Sorokin DY, Klok JBM, Roman P, Janssen AJH. Effect of methanethiol on process performance, selectivity and diversity of sulfur-oxidizing bacteria in a dual bioreactor gas biodesulfurization system. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:123002. [PMID: 32506049 DOI: 10.1016/j.jhazmat.2020.123002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
This study provides important new insights on how to achieve high sulfur selectivities and stable gas biodesulfurization process operation in the presence of both methanethiol and H2S in the feed gas. On the basis of previous research, we hypothesized that a dual bioreactor lineup (with an added anaerobic bioreactor) would favor sulfur-oxidizing bacteria (SOB) that yield a higher sulfur selectivity. Therefore, the focus of the present study was to enrich thiol-resistant SOB that can withstand methanethiol, the most prevalent and toxic thiol in sulfur-containing industrial off gases. In addition, the effect of process conditions on the SOB population dynamics was investigated. The results confirmed that thiol-resistant SOB became dominant with a concomitant increase of the sulfur selectivity from 75 mol% to 90 mol% at a loading rate of 2 mM S methanethiol day-1. The abundant SOB in the inoculum - Thioalkalivibrio sulfidiphilus - was first outcompeted by Alkalilimnicola ehrlichii after which Thioalkalibacter halophilus eventually became the most abundant species. Furthermore, we found that the actual electron donor in our lab-scale biodesulfurization system was polysulfide, and not the primarily supplied sulfide.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD, Utrecht, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Shell, Oostduinlaan 2, 2596 JM, the Hague, the Netherlands
| |
Collapse
|
9
|
Haghighatian S, Mazarei E, Doroodmand MM, Klein A, Memarpoor-Yazdi M. A new whole-cell biocatalyst for sulfur dioxide filtering and degradation. BIORESOURCE TECHNOLOGY 2020; 314:123755. [PMID: 32623286 DOI: 10.1016/j.biortech.2020.123755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
In this study, the interaction of the magnetotactic bacterium with sulfite compounds and their potential to degrade SO2 was investigated using cyclic voltammetry (CV), molecular emission cavity analysis (MECA) and ion-exchange chromatography (IEC). This biofilter was able to degrade SO2 up to 22281 mg m-3 by disproportionation reaction and the formation of S2- and SO42- with ≥99% efficiency. Designed biofilter was able to restart the initial performance at least after seven cycles if it was used at 14-day intervals. According to theoretical studies, the value of mean free energy (E) obtained using the Dubinin-Radushkevich isotherm model was 0.02 kJ mol-1, which is in the range expected for physical adsorption. Designed biofilter can be considered as a powerful tool to degrade SO2 in diverse urban and industrial centers.
Collapse
Affiliation(s)
- Sara Haghighatian
- Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran
| | - Elham Mazarei
- Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran
| | | | - Axel Klein
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Germany
| | | |
Collapse
|
10
|
Kiragosyan K, Picard M, Sorokin DY, Dijkstra J, Klok JBM, Roman P, Janssen AJH. Effect of dimethyl disulfide on the sulfur formation and microbial community composition during the biological H 2S removal from sour gas streams. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121916. [PMID: 31884361 DOI: 10.1016/j.jhazmat.2019.121916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of organic and inorganic sulfur compounds from sour gases is required because of their toxicity and atmospheric pollution. The most common are hydrogen sulfide (H2S) and methanethiol (MT). Under oxygen-limiting conditions about 92 mol% of sulfide is oxidized to sulfur by haloalkaliphilic sulfur-oxidizing bacteria (SOB), whilst the remainder is oxidized either biologically to sulfate or chemically to thiosulfate. MT is spontaneously oxidized to dimethyl disulfide (DMDS), which was found to inhibit the oxidation of sulfide to sulfate. Hence, we assessed the effect of DMDS on product formation in a lab-scale biodesulfurization setup. DMDS was quantified using a newly, in-house developed analytical method. Subsequently, a chemical reaction mechanism was proposed for the formation of methanethiol and dimethyl trisulfide from the reaction between sulfide and DMDS. Addition of DMDS resulted in significant inhibition of sulfate formation, leading to 96 mol% of sulfur formation. In addition, a reduction in the dominating haloalkaliphilic SOB species, Thioalkalivibrio sulfidiphilus, was observed in favor of Thioalkaibacter halophilus as a more DMDS-tolerant with the 50 % inhibition coefficient at 2.37 mM DMDS.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Magali Picard
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Eurofins Agroscience Services Chem SAS 75, chemin de Sommières 30310, Vergèze, France
| | - Dimitry Y Sorokin
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jelmer Dijkstra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands; Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Albert J H Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Shell, Oostduinlaan 2, 2596 JM the Hague, The Netherlands
| |
Collapse
|
11
|
Mu T, Yang M, Xing J. Deep and high-efficiency removal of sulfate through a coupling system with sulfate-reducing and sulfur-oxidizing capacity under haloalkaliphilic condition. Bioprocess Biosyst Eng 2020; 43:1009-1015. [PMID: 31993799 DOI: 10.1007/s00449-020-02298-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/16/2020] [Indexed: 11/27/2022]
Abstract
Sulfide from anaerobic treatment of high-sulfate wastewater would always have some adverse effects on downstream processes. In this study, a coupling anaerobic/aerobic system was developed and operated under haloalkaliphilic condition to realize deep and high-efficiency removal of sulfate without production of sulfide. A haloalkaliphilic sulfur-oxidizing strain, Thioalkalivibrio versutus SOB306, was responsible for oxidation of sulfide. The anaerobic part was first operated at optimum condition based on a previous study. Then, its effluent with an average sulfide concentration of 674 ± 33 mg·l-1 was further directly treated by a set of 1 l biofilter with SOB306 strain under aerobic condition. Finally, 100% removal rate of sulfide was achieved at aeration rate of 0.75 l·l-1·min-1, ORP of - 392 mV and HRT of 4 h. The average yield of elemental sulfur reached 79.1 ± 1.3% in the filter, and the CROS achieved a conversion rate of sulfate to sulfur beyond 54%. This study for the first time revealed the characteristics and performance of the haloalkaliphilic CROS in deep treatment of high-sulfate wastewater, which paved the way for the development and application of this method in the real world.
Collapse
Affiliation(s)
- Tingzhen Mu
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Maohua Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jianmin Xing
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
12
|
Elzinga M, Liu D, Klok JB, Roman P, Buisman CJ, Heijne AT. Microbial reduction of organosulfur compounds at cathodes in bioelectrochemical systems. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 1:100009. [PMID: 36160373 PMCID: PMC9488095 DOI: 10.1016/j.ese.2020.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 05/27/2023]
Abstract
Organosulfur compounds, present in e.g. the pulp and paper industry, biogas and natural gas, need to be removed as they potentially affect human health and harm the environment. The treatment of organosulfur compounds is a challenge, as an economically feasible technology is lacking. In this study, we demonstrate that organosulfur compounds can be degraded to sulfide in bioelectrochemical systems (BESs). Methanethiol, ethanethiol, propanethiol and dimethyl disulfide were supplied separately to the biocathodes of BESs, which were controlled at a constant current density of 2 A/m2 and 4 A/m2. The decrease of methanethiol in the gas phase was correlated to the increase of dissolved sulfide in the liquid phase. A sulfur recovery, as sulfide, of 64% was found over 5 days with an addition of 0.1 mM methanethiol. Sulfur recoveries over 22 days with a total organosulfur compound addition of 1.85 mM were 18% for methanethiol and ethanethiol, 17% for propanethiol and 22% for dimethyl disulfide. No sulfide was formed in electrochemical nor biological control experiments, demonstrating that both current and microorganisms are required for the conversion of organosulfur compounds. This new application of BES for degradation of organosulfur components may unlock alternative strategies for the abatement of anthropogenic organosulfur emissions.
Collapse
Affiliation(s)
- Margo Elzinga
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700, AA Wageningen, the Netherlands
- Paqell B.V, Reactorweg 301, 3542, AD Utrecht, the Netherlands
| | - Dandan Liu
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700, AA Wageningen, the Netherlands
- Paqell B.V, Reactorweg 301, 3542, AD Utrecht, the Netherlands
| | - Johannes B.M. Klok
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700, AA Wageningen, the Netherlands
- Paqell B.V, Reactorweg 301, 3542, AD Utrecht, the Netherlands
- Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, 8900, CC Leeuwarden, the Netherlands
| | - Pawel Roman
- Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, 8900, CC Leeuwarden, the Netherlands
| | - Cees J.N. Buisman
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700, AA Wageningen, the Netherlands
- Wetsus, Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, P.O. Box 1113, 8900, CC Leeuwarden, the Netherlands
| | - Annemiek ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700, AA Wageningen, the Netherlands
| |
Collapse
|
13
|
Kiragosyan K, Klok JB, Keesman KJ, Roman P, Janssen AJ. Development and validation of a physiologically based kinetic model for starting up and operation of the biological gas desulfurization process under haloalkaline conditions. WATER RESEARCH X 2019; 4:100035. [PMID: 31334497 PMCID: PMC6614595 DOI: 10.1016/j.wroa.2019.100035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 05/14/2023]
Abstract
Hydrogen sulfide is a toxic and corrosive gas that must be removed from gaseous hydrocarbon streams prior to combustion. This paper describes a gas biodesulfurization process where sulfur-oxidizing bacteria (SOB) facilitate sulfide conversion to both sulfur and sulfate. In order to optimize the formation of sulfur, it is crucial to understand the relations between the SOB microbial composition, kinetics of biological and abiotic sulfide oxidation and the effects on the biodesulfurization process efficiency. Hence, a physiologically based kinetic model was developed for four different inocula. The resulting model can be used as a tool to evaluate biodesulfurization process performance. The model relies on a ratio of two key enzymes involved in the sulfide oxidation process, i.e., flavocytochrome c and sulfide-quinone oxidoreductase (FCC and SQR). The model was calibrated by measuring biological sulfide oxidation rates for different inocula obtained from four full-scale biodesulfurization installations fed with gases from various industries. Experimentally obtained biological sulfide oxidation rates showed dissimilarities between the tested biomasses which could be explained by assuming distinctions in the key-enzyme ratios. Hence, we introduce a new model parameter α to whereby α describes the ratio between the relative expression levels of FCC and SQR enzymes. Our experiments show that sulfur production is the highest at low α values.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Corresponding author. Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands.
| | - Johannes B.M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Paqell B.V., Reactorweg 301, 3542, AD, Utrecht, the Netherlands
| | - Karel J. Keesman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
- Biobased Chemistry & Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - Albert J.H. Janssen
- Environmental Technology, Wageningen University, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
- Shell, Oostduinlaan 2, 2596, M the Hague, the Netherlands
| |
Collapse
|
14
|
Kiragosyan K, van Veelen P, Gupta S, Tomaszewska-Porada A, Roman P, Timmers PHA. Development of quantitative PCR for the detection of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus in gas biodesulfurization processes. AMB Express 2019; 9:99. [PMID: 31278455 PMCID: PMC6611852 DOI: 10.1186/s13568-019-0826-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Chemolithoautotrophic sulfur-oxidizing bacteria (SOB) are crucial key players in biotechnological processes to remove hydrogen sulfide from sour gas streams. Several different haloalkaliphilic SOB have been detected and isolated from lab- and full-scale facilities, which all performed differently considering end product yields (sulfur and sulfate) and conversion rates. Understanding and regulating bacterial community dynamics in biodesulfurization processes will enable optimization of the process operation. We developed quantitative PCR (qPCR) assays to quantify haloalkaliphilic sulfur-oxidizing gammaproteobacterial species Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus, and Thioalkalibacter halophilus that dominate bacterial communities of biodesulfurization lab- and full-scale installations at haloalkaline conditions. The specificity and PCR efficiency of novel primer sets were evaluated using pure cultures of these target species. We further validated the qPCR assays by quantification of target organisms in five globally distributed full-scale biodesulfurization installations. The qPCR assays perform a sensitive and accurate quantification of Alkalilimnicola ehrlichii, Thioalkalivibrio sulfidiphilus and Thioalkalibacter halophilus, thus providing rapid and valuable insights into process performance and SOB growth dynamics in gas biodesulfurization systems.
Collapse
Affiliation(s)
- Karine Kiragosyan
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
- Environmental Technology, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, The Netherlands.
| | - Pieter van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands
| | - Agnieszka Tomaszewska-Porada
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Pawel Roman
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Peer H A Timmers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
- Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EH, Wageningen, The Netherlands
| |
Collapse
|
15
|
Ying L, Long Y, Yao L, Liu W, Hu L, Fang C, Shen D. Sulfate reduction at micro-aerobic solid-liquid interface in landfill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:545-551. [PMID: 30833253 DOI: 10.1016/j.scitotenv.2019.02.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/17/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
H2S can be produced under aerobic conditions, which goes against the traditional view of an obligatory anaerobic metabolism process. In this research, the sulfate-reduction behavior at the micro-aerobic solid-liquid interface in a landfill was investigated. H2S emission from mineralized waste from the landfill material could be enhanced when exposed to O2. The highest H2S concentration of 56.54 mg·m-3, observed at an O2 concentration of 2%, was 4.5 times higher than the highest concentration of H2S recorded under anaerobic conditions. The presence of leachate influenced protection of the anaerobic sulfate-reducing bacteria against O2, allowing the bacteria to survive and even undergo significant sulfate reduction under micro-aerobic conditions. The sulfate concentration could be maintained at a high level because of possible oxidation-reduction cycling under micro-aerobic conditions and the risk of H2S emission was always high. This research provides a theoretical basis for controlling the release of H2S within landfills.
Collapse
Affiliation(s)
- Luyao Ying
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yuyang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| | - Lihua Yao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Weijia Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Lifang Hu
- School of Quality and Safety, Institution of Industrial Carbon Metrology, China Jiliang University, Hangzhou, 310018, China
| | - Chengran Fang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| |
Collapse
|
16
|
de Rink R, Klok JB, van Heeringen GJ, Sorokin DY, ter Heijne A, Zeijlmaker R, Mos YM, de Wilde V, Keesman KJ, Buisman CJ. Increasing the Selectivity for Sulfur Formation in Biological Gas Desulfurization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4519-4527. [PMID: 30882225 PMCID: PMC6581417 DOI: 10.1021/acs.est.8b06749] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the biotechnological desulfurization process under haloalkaline conditions, dihydrogen sulfide (H2S) is removed from sour gas and oxidized to elemental sulfur (S8) by sulfide-oxidizing bacteria. Besides S8, the byproducts sulfate (SO42-) and thiosulfate (S2O32-) are formed, which consume caustic and form a waste stream. The aim of this study was to increase selectivity toward S8 by a new process line-up for biological gas desulfurization, applying two bioreactors with different substrate conditions (i.e., sulfidic and microaerophilic), instead of one (i.e., microaerophilic). A 111-day continuous test, mimicking full scale operation, demonstrated that S8 formation was 96.6% on a molar H2S supply basis; selectivity for SO42- and S2O32- were 1.4 and 2.0% respectively. The selectivity for S8 formation in a control experiment with the conventional 1-bioreactor line-up was 75.6 mol %. At start-up, the new process line-up immediately achieved lower SO42- and S2O32- formations compared to the 1-bioreactor line-up. When the microbial community adapted over time, it was observed that SO42- formation further decreased. In addition, chemical formation of S2O32- was reduced due to biologically mediated removal of sulfide from the process solution in the anaerobic bioreactor. The increased selectivity for S8 formation will result in 90% reduction in caustic consumption and waste stream formation compared to the 1-bioreactor line-up.
Collapse
Affiliation(s)
- Rieks de Rink
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B.M. Klok
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | | | - Dimitry Y. Sorokin
- Winogradsky
Institute of Microbiology, Research Centre
of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Annemiek ter Heijne
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- E-mail:
| | | | - Yvonne M. Mos
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vinnie de Wilde
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Karel J. Keesman
- Mathematical
and Statistical methods, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Cees J.N. Buisman
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|