1
|
Hasan MM, Liu XD, Rahman MA, Hazzazi Y, Wassem M, Ghimire S, Alabdallah NM, Alharbi BM, Kabir AH, Yao G, Fang XW. Plants breathing under pressure: mechanistic insights into soil compaction-induced physiological, molecular and biochemical responses in plants. PLANTA 2025; 261:52. [PMID: 39894859 DOI: 10.1007/s00425-025-04624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
MAIN CONCLUSION This review highlights the molecular, biochemical and physiological responses of plants under soil compaction and presents suitable strategies for optimizing soil compaction for sustainable and intelligent plant production. Soil compaction (SC) increases the mechanical impedance of agricultural crops, which restricts plant growth, root elongation, and productivity. Therefore, exploring the impacts of SC-induced alterations in plants and developing optimization strategies are crucial for sustainable agricultural production and ensuring global food security. However, the regulation of molecular, biochemical and physiological responses to SC in plants has not yet been well explored. Here, we conducted a thorough analysis of the relevant literature regarding the primary factors behind SC in agricultural soils, mechanistic insights into SC-mediated molecular and physiological alterations in plants, the impact of SC on plant productivity, and SC-minimization strategies for eco-friendly and intelligent agricultural production. The existing information suggests that plant roots sense SC-induced changes in soil properties, including decreased soil water content, hypoxia, nutrient deficiency and mechanical stimuli, through altering the expression of membrane-located ion channel- or stimulus receptor-related genes, such as MSLs, MCA1, and AHK. After signal transduction, the synthesis and transport of several plant hormones, mainly ABA, ethylene and auxin, change and restrict root deepening but promote root thickening. In addition, the changes in plant hormones in combination with decreased water availability and decreased root hydraulic conductance induced by SC affect aboveground physiological responses, such as decreasing leaf hydraulic conductance, promoting stomatal closure and inhibiting plant photosynthesis. Comprehensive physiological insights into SC in plants and SC optimization strategies could be useful to soil biologists and plant eco-physiologists seeking to improve soil management and sustainable agricultural plant production to promote global food security.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - Yehia Hazzazi
- Biology Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Wassem
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China
| | - Shantwana Ghimire
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China
| | - Nadiyah M Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441, Dammam, Saudi Arabia
| | - Basmah M Alharbi
- Biology Department, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Guangqian Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, LanzhouGansu Province, 730000, China.
| |
Collapse
|
2
|
Xu M, Zhi Y, Kong Z, Ma H, Shao Z, Chen L, Chen H, Yuan Y, Liu F, Xu Y, Ni Q, Hu S, Chai H. Enhancing nitrogen and phosphorus removal in plant-biochar-pyrite stormwater bioretention systems: Impact of temperature and high-frequency heavy rainfall. ENVIRONMENTAL RESEARCH 2024; 262:119926. [PMID: 39276826 DOI: 10.1016/j.envres.2024.119926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
Global climate change and rapid urbanization have resulted in more frequent and intense rainfall events in urban areas, raising concerns about the effectiveness of stormwater bioretention systems. In this study, we optimized the design by constructing a multi-layer filler structure, including plant layer, biochar layer, and pyrite layer, and evaluated its performance in nitrogen (N) and phosphorus (P) removal under different temperatures (5-18 °C and 24-43 °C), rainfall intensity (47.06 mm rainfall depth), and frequency (1-5 days rainfall intervals) conditions. The findings indicate that over 775 days, the plant system consistently removed 62.3% of total nitrogen (TN) and 97.0% of total phosphorus (TP) from 103 intense rainfall events. Temperature fluctuations had minimal impact on nitrate nitrogen (NO3--N) and TP removal, with differences in removal rates of only 1.0% and 0.6%, respectively, among plant groups. Across the multi-layer structure, plant roots mitigated the impact of temperature differences on NO3--N removal, while high-frequency rainfall fluctuated the stability of NO3--N removal. Dense plant roots reinforced N and P removal by facilitating denitrification in the vadose zone (biochar) and strengthening denitrification processes. Biochar and pyrite contributed to stable microenvironments and diverse ecological functions, enhancing NO3--N and PO43- removal. In summary, the synergistic effects of the multi-layer filler structure improved and stabilized N and P removal, providing valuable insights for addressing runoff pollution in bioretention systems amidst rapid urbanization and climate change challenges.
Collapse
Affiliation(s)
- Mei Xu
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Haiyuan Ma
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lei Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hong Chen
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yunsong Yuan
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Fujian Liu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Yanhong Xu
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Qichang Ni
- China Construction Installation Group Co. LTD, Nanjing, 210023, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
3
|
Yang Y, Li J, Kong Z, Ma J, Shen Y, Ma H, Yan Y, Dan K, Chai H. A self-sustaining effect induced by iron sulfide generation and reuse in pyrite-woodchip mixotrophic bioretention systems: An experimental and modeling study. WATER RESEARCH 2024; 265:122311. [PMID: 39197390 DOI: 10.1016/j.watres.2024.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Dual electron donor bioretention systems have emerged as a popular strategy to enhance dissolved nitrogen removal from stormwater runoff. Pyrite-woodchip mixotrophic bioretention systems showed a promoted and stabilized removal of dissolved nutrients under complex rainfall conditions, but the sulfate reduction process that can induce iron sulfide generation and reuse was overlooked. In this study, experiments and models were applied to investigate the effects of filler configuration and dissolved organic carbon (DOC) dissolution rate on treatment performance and iron sulfide generation in pyrite-woodchip bioretention systems. Key parameters govern that DOC dissolution and microbe-mediated processes were obtained by experiments. The water quality models that integrate one-dimensional constant flow, sorption and microbial transformation kinetics were used to predict the performance of bioretention systems. Results showed that the mixotrophic bioretention system with woodchip mixed in the vadose zone and pyrite in the saturated zone achieves a better performance in both nitrogen removal efficiency and by-product control. Comparably, woodchip and pyrite mixed in the saturated zone could encounter a high secondary pollution risk. The sensitivity coefficients of oxic/anoxic DOC dissolution rates to total nitrogen removal are 0.36 and -2.43 respectively. Iron sulfide generation was affected by DOC distribution and the competition between heterotrophic denitrifiers, autotrophic denitrifiers, and sulfate-reducing bacteria (SRB). DOC accumulation has an antagonistic effect on iron production and sulfate reduction. Extra DOC accumulation favors sulfate reduction while high DOC concentration inhibits pyrite-based denitrification and reduces Fe(III) production. The recycling of iron sulfide can improve the robustness and sustainability of bioretention systems.
Collapse
Affiliation(s)
- Yan Yang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; SPIC Yuanda Environmental Protection Engineering Co., Ltd., Chongqing, 401122, China
| | - Jixing Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Zheng Kong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingchen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; China Southwest Architecture Design Institute, Chengdu, 610042, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi Yan
- Chongqing Architectural Design Institute Co., Ltd., Chongqing, 400015, China
| | - Kang Dan
- SPIC Yuanda Environmental Protection Engineering Co., Ltd., Chongqing, 401122, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Wang X, Ma H, Huang C, Xu Z, Wang Y, Yang Y, Xiao H, Zhi Y, Chen L, Chai H. Investigation of pollutants accumulation in the submerged zone for pyrite-based bioretention facilities under continuous rainfall events. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121448. [PMID: 38870797 DOI: 10.1016/j.jenvman.2024.121448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Submerged zone in bioretention facilities for stormwater treatment has been approved to be an effective structure amendment to improve denitrification capability. However, the role and influence of water quality changes in the submerged zone under natural continuous random rainfall patterns are still not clear, especially when the rainfall is less than the pore water in the submerged zone. In this study, continuous rainfall events with different rainfall volume (light rain-light rain-heavy rain) were designed in a lab-scale woodchip mulched pyrite bioretention facility to test the effects of rainfall pattern. The results exhibited that light rain events significantly affected the pollutant removal performance of bioretention for the next rainfall. Different effects were observed during the long-term operation. In the 5th month, light rain reduced the ammonia removal efficiency of subsequent rainstorm events by 8.70%, while in the 12th month, when nitrate leakage occurred, light rain led to a 40.24% reduction in the next heavy rain event's nitrate removal efficiency. Additionally, light rain would also affect the concentration of by-products in the next rainfall. Following a light rain, the concentration of sulfate in the subsequent light rainfall can increase by 24.4 mg/L, and by 11.92 mg/L in a heavy rain. The water quality in the submerged zone and media characteristics analysis suggested that nitrogen conversion capacity of the substrate and microbes, such as Nitrospira (2.86%) and Thiobacillus (35.71%), as well as the in-situ accumulation of pollutants under light rain played important roles. This study clarifies the relationship between successive rainfall events and provides a more comprehensive understanding of bioretention facilities. This is beneficial for field study of bioretention facilities in the face of complex rainfall events.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Haiyuan Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Cong Huang
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Zheng Xu
- Power China Huadong Engineering Corporation Limited, Hangzhou, 311122, China
| | - Yin Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Southwest Municipal Engineering Design & Research Institute of China, Chengdu, 610000, China
| | - Yan Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Huan Xiao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yue Zhi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Lei Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Das TK, Kabir A, Zhao W, Stenstrom MK, Dittrich TM, Mohanty SK. A review of compaction effect on subsurface processes in soil: Implications on stormwater treatment in roadside compacted soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160121. [PMID: 36370790 DOI: 10.1016/j.scitotenv.2022.160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Sustainable cities require spacious infrastructures such as roadways to serve multiple functions, including transportation and water treatment. This can be achieved by installing stormwater control measures (SCM) such as biofilters and swales on the roadside compacted soil, but compacted soil limits infiltration and other functions of SCM. Understanding the effect of compaction on subsurface processes could help design SCM that could alleviate the negative impacts of compaction. Therefore, we synthesize reported data on compaction effects on subsurface processes, including infiltration rate, plant health, root microbiome, and biochemical processes. The results show that compaction could reduce runoff infiltration rate, but adding sand to roadside soil could alleviate the negative impact of compaction. Compaction could decrease the oxygen diffusion rate in the root zone, thereby affecting plant root activities, vegetation establishment, and microbial functions in SCM. The impacts of compaction on carbon mineralization rate and root biomass vary widely based on soil type, aeration status, plant species, and inherent soil compaction level. As these processes are critical in maintaining the long-term functions of SCM, the analysis would help develop strategies to alleviate the negative impacts of compaction and turn road infrastructure into a water solution in sustainable cities.
Collapse
Affiliation(s)
- Tonoy K Das
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| | - Alija Kabir
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Weiyang Zhao
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Michael K Stenstrom
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA
| | - Timothy M Dittrich
- Department of Civil and Environmental Engineering, Wayne State University, Detroit, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
6
|
Zhou Y, Hu B, Zhang W, Zhang Y, Zhang Y, Zhang T. Nitrous oxide emission from stormwater biofilters in alternating dry and wet weather. ENVIRONMENTAL RESEARCH 2020; 191:110137. [PMID: 32861721 DOI: 10.1016/j.envres.2020.110137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 05/20/2023]
Abstract
The nitrous oxide (N2O) flux and its possible production pathways from stormwater biofilters in response to moisture content (MC) due to a shift from dry to wet weather was investigated. In this study, we evaluated the changes in the composition of the bacterial community, the relative abundance of functional genes, and N2O emission rate in laboratory-scale stormwater biofilters in response to changes of MC. The results indicated that N2O flux correlated positively with soil MC (r = 0.722 p < 0.01). We observed a higher rates of N2O flux when shifting from dry to wet conditions. Notably, these values decreased substantially within 8-24 h in response to the rapid decline in MC, and then gradually decreased and stabilized at 4.4-12.0 μg/m2·h. The relative abundance of ammonia-oxidizing and denitrifying bacteria, as well as the relative abundance of functional groups associated with denitrification was higher under conditions of low soil MC than those in the high MC. Furthermore, the abundance of bacterial genes norB (r = 0.716 p < 0.01) and hao (r = 0.917 p < 0.01) was associated with higher N2O emission in high MC soils. Studies with the stable isotope (15N) revealed that 15N enrichment in N2O was primarily via denitrification pathways and labeled ammonium ion (15NH4+). Taken together, our results suggested that nitrifier denitrification is the main pathway generating N2O emission in soils with high MC, which may be caused by the high molar ratio of NH3 to total nitrogen in the influent.
Collapse
Affiliation(s)
- Yongchao Zhou
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Bin Hu
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Yan Zhang
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yiping Zhang
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China.
| | - Tuqiao Zhang
- The Institute of Municipal Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
7
|
Deng Q, Wan L, Li X, Cao X, Zhou Y, Song C. Metagenomic evidence reveals denitrifying community diversity rather than abundance drives nitrate removal in stormwater biofilters amended with different organic and inorganic electron donors. CHEMOSPHERE 2020; 257:127269. [PMID: 32531490 DOI: 10.1016/j.chemosphere.2020.127269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Various sole and mixed electron donors were tested to promote the denitrification rate and nitrate removal efficiency in biofilter systems with high phosphate and ammonia removal efficiency (92.6% and 95.3% respectively). Compared to sole electron donors, complex organic carbon (bits of wood and straw) substantially improved the denitrification rate and nitrate removal efficiency (from 6.3%-18.5% to35.4%) by shifting the denitrifying microbial community composition, even though the relative abundance of functional genes mediating denitrification decreased. The mixed electron donor combining complex organic carbon with sulfur, iron and CH4 further promoted nitrate removal efficiency by 37.2%. The significantly higher abundance and diversity of bacteria mediating organic carbon decomposition in the treatments with complex organic carbon indicated the continuous production of organic carbon with small molecular weights, which provided sustainable and effective electron donor for denitrification. However, sole sulfur or iron did not effectively promote the denitrification rate and nitrogen removal efficiency, even though the related microbial community had been formed.
Collapse
Affiliation(s)
- Qinghui Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Lingling Wan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiaowen Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China; University of Chinese Academy of Sciences, Beijing, 100039, PR China.
| | - Xiuyun Cao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yiyong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Chunlei Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| |
Collapse
|
8
|
McGuire PM, Reid MC. Nitrous Oxide and Methane Dynamics in Woodchip Bioreactors: Effects of Water Level Fluctuations on Partitioning into Trapped Gas Phases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14348-14356. [PMID: 31736311 DOI: 10.1021/acs.est.9b04829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Woodchip bioreactors (WBRs) are low-cost, passive systems for nonpoint source nitrogen removal at terrestrial-aquatic interfaces. The greenhouse gases nitrous oxide (N2O) and methane (CH4) can be produced within WBRs, and efforts to reduce N2O and CH4 emissions from WBR systems require improved understanding of the biogeochemical and physical-chemical mechanisms regulating their production, transport, and release. This study evaluates the impact of trapped gas-filled void volumes as sinks of dissolved gases from water and as sources of episodic fluxes when water levels fall. Dissolved gas tracer experiments in a laboratory bioreactor were used to parameterize nonequilibrium advection-dispersion-gas transfer models and quantify trapping of gas-filled voids as a function of antecedent hydrological conditions. Experiments following a water-level rise revealed that up to 24% of the WBR pore volume was occupied by trapped gas phases, which were primarily located in pore spaces inside woodchips. This finding was confirmed with X-ray-computed microtomography. N2O (3.3-10%) and CH4 (4.3-14%) injected into the reactor following a water table rise partitioned into gas-filled voids and were released when water tables fell. In the case of N2O, partitioning into trapped gas phases makes N2O unavailable for enzymatic reduction, potentially enhancing N2O fluxes under fluctuating water levels.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Matthew C Reid
- School of Civil and Environmental Engineering , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
9
|
Galbraith P, Henry R, McCarthy DT. Rise of the killer plants: investigating the antimicrobial activity of Australian plants to enhance biofilter-mediated pathogen removal. J Biol Eng 2019; 13:52. [PMID: 31182974 PMCID: PMC6555726 DOI: 10.1186/s13036-019-0175-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biofilters are soil-plant based passive stormwater treatment systems which demonstrate promising, although inconsistent, removal of faecal microorganisms. Antimicrobial-producing plants represent a safe, inexpensive yet under-researched biofilter design component that may enhance treatment reliability. The mechanisms underlying plant-mediated microbial removal in biofilters have not been fully elucidated, particularly with respect to antimicrobial production. The aim of this study was therefore to inform biofilter vegetation selection guidelines for optimal pathogen treatment by conducting antimicrobial screening of biofilter-suitable plant species. This involved: (1) selecting native plants suitable for biofilters (17 species) in a Victorian context (southeast Australia); and (2) conducting antimicrobial susceptibility testing of selected plant methanolic extracts (≥ 5 biological replicates/species; 86 total) against reference stormwater faecal bacteria (Salmonella enterica subsp. enterica ser. Typhimurium, Enterococcus faecalis and Escherichia coli). RESULTS The present study represents the first report on the inhibitory activity of polar alcoholic extracts from multiple tested species. Extracts of plants in the Myrtaceae family, reputed for their production of antimicrobial oils, demonstrated significantly lower minimum inhibitory concentrations (MICs) than non-myrtaceous candidates (p < 0.0001). Melaleuca fulgens (median MIC: 8 mg/mL; range: [4-16 mg/mL]), Callistemon viminalis (16 mg/mL, [2-16 mg/mL]) and Leptospermum lanigerum (8 mg/mL, [4-16 mg/mL]) exhibited the strongest inhibitory activity against the selected bacteria (p < 0.05 compared to each tested non-myrtaceous candidate). In contrast, the Australian biofilter gold standard Carex appressa demonstrated eight-fold lower activity than the highest performer M. fulgens (64 mg/mL, [32-64 mg/mL]). CONCLUSION Our results suggest that myrtaceous plants, particularly M. fulgens, may be more effective than the current vegetation gold standard in mediating antibiosis and thus improving pathogen treatment within biofilters. Further investigation of these plants in biofilter contexts is recommended to refine biofilter vegetation selection guidelines.
Collapse
Affiliation(s)
- P. Galbraith
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - R. Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| | - D. T. McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Monash Water for Liveability, Department of Civil Engineering, Monash University, Wellington Road, Clayton, Victoria 3800 Australia
| |
Collapse
|
10
|
Quantifying Urban Bioswale Nitrogen Cycling in the Soil, Gas, and Plant Phases. WATER 2018. [DOI: 10.3390/w10111627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bioswales are a common feature of urban green infrastructure plans for stormwater management. Despite this fact, the nitrogen (N) cycle in bioswales remains poorly quantified, especially during dry weather in the soil, gas, and plant phases. To quantify the nitrogen cycle across seven bioswale sites located in the Bronx, New York City, we measured rates of ammonium and nitrate production in bioswale soils. We also measured soil nitrous oxide gas emissions and plant foliar nitrogen. We found that all mineralized nitrogen underwent nitrification, indicating that the soils were nitrogen-rich, particularly during summer months when nitrogen cycling rates increase, as indicated by higher levels of ammonium in the soil. In comparison to mineralization (0 to 110 g N m−2 y−1), the amounts of nitrogen uptake by the plants (0 to 5 g N m−2 y−1) and of nitrogen in gas emissions from the soils (1 to 10 g N m−2 y−1) were low, although nitrous oxide gas emissions increased in the summer. The bioswales’ greatest influx of nitrogen was via stormwater (84 to 591 g N m−2 y−1). These findings indicate that bioswale plants receive overabundant nitrogen from stormwater runoff. However, soils currently used for bioswales contain organic matter contributing to the urban nitrogen load. Thus, bioswale designs should use less nitrogen rich soils and minimize fertilization for lower nitrogen runoff.
Collapse
|