1
|
Zhang D, Duan Z, Chen J, Wang J, Muga G, Yang Y, Wang Y, Liu Z, Algeo TJ, Hong H, Zhou L, Yin K. Characteristics and paleoclimate significance of authigenic ferrimagnetic minerals in the Xuancheng red earth, southern China. Sci Rep 2025; 15:3457. [PMID: 39870708 PMCID: PMC11772578 DOI: 10.1038/s41598-025-87020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Soil magnetic records in Quaternary red earth (QRE) deposits contain a valuable record of paleoclimate information, providing insights into controls on Earth's climate system in the past and potentially helping to predict its response to perturbations in the future. Here, analysis of the environmental magnetism and mineralogy of the Xuancheng QRE (Anhui Province, South China) shows that magnetic variation was strongly linked to production of authigenic ferrimagnetic minerals such as maghemite. Fine-grained maghemite formed during the weathering-related transformation of iron-bearing illite to vermiculite, generating aggregates of vermiculite or mixed-layer illite-vermiculite. Enclosure of authigenic ferrimagnetic minerals by illite and vermiculite-group minerals inhibits their chemical weathering, but this protective effect can be lost due to intensified weathering, allowing the authigenic ferrimagnetic minerals to transform into more stable antiferromagnetic minerals. Upsection within the Xuancheng QRE, the content of authigenic ferrimagnetic minerals gradually increases, as revealed by SIRM and SIRM/χ, indicating a decrease in weathering intensity as the regional climate evolved from warm and wet in the middle Pleistocene to relatively cooler and drier today. Thus, this study improves our understanding of the relationship between soil magnetic properties and paleoclimate evolution in QRE deposits.
Collapse
Affiliation(s)
- Daqian Zhang
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Zhenggang Duan
- China Tunnel Construction Group Co., Ltd. Guangdong, Guangzhou, 510400, Guangdong, China
| | - Jiangjun Chen
- Hubei Institute of Hydrogeology and Engineering Geology, Jingzhou, 434020, Hubei, China
| | - Jingrong Wang
- The Second Geological Institute of China Metallurgical Geology Bureau, Fuzhou, 350108, China
| | - Gubu Muga
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yunqi Yang
- Gemological Institute, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Yiming Wang
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Zhendong Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Thomas J Algeo
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, Hubei, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, Hubei, China
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, 45221-0013, USA
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, 610059, China
| | - Hanlie Hong
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Lian Zhou
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Ke Yin
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
2
|
Wang X, Jiang Z, Qian J, Fu W, Pan B. Structure Evolution of Iron (Hydr)oxides under Nanoconfinement and Its Implication for Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:826-835. [PMID: 38154031 DOI: 10.1021/acs.est.3c05760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
In the development of nanoenabled technologies for large-scale water treatment, immobilizing nanosized functional materials into the confined space of suitable substrates is one of the most effective strategies. However, the intrinsic effects of nanoconfinement on the decontamination performance of nanomaterials, particularly in terms of structural modulation, are rarely unveiled. Herein, we investigate the structure evolution and decontamination performance of iron (hydr)oxide nanoparticles, a widely used material for water treatment, when confined in track-etched (TE) membranes with channel sizes varying from 200 to 20 nm. Nanoconfinement drives phase transformation from ferrihydrite to goethite, rather than to hematite occurring in bulk systems, and the increase in the nanoconfinement degree from 200 to 20 nm leads to a significant drop in the fraction of the goethite phase within the aged products (from 41% to 0%). The nanoconfinement configuration is believed to greatly slow down the phase transformation kinetics, thereby preserving the specific adsorption of ferrihydrite toward As(V) even after 20-day aging at 343 K. This study unravels the structure evolution of confined iron hydroxide nanoparticles and provides new insights into the temporospatial effects of nanoconfinement on improving the water decontamination performance.
Collapse
Affiliation(s)
- Xuening Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zhao Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Wanyi Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Chen MT, Zheng XY, Kong XJ, Long LS, Zheng LS. Functionalization of Keggin Fe 13-Oxo Clusters. Inorg Chem 2023; 62:1781-1785. [PMID: 35608919 DOI: 10.1021/acs.inorgchem.2c01018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Two Keggin Fe13-oxo clusters, [Pr12Fe33(NO3)6(L-van)4(D-van)5(TEOA)12(μ3-OH)12(μ4-OH)12(μ4-O)28(H2O)4]·(ClO4)3·(NO3)·10H2O (1) and [Dy12Fe33(NO3)2(L-van)3(D-van)3(TEOA)12(μ3-OH)18(μ4-OH)6(μ4-O)28(H2O)9]·(ClO4)5·(NO3)6·15H2O (2), where L-van = l-valine, D-van = d-valine, and TEOA = triethanolamine, were prepared by using Ln3+ as a stabilizer. Cluster 1 crystallizes in a chiral space group of C2, while cluster 2 crystallizes in a centrosymmetric space group of Pnma. Dynamic magnetic measurements of 2 under a zero direct-current field reveal that 2 exhibits single-molecule-magnet characteristics with an energy barrier of 18.79 K. Significantly, the formation of the chiral cluster 1 is closely related to the larger radius of the Pr3+ ion.
Collapse
Affiliation(s)
- Man-Ting Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiu-Ying Zheng
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Liu H, Wang J, Song C, Zhou K, Yu B, Jiang J, Qian J, Zhang X, Wang H. Exogenously Triggered Nanozyme for Real-Time Magnetic Resonance Imaging-Guided Synergistic Cascade Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29650-29658. [PMID: 35735117 DOI: 10.1021/acsami.2c07375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The uncontrolled treatment process and high concentration of intracellular glutathione compromise the therapeutic efficacies of chemodynamic therapy (CDT). Here, iron oxide nanocrystals embedded in N-doped carbon nanosheets (IONCNs) are designed as a near-infrared light-triggered nanozyme for synergistic cascade tumor therapy. The IONCNs can absorb and convert 980 nm light to local heat, which induces the dissolution of iron oxide for generating Fe2+/Fe3+ in a weak acid environment, apart from thermal ablation of cancer cells. The formed Fe2+ takes on the active site for the Fenton reaction. The formed Fe3+ acts as glutathione peroxidase to magnify oxidative stress, improving the antitumor performance. The IONCNs can be used to visually track the treatment process via magnetic resonance imaging. Such IONCNs demonstrate great potential as an exogenously triggered nanozyme via an integrated cascade reaction for imaging-guided synergistic cancer therapy.
Collapse
Affiliation(s)
- Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Junjun Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Ke Zhou
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Jialiang Jiang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| |
Collapse
|
5
|
Hof F, Poggini L, Otero E, Gobaut B, Gonidec M, Duttine M, Rosa P, Sandre O, Pénicaud A. Magnetic Ordering in Ultrasmall Potassium Ferrite Nanoparticles Grown on Graphene Nanoflakes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3130-3142. [PMID: 34981916 DOI: 10.1021/acsami.1c19353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic nanoparticles are central to the development of efficient hyperthermia treatments, magnetic drug carriers, and multimodal contrast agents. While the magnetic properties of small crystalline iron oxide nanoparticles are well understood, the superparamagnetic size limit constitutes a significant barrier for further size reduction. Iron (oxy)hydroxide phases, albeit very common in the natural world, are far less studied, generally due to their poor crystallinity. Templating ultrasmall nanoparticles on substrates such as graphene is a promising method to prevent aggregation, typically an issue for both material characterization and applications. We generate ultrasmall nanoparticles, directly on the carbon framework by the reaction of a graphenide potassium solution, charged graphene flakes, with iron(II) salts. After mild water oxidation, the obtained composite material consists of ultrasmall potassium ferrite nanoparticles bound to the graphene nanoflakes. Magnetic properties as evidenced by magnetometry and X-ray magnetic circular dichroism, with open magnetic hysteresis loops near room temperature, are widely different from classical ultrasmall superparamagnetic iron oxide nanoparticles. The large value obtained for the effective magnetic anisotropy energy density Keff accounts for the presence of magnetic ordering at rather high temperatures. The synthesis of ultrasmall potassium ferrite nanoparticles under such mild conditions is remarkable given the harsh conditions used for the classical syntheses of bulk potassium ferrites. Moreover, the potassium incorporation in the crystal lattice occurs in the presence of potassium cations under mild conditions. A transfer of this method to related reactions would be of great interest, which underlines the synthetic value of this study. These findings also give another view on the previously reported electrocatalytic properties of these nanocomposite materials, especially for the sought-after oxygen reduction/evolution reaction. Finally, their longitudinal and transverse proton NMR relaxivities when dispersed in water were assessed at 37 °C under a magnetic field of 1.41 T, allowing potential applications in biological imaging.
Collapse
Affiliation(s)
- Ferdinand Hof
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| | - Lorenzo Poggini
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Edwige Otero
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - Benoît Gobaut
- Synchrotron SOLEIL, L'Orme des Merisiers Saint Aubin, BP 48, F-91192 Gif sur Yvette, France
| | - Mathieu Gonidec
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Mathieu Duttine
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Patrick Rosa
- University of Bordeaux, CNRS, Bordeaux-INP, ICMCB, UMR 5026, F-33600 Pessac, Cedex, France
| | - Olivier Sandre
- University of Bordeaux, CNRS, Bordeaux INP, LCPO, UMR-5629, F-33600 Pessac, France
| | - Alain Pénicaud
- University of Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 33600 Pessac, France
| |
Collapse
|
6
|
Liang Y, Jin J, Xiang Y, Wang M, Xiong J, Hou J, Tan W. Insights into the improving mechanism of defect-mediated As(V) adsorption on hematite nanoplates. CHEMOSPHERE 2021; 280:130597. [PMID: 33932906 DOI: 10.1016/j.chemosphere.2021.130597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The fate of As(V) in subsurface environments is strongly affected by ubiquitous iron oxides. Defects are commonly present in natural hematite, while the impacts of defects on the active sites and complexation mechanism of hematite for As(V) remain poorly understood. In this study, the defect-rich hematite was employed to investigate the surface charge characteristics and As(V) adsorption behavior using potentiometric acid-base titration and CD-MUSIC model in comparison with corresponding defect-poor hematite. The total arsenate-active site density (5.7 sites/nm2) on defective hematite includes 1.2 sites/nm2 of original sites and 4.5 sites/nm2 of Fe vacancy-induced sites. The result revealed that the vacant Fe3+ sites in defective hematite was compensated by the protons in solution, thus resulting in a considerable increase in site density as well as positive charge. The CD-MUSIC modeling results demonstrated that the presence of Fe vacancies in hematite is beneficial to the improvement in affinity constants for both monodentate and bidentate arsenate complexes. The high adsorption capacity of defective hematite (2.60 μmol/m2) compared to defect-free hematite (1.33 μmol/m2) is attributed to its large affinity constants as well as its more active surface sites, thereby playing a vital role in reducing the threats of heavy metals in the environment.
Collapse
Affiliation(s)
- Yu Liang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiezi Jin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjin Xiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxia Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China.
| | - Juan Xiong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| | - Jingtao Hou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China.
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan, 430070, China
| |
Collapse
|
7
|
High-resolution T 1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat Biomed Eng 2021; 5:252-263. [PMID: 33686281 DOI: 10.1038/s41551-021-00687-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2021] [Indexed: 01/31/2023]
Abstract
Contrast agents for magnetic resonance imaging (MRI) improve anatomical visualizations. However, owing to poor image resolution in whole-body MRI, resolving fine structures is challenging. Here, we report that a nanoparticle with a polysaccharide supramolecular core and a shell of amorphous-like hydrous ferric oxide generating strong T1 MRI contrast (with a relaxivity coefficient ratio of ~1.2) facilitates the imaging, at resolutions of the order of a few hundred micrometres, of cerebral, coronary and peripheral microvessels in rodents and of lower-extremity vessels in rabbits. The nanoparticle can be synthesized at room temperature in aqueous solution and in the absence of surfactants, has blood circulation and renal clearance profiles that prevent opsonization, and leads to better imaging performance than Dotarem (gadoterate meglumine), a clinically approved gadolinium-based MRI contrast agent. The nanoparticle's biocompatibility and imaging performance may prove advantageous in a broad range of preclinical and clinical applications of MRI.
Collapse
|
8
|
Chemical Structure and Magnetism of FeOx/Fe2O3 Interface Studied by X-ray Absorption Spectroscopy. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chemical and magnetic states of Fe/Fe2O3 thin films prepared by e-beam evaporation were investigated by using element-specific techniques, X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). It was clearly shown that the Fe layers are oxidized to form an antiferromagnetic (AFM) FeOx<1, while the bottom oxide remained a weak ferromagnet (wFM) (α+γ)-type Fe2O3. Dependences of the peak intensities and lineshapes on the Fe thickness and measurement geometry further demonstrate that FeOx<1 layers reside mostly at the interface realizing an FM (Fe)/AFM (FeOx)/wFM (Fe2O3), whilst the spin directions lie in the sample plane for all the samples. The self-stabilized intermediate oxide can act as a physical barrier for spins to be injected into the wFM oxide, implying a substantial influence on tailoring the spin tunneling efficiency for spintronics application.
Collapse
|
9
|
Kowalska JK, Nayyar B, Rees JA, Schiewer CE, Lee SC, Kovacs JA, Meyer F, Weyhermüller T, Otero E, DeBeer S. Iron L 2,3-Edge X-ray Absorption and X-ray Magnetic Circular Dichroism Studies of Molecular Iron Complexes with Relevance to the FeMoco and FeVco Active Sites of Nitrogenase. Inorg Chem 2017; 56:8147-8158. [PMID: 28653855 PMCID: PMC5516708 DOI: 10.1021/acs.inorgchem.7b00852] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Herein, a systematic study of a series
of molecular iron model complexes has been carried out using Fe L2,3-edge X-ray absorption (XAS) and X-ray magnetic circular
dichroism (XMCD) spectroscopies. This series spans iron complexes
of increasing complexity, starting from ferric and ferrous tetrachlorides
([FeCl4]−/2–), to ferric and ferrous
tetrathiolates ([Fe(SR)4]−/2–),
to diferric and mixed-valent iron–sulfur complexes [Fe2S2R4]2–/3–.
This test set of compounds is used to evaluate the sensitivity of
both Fe L2,3-edge XAS and XMCD spectroscopy to oxidation
state and ligation changes. It is demonstrated that the energy shift
and intensity of the L2,3-edge XAS spectra depends on both
the oxidation state and covalency of the system; however, the quantitative
information that can be extracted from these data is limited. On the
other hand, analysis of the Fe XMCD shows distinct changes in the
intensity at both L3 and L2 edges, depending
on the oxidation state of the system. It is also demonstrated that
the XMCD intensity is modulated by the covalency of the system. For
mononuclear systems, the experimental data are correlated with atomic
multiplet calculations in order to provide insights into the experimental
observations. Finally, XMCD is applied to the tetranuclear heterometal–iron–sulfur
clusters [MFe3S4]3+/2+ (M = Mo, V),
which serve as structural analogues of the FeMoco and FeVco active
sites of nitrogenase. It is demonstrated that the XMCD data can be
utilized to obtain information on the oxidation state distribution
in complex clusters that is not readily accessible for the Fe L2,3-edge XAS data alone. The advantages of XMCD relative to
standard K-edge and L2,3-edge XAS are highlighted. This
study provides an important foundation for future XMCD studies on
complex (bio)inorganic systems. A systematic Fe L2,3-edge X-ray absorption (XAS) and X-ray magnetic circular dichroism
(XMCD) study of iron tetrachlorides ([FeCl4]−/2−), iron tetrathiolates ([Fe(SR)4]−/2−), diferric and mixed-valent iron−sulfur dimers [Fe2S2R4]2−/3− and heterometal−iron−sulfur
tetramers [MFe3S4]3+/2+ (M = Mo,
V) is reported. The changes in XAS and XMCD energies and intensities
across this set of complexes are presented together with atomic multiplet
calculations. The advantages of XMCD as an electronic structure probe
of complex clusters are highlighted.
Collapse
Affiliation(s)
- Joanna K Kowalska
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Brahamjot Nayyar
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Julian A Rees
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany.,Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Christine E Schiewer
- University of Göttingen, Institute of Inorganic Chemistry , Tammannstraβe 4, D-37007 Göttingen, Germany
| | - Sonny C Lee
- Department of Chemistry, University of Waterloo , Waterloo, Ontario, Canada N2L 3G1
| | - Julie A Kovacs
- Department of Chemistry, University of Washington , Box 351700, Seattle, Washington 98195-1700, United States
| | - Franc Meyer
- University of Göttingen, Institute of Inorganic Chemistry , Tammannstraβe 4, D-37007 Göttingen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edwige Otero
- SOLEIL, L'Orme des Merisiers , 91190 Saint-Aubin, France
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraβe 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|