1
|
Tokita S, Nakayama R, Fujishima Y, Goh VST, Anderson D, Uemura I, Ikema H, Shibata J, Kinoshita Y, Shimizu Y, Shinoda H, Goto J, Palmerini MG, Hatha AM, Satoh T, Nakata A, Fukumoto M, Miura T, Yamashiro H. Potential radiosensitive germline biomarkers in the testes of wild mice after the Fukushima accident. FEBS Open Bio 2025; 15:296-310. [PMID: 39621528 PMCID: PMC11788752 DOI: 10.1002/2211-5463.13927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 02/04/2025] Open
Abstract
We investigated potential germline-specific radiosensitive biomarkers in the testes of large Japanese field mice (Apodemus speciosus) exposed to low-dose-rate (LDR) radiation after the Fukushima accident. Fukushima wild mice testes were analysed via RNA-sequencing to identify genes differentially expressed in the breeding and non-breeding seasons when compared to controls. Results revealed significant changes during the breeding season, with Lsp1 showing a considerable upregulation, while Ptprk and Tspear exhibited significant reductions. Conversely, in the non-breeding season, Fmo2 and Fmo2 (highly similar) were significantly upregulated in radiation-exposed Fukushima mice. qPCR analysis results were consistent with transcriptome sequencing, detecting Lsp1 and Ptprk regulation in the testes of Fukushima mice. While differences in gene expression were observed, these do not imply any causal association between the identified biomarkers and chronic LDR exposure, as other factors such as the environment and developmental age may contribute. This study provides valuable insights into the reproductive biology is affected by environmental radiation and highlights the value of assessing the effects of chronic LDR radiation exposure on testicular health in wild mice.
Collapse
Affiliation(s)
- Syun Tokita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Ryo Nakayama
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety InitiativeNational University of SingaporeSingapore
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Ippei Uemura
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Hikari Ikema
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Jin Shibata
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | - Yoh Kinoshita
- Graduate School of Science and TechnologyNiigata UniversityJapan
| | | | | | - Jun Goto
- Institute for Research AdministrationNiigata UniversityJapan
| | | | - Abdulla Mohamed Hatha
- Department of Marine Biology, Microbiology, BiochemistryCochin University of Science and TechnologyIndia
| | - Takashi Satoh
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Akifumi Nakata
- Faculty of Pharmaceutical SciencesHokkaido University of ScienceSapporoJapan
| | - Manabu Fukumoto
- RIKEN Centre for Advanced Intelligence ProjectPathology Informatics TeamTokyoJapan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency MedicineHirosaki UniversityAomoriJapan
| | - Hideaki Yamashiro
- Graduate School of Science and TechnologyNiigata UniversityJapan
- Field Centre for Sustainable Agriculture, Faculty of AgricultureNiigata UniversityJapan
| |
Collapse
|
2
|
Gatti M, Belli M, De Rubeis M, Tokita S, Ikema H, Yamashiro H, Fujishima Y, Anderson D, Goh VST, Shinoda H, Nakata A, Fukumoto M, Miura T, Nottola SA, Macchiarelli G, Palmerini MG. Ultrastructural Analysis of Large Japanese Field Mouse ( Apodemus speciosus) Testes Exposed to Low-Dose-Rate (LDR) Radiation after the Fukushima Nuclear Power Plant Accident. BIOLOGY 2024; 13:239. [PMID: 38666851 PMCID: PMC11048324 DOI: 10.3390/biology13040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, great attention has been paid to the impact of chronic low-dose-rate (LDR) radiation exposure on biological systems. The reproductive system is sensitive to radiation, with implications connected to infertility. We investigated the testis ultrastructure of the wild large Japanese field mouse (Apodemus speciosus) from three areas contaminated after the FDNPP accident, with different levels of LDR radiation (0.29 µSv/h, 5.11 µSv/h, and 11.80 µSv/h). Results showed good preservation of the seminiferous tubules, comparable to the unexposed animals (controls), except for some ultrastructural modifications. Increases in the numerical density of lipid droplet clusters in spermatogenic cells were found at high levels of LDR radiation, indicating an antioxidant activity rising due to radiation recovery. In all groups, wide intercellular spaces were found between spermatogenic cells, and cytoplasmic vacuolization increased at intermediate and high levels and vacuolated mitochondria at the high-level. However, these findings were also related to the physiological dynamics of spermatogenesis. In conclusion, the testes of A. speciosus exposed to LDR radiation associated with the FDNPP accident showed a normal spermatogenesis, with some ultrastructural changes. These outcomes may add information on the reproductive potential of mammals chronically exposed to LDR radiation.
Collapse
Affiliation(s)
- Marta Gatti
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Manuel Belli
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Mariacarla De Rubeis
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Syun Tokita
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hikari Ikema
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata 959-2181, Japan
| | - Yohei Fujishima
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Donovan Anderson
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Akifumi Nakata
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido 006-8585, Japan
| | - Manabu Fukumoto
- RIKEN Center for Advanced Intelligence Project, Pathology Informatics Team, Tokyo 103-0027, Japan;
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori 036-8564, Japan (D.A.); (T.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University, 00161 Rome, Italy; (M.G.); (M.D.R.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
3
|
More efficient induction of genotoxicity by high-LET Fe-particle radiation than low-LET X-ray radiation at low doses. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
4
|
Katsube T, Wang B, Tanaka K, Ninomiya Y, Hirakawa H, Liu C, Maruyama K, Vares G, Liu Q, Murakami M, Nakajima T, Fujimori A, Nenoi M. Fluorescence in situ hybridization analysis of chromosomal aberrations in mouse splenocytes at one- and two-months after total body exposure to iron-56 (Fe) ion particles or X-rays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503548. [PMID: 36155141 DOI: 10.1016/j.mrgentox.2022.503548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
High atomic number and energy (HZE) particles such as iron-56 (Fe) ions are a major contributor to health risks in long-term manned space exploration. The aim of this study is to understand radiation-induced differential genotoxic effects between HZE particles and low linear energy transfer (LET) photons. C57BL/6J Jms female mice of 8 weeks old were exposed to total body irradiation of accelerated Fe-particles with a dose ranging from 0.1 to 3.0 Gy or of X-rays with a dose ranging from 0.1 to 5.0 Gy. Chromosomal aberrations (CAs) in splenocytes were examined by fluorescence in situ hybridization at 1- and 2-months after exposure. Clonal expansions of cells with CAs were found to be induced only by X-rays but not by Fe-particles. Dose-dependent increase in the frequencies of stable-type CAs was observed at 1- as well as 2-months after exposure to both radiation types. The frequencies of stable-type CAs in average were much higher in mice exposed to X-rays than those to Fe-particles and did not change significantly between 1- and 2-months after exposure to both radiation types. On the other hand, the frequencies of unstable-type CAs induced by X-rays and Fe-particles were not much different, and they appeared to decrease with time from 1- to 2-months after exposure. These results suggested that larger fraction of stable-type CAs induced by Fe-particles might be non-transmissible than those by X-rays because of some associating lethal alterations on themselves or on other chromosomes in the same cells and that these cells might be removed by 1-month after Fe-TBI. We also demonstrated that exposure to Fe-particles induced insertions at relatively higher frequency to other stable-type CAs than X-rays. Our findings suggest that insertions can be used as indicators of past exposure to high-LET particle radiation.
Collapse
Affiliation(s)
- Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hirokazu Hirakawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Cuihua Liu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Guillaume Vares
- Experimental Radiotoxicology and Radiobiology Laboratory, Institute for Radioprotection and Nuclear Safety, B.P. 17 - 92262 Fontenay-aux-Roses Cedex, France
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Akira Fujimori
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Human Resources Development Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
5
|
Evaluation of sperm fertilization capacity of large Japanese field mice (Apodemus speciosus) exposed to chronic low dose-rate radiation after the Fukushima accident. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Kuroyanagi A, Ukyo R, Kodama Y, Eto T, Okubo Y, Kobayashi I, Ieiri S, Morita T, Sakamoto SH. Body Temperature Measurement Reveals the Reproductive Profile of Female Apodemus speciosus under Laboratory and Field Conditions. MAMMAL STUDY 2022. [DOI: 10.3106/ms2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Akira Kuroyanagi
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Rina Ukyo
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Yoshinobu Kodama
- Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Takeshi Eto
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yoshinobu Okubo
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Ikuo Kobayashi
- Sumiyoshi Livestock Science Station, Field Science Education Research Center, Faculty of Agriculture, University of Miyazaki, Miyazaki 880-0121, Japan
| | - Seiji Ieiri
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tetsuo Morita
- Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | | |
Collapse
|
7
|
Enhanced Effects of Chronic Restraint-Induced Psychological Stress on Total Body Fe-Irradiation-Induced Hematopoietic Toxicity in Trp53-Heterozygous Mice. Life (Basel) 2022; 12:life12040565. [PMID: 35455056 PMCID: PMC9025703 DOI: 10.3390/life12040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Humans are exposed to both psychological stress (PS) and radiation in some scenarios such as manned deep-space missions. It is of great concern to verify possible enhanced deleterious effects from such concurrent exposure. Pioneer studies showed that chronic restraint-induced PS (CRIPS) could attenuate Trp53 functions and increase gamma-ray-induced carcinogenesis in Trp53-heterozygous mice while CRIPS did not significantly modify the effects on X-ray-induced hematopoietic toxicity in Trp53 wild-type mice. As high-linear energy transfer (LET) radiation is the most important component of space radiation in causing biological effects, we further investigated the effects of CRIPS on high-LET iron-particle radiation (Fe)-induced hematopoietic toxicity in Trp53-heterozygous mice. The results showed that CRIPS alone could hardly induce significant alteration in hematological parameters (peripheral hemogram and micronucleated erythrocytes in bone marrow) while concurrent exposure caused elevated genotoxicity measured as micronucleus incidence in erythrocytes. Particularly, exposure to either CRISP or Fe-particle radiation at a low dose (0.1 Gy) did not induce a marked increase in the micronucleus incidence; however, concurrent exposure caused a significantly higher increase in the micronucleus incidence. These findings indicated that CRIPS could enhance the deleterious effects of high-LET radiation, particularly at a low dose, on the hematopoietic toxicity in Trp53-heterozygous mice.
Collapse
|
8
|
Fuller N, Smith JT, Takase T, Ford AT, Wada T. Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118479. [PMID: 34752791 DOI: 10.1016/j.envpol.2021.118479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4-44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined 134Cs and 137Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg-1 wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg-1. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 μGy h-1. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.
Collapse
Affiliation(s)
- Neil Fuller
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK.
| | - Jim T Smith
- School of Environmental, Geographical and Geological Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, Hampshire, PO1 3QL, UK
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire, PO4 9LY, UK
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima Prefecture, 960-1296, Japan
| |
Collapse
|
9
|
Sproull M, Hayes J, Ishiniwa H, Nanba K, Shankavaram U, Camphausen K, Johnson TE. Proteomic Biomarker Analysis of Serum from Japanese Field Mice (Apodemus Speciosus) Collected within the Fukushima Difficult-to-return Zone. HEALTH PHYSICS 2021; 121:564-573. [PMID: 34618712 PMCID: PMC8556248 DOI: 10.1097/hp.0000000000001467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT The environmental impact of the Fukushima Daiichi nuclear power plant accident is a source of ongoing concern as there is uncertainty regarding the effects of chronic radiation exposure on local plant and animal life from Fukushima-derived radionuclides. In the current study, changes in proteomic biomarker expression due to chronic environmentally-derived radiation exposures was examined in wild field mice. Serum from 10 wild field mice (Apodemus speciosus) native to the Fukushima difficult-to-return zone and from eight wild field mice native to the Soma area (control) were collected. External dose estimations were completed using measurements of ambient radiation levels and calculating 137Cs concentrations in soil. Internal dose was estimated by counting whole mice using an HPGe detector. Age of the mice was estimated using molar wear. Serum was screened using the aptamer-based SOMAscan proteomic assay technology for changes in expression of 1,310 protein analytes. A subset panel of protein biomarkers that demonstrated significant changes in expression between control and exposed mice was determined and analyzed using Ingenuity Pathway Analysis (IPA). Control animals had a calculated lifetime dose range from 0.001 to 0.007 Gy, and exposed animals had a calculated lifetime dose range from 0.01 to 0.64 Gy. No discernable effect of dose rate was seen as relative dose rate correlated with dose for all samples. Detectable values were obtained for all 1,310 proteins included in the SOMAscan assay. Subset panels of proteins demonstrating significant (p < 0.05) changes in expression with either an upregulated or downregulated 1.5-fold change over control were identified for both the sample cohort inclusive of all exposed samples and the sample cohort restricted to samples from animals receiving "low" dose exposures. These panels of proteins from exposed animals were analyzed using IPA, which highlighted changes in key biological pathways related to injury, respiratory, renal, urological, and gastrointestinal disease, and cancer. Significant changes in expression of proteomic biomarkers were seen in the serum of wild field mice that received environmental exposure to Fukushima-derived radionuclides. Our findings demonstrate novel biomarkers of radiation exposure in wildlife within the Fukushima difficult-to-return zone.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland USA
| | - Joshua Hayes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado USA
- International Atomic Energy Agency, Vienna, Austria
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan
| | - Kenji Nanba
- Institute of Environmental Radioactivity, Fukushima University, Fukushima, Japan
| | - Uma Shankavaram
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland USA
| | - Thomas E. Johnson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado USA
| |
Collapse
|
10
|
Cunningham K, Hinton TG, Luxton JJ, Bordman A, Okuda K, Taylor LE, Hayes J, Gerke HC, Chinn SM, Anderson D, Laudenslager ML, Takase T, Nemoto Y, Ishiniwa H, Beasley JC, Bailey SM. Evaluation of DNA damage and stress in wildlife chronically exposed to low-dose, low-dose rate radiation from the Fukushima Dai-ichi Nuclear Power Plant accident. ENVIRONMENT INTERNATIONAL 2021; 155:106675. [PMID: 34120002 DOI: 10.1016/j.envint.2021.106675] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
The health effects associated with chronic low-dose, low-dose rate (LD-LDR) exposures to environmental radiation are uncertain. All dose-effect studies conducted outside controlled laboratory conditions are challenged by inherent complexities of ecological systems and difficulties quantifying dose to free-ranging organisms in natural environments. Consequently, the effects of chronic LD-LDR radiation exposures on wildlife health remain poorly understood and much debated. Here, samples from wild boar (Sus scrofa leucomystax) and rat snakes (Elaphe spp.) were collected between 2016 and 2018 across a gradient of radiation exposures in Fukushima, Japan. In vivo biomarkers of DNA damage and stress were evaluated as a function of multiple measurements of radiation dose. Specifically, we assessed frequencies of dicentric chromosomes (Telomere-Centromere Fluorescence in situ Hybridization: TC-FISH), telomere length (Telo-FISH, qPCR), and cortisol hormone levels (Enzyme Immunoassay: EIA) in wild boar, and telomere length (qPCR) in snakes. These biological parameters were then correlated to robust calculations of radiation dose rate at the time of capture and plausible upper bound lifetime dose, both of which incorporated internal and external dose. No significant relationships were observed between dicentric chromosome frequencies or telomere length and dose rate at capture or lifetime dose (p value range: 0.20-0.97). Radiation exposure significantly associated only with cortisol, where lower concentrations were associated with higher dose rates (r2 = 0.58; p < 0.0001), a relationship that was likely due to other (unmeasured) factors. Our results suggest that wild boar and snakes chronically exposed to LD-LDR radiation sufficient to prohibit human occupancy were not experiencing significant adverse health effects as assessed by biomarkers of DNA damage and stress.
Collapse
Affiliation(s)
- Kelly Cunningham
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Thomas G Hinton
- Centre for Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1433 Ås, Norway; Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan.
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Aryn Bordman
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Kei Okuda
- Faculty of Human Environmental Studies, Hiroshima Shudo University, Hiroshima 731-3195, Japan
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Josh Hayes
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| | - Hannah C Gerke
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Sarah M Chinn
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Donovan Anderson
- Symbiotic Systems Science and Technology, Fukushima University, Fukushima, Fukushima City, Kanayagawa 960-1248, Japan
| | - Mark L Laudenslager
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tsugiko Takase
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - Yui Nemoto
- Fukushima Prefectural Centre for Environmental Creation, 2-10 Fukasaku, Miharu, Fukushima 963-7799, Japan
| | - Hiroko Ishiniwa
- Institute of Environmental Radioactivity, 1 Kanayagawa, Fukushima City, Fukushima 960-1296, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC 29808, USA
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523-1618, USA
| |
Collapse
|
11
|
Dowlath MJH, Karuppannan SK, Sinha P, Dowlath NS, Arunachalam KD, Ravindran B, Chang SW, Nguyen-Tri P, Nguyen DD. Effects of radiation and role of plants in radioprotection: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146431. [PMID: 34030282 DOI: 10.1016/j.scitotenv.2021.146431] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 05/16/2023]
Abstract
Radiation can be lethal at high doses, whereas controlled doses are useful in medical applications. Other applications include power generation, agriculture sterilization, nuclear weapons, and archeology. Radiation damages genetic material, which is reflected in genotoxicity and can cause hereditary damage. In the medical field, it is essential to avoid the harmful effects of radiation. Radiation countermeasures and the need for radioprotective agents have been explored in recent years. Considering plants that evolve in radiative conditions, their ability to protect organisms against radiation has been studied and demonstrated. Crude extracts, fractioned extracts, isolated phytocompounds, and plant polysaccharides from various plants have been used in radioprotection studies, and their efficiency has been proven in various in vitro and in vivo experimental models. It is important to identify the mechanism of action to develop a potent plant-based radioprotective agent. To identify this protective mechanism, it is necessary to understand the damage caused by radiation in biological systems. This review intends to discuss the effects of ionizing radiation on biological systems and evaluate plant-based radioprotectants that have tested thus far as well as their mechanism of action in protecting against the toxic effects of radiation. From the review, the mechanism of radioprotection exhibited by the plant-based products could be understood. Meanwhile, we strongly suggest that the potential products identified so far should undergo clinical trials for critically evaluating their effects and for developing an ideal and compatible radioprotectant with no side-effects.
Collapse
Affiliation(s)
- Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Pamela Sinha
- Project Management, Bioneeds India Pvt. Ltd, Peenya Industrial Area, Bengaluru 560058, India
| | - Nihala Sultana Dowlath
- Department of Biochemistry, Ethiraj College for Women, Chennai, Tamil Nadu 600008, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India.
| | - B Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| | - S Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Phuong Nguyen-Tri
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam; Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea.
| |
Collapse
|
12
|
Katsube T, Wang B, Tanaka K, Ninomiya Y, Hirakawa H, Liu C, Maruyama K, Vares G, Liu Q, Kito S, Nakajima T, Fujimori A, Nenoi M. Synergistic Effects of Chronic Restraint-Induced Stress and Low-Dose 56Fe-particle Irradiation on Induction of Chromosomal Aberrations in Trp53-Heterozygous Mice. Radiat Res 2021; 196:100-112. [PMID: 33901294 DOI: 10.1667/rade-20-00218.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/26/2021] [Indexed: 11/03/2022]
Abstract
Astronauts can develop psychological stress (PS) during space flights due to the enclosed environment, microgravity, altered light-dark cycles, and risks of equipment failure or fatal mishaps. At the same time, they are exposed to cosmic rays including high atomic number and energy (HZE) particles such as iron-56 (Fe) ions. Psychological stress or radiation exposure can cause detrimental effects in humans. An earlier published pioneering study showed that chronic restraint-induced psychological stress (CRIPS) could attenuate Trp53 functions and increase carcinogenesis induced by low-linear energy transfer (LET) γ rays in Trp53-heterozygous (Trp53+/-) mice. To elucidate possible modification effects from CRIPS on high-LET HZE particle-induced health consequences, Trp53+/- mice were received both CRIPS and accelerated Fe ion irradiation. Six-week-old Trp53+/- C57BL/6N male mice were restrained 6 h per day for 28 consecutive days. On day 8, they received total-body Fe-particle irradiation (Fe-TBI, 0.1 or 2 Gy). Metaphase chromosome spreads prepared from splenocytes at the end of the 28-day restraint regimen were painted with the fluorescence in situ hybridization (FISH) probes for chromosomes 1 (green), 2 (red) and 3 (yellow). Induction of psychological stress in our experimental model was confirmed by increase in urinary corticosterone level on day 7 of restraint regimen. Regardless of Fe-TBI, CRIPS reduced splenocyte number per spleen at the end of the 28-day restraint regimen. At 2 Gy, Fe-TBI alone induced many aberrant chromosomes and no modifying effect was detected from CRIPS on induction of aberrant chromosomes. Notably, neither Fe-TBI at 0.1 Gy nor CRIPS alone induced any increase in the frequency of aberrant chromosomes, while simultaneous exposure resulted in a significant increase in the frequency of chromosomal exchanges. These findings clearly showed that CRIPS could enhance the frequency of chromosomal exchanges induced by Fe-TBI at a low dose of 0.1 Gy.
Collapse
Affiliation(s)
- Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Hirokazu Hirakawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Cuihua Liu
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Kouichi Maruyama
- Center for Advanced Radiation Emergency Medicine, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Guillaume Vares
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Seiji Kito
- Center for Animal Research and Education, Nagoya University, Nagoya 464-8601, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba
| |
Collapse
|
13
|
Transition of Radioactive Cesium Deposition in Reproductive Organs of Free-Roaming Cats in Namie Town, Fukushima. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041772. [PMID: 33670348 PMCID: PMC7918855 DOI: 10.3390/ijerph18041772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022]
Abstract
We investigated the internal contamination by radioactive cesium associated with the FDNPP accident, in the testes or uterus and ovaries of free-roaming cats (Felis silvestris catus), which were protected by volunteers in the Namie Town, Fukushima. A total of 253 samples (145 testes and 108 uterus and ovaries) obtained from adult cats and 15 fetuses from 3 pregnant female cats were measured. Free-roaming cats in Namie Town had a higher level of radioactive contamination in comparison to the control group in Tokyo, as the 134Cs + 137Cs activity concentration ranged from not detectable to 37,882 Bq kg-1 in adult cats. Furthermore, the radioactivity in the fetuses was almost comparable to those in their mother's uterus and ovaries. The radioactivity was also different between several cats protected in the same location, and there was no significant correlation with ambient dose-rates and activity concentrations in soil. Moreover, radioactive cesium levels in cats decreased with each year. Therefore, it is likely that decontamination work in Namie Town and its surroundings could affect radioactive cesium accumulation, and thus possibly reduce the internal radiation exposure of wildlife living in contaminated areas. It is hence necessary to continue radioactivity monitoring efforts for the residents living in Namie Town.
Collapse
|
14
|
Nutrient Imbalance of the Host Plant for Larvae of the Pale Grass Blue Butterfly May Mediate the Field Effect of Low-Dose Radiation Exposure in Fukushima: Dose-Dependent Changes in the Sodium Content. INSECTS 2021; 12:insects12020149. [PMID: 33572324 PMCID: PMC7916146 DOI: 10.3390/insects12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022]
Abstract
The pale grass blue butterfly Zizeeria maha is sensitive to low-dose radioactive pollution from the Fukushima nuclear accident in the field but is also highly tolerant to radioactive cesium (137Cs) in an artificial diet in laboratory experiments. To resolve this field-laboratory paradox, we hypothesize that the butterfly shows vulnerability in the field through biochemical changes in the larval host plant, the creeping wood sorrel Oxalis corniculata, in response to radiation stress. To test this field-effect hypothesis, we examined nutrient contents in the host plant leaves from Tohoku (mostly polluted areas including Fukushima), Niigata, and Kyushu, Japan. Leaves from Tohoku showed significantly lower sodium and lipid contents than those from Niigata. In the Tohoku samples, the sodium content (but not the lipid content) was significantly negatively correlated with the radioactivity concentration of cesium (137Cs) in leaves and with the ground radiation dose. The sodium content was also correlated with other nutrient factors. These results suggest that the sodium imbalance of the plant may be caused by radiation stress and that this nutrient imbalance may be one of the reasons that this monophagous butterfly showed high mortality and morphological abnormalities in the field shortly after the accident in Fukushima.
Collapse
|
15
|
Maruyama K, Wang B, Doi K, Ishibashi K, Ichikawa S, Furuhata Y, Kubota M, Watanabe Y. Radiation effects on wild medaka around Fukushima Dai-ichi Nuclear Power Plant assessed by micronucleus assay. JOURNAL OF RADIATION RESEARCH 2021; 62:79-85. [PMID: 33326996 PMCID: PMC7779352 DOI: 10.1093/jrr/rraa116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Indexed: 06/12/2023]
Abstract
Since the Fukushima Dai-ichi Nuclear Power Plant (F1-NPP) accident in 2011, radiation effects on wildlife in the contaminated areas have been a major concern. The outskirts of the F1-NPP are mainly rural areas, where many rice fields, streams and reservoirs are located. We searched for wild medaka (small aquarium fish) around the F1-NPP and found two wild medaka habitats (S1 and S2). S1 is a stream located 4 km from the F1-NPP, where the ambient dose equivalent rate was 0.4-0.9 μSv/h (2013-14), and S2 is a reservoir located 7.5 km from the F1-NPP, where the ambient dose equivalent rate was 9.8-22 μSv/h (2013-14 and 2017-18). Dosimeters were placed for one day at the locations where the medaka were captured, and the absorbed dose rates were estimated. Radiation effects on wild medaka were examined using micronucleus assay between 2013 and 2018. No significant difference in frequency of micronucleated gill cells was observed among the wild medaka from S1, S2 and our cultivated medaka that were used as a control.
Collapse
Affiliation(s)
- Kouichi Maruyama
- Corresponding author: Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan. Tel: +81-43-206-3085; Fax: +81-43- 251-4582;
| | - Bing Wang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan
| | - Kazutaka Doi
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Koji Ishibashi
- Tokyo College of Environment, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-0022, Japan
| | - San’ei Ichikawa
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoshiaki Furuhata
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Masahide Kubota
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Sumida-ku, Tokyo 130-8606, Japan
| | - Yoshito Watanabe
- Department of Radioecology and Fukushima Project, Center for Advanced Radiation Emergency Medicine, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
16
|
Tanaka S, Kinouchi T, Fujii T, Imanaka T, Takahashi T, Fukutani S, Maki D, Nohtomi A, Takahashi S. Observation of morphological abnormalities in silkworm pupae after feeding 137CsCl-supplemented diet to evaluate the effects of low dose-rate exposure. Sci Rep 2020; 10:16055. [PMID: 32994421 PMCID: PMC7524783 DOI: 10.1038/s41598-020-72882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, morphological abnormalities in lepidopteran insects, such as shrinkage and/or aberration of wings, have been reported. Butterflies experimentally exposed to radiocesium also show such abnormalities. However, because of a lack of data on absorbed dose and dose-effect relationship, it is unclear whether these abnormalities are caused directly by radiation. We conducted a low dose-rate exposure experiment in silkworms reared from egg to fully developed larvae on a 137CsCl-supplemented artificial diet and estimated the absorbed dose to evaluate morphological abnormalities in pupal wings. We used 137CsCl at 1.3 × 103 Bq/g fresh weight to simulate 137Cs contamination around the FDNPP. Absorbed doses were estimated using a glass rod dosimeter and Monte Carlo particle transport simulation code PHITS. Average external absorbed doses were approximately 0.24 (on diet) and 0.016 mGy/day (near diet); the average internal absorbed dose was approximately 0.82 mGy/day. Pupal wing structure is sensitive to radiation exposure. However, no significant differences were observed in the wing-to-whole body ratio of pupae between the 137CsCl-exposure and control groups. These results suggest that silkworms are insensitive to low dose-rate exposure due to chronic ingestion of high 137Cs at a high concentration.
Collapse
Affiliation(s)
- Sota Tanaka
- Research Group for Environmental Science, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan.
| | - Tadatoshi Kinouchi
- Division of Radiation Life Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Nishi-ku, Motooka, Fukuoka, 819-0395, Japan
| | - Tetsuji Imanaka
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Tomoyuki Takahashi
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Satoshi Fukutani
- Division of Nuclear Engineering Science, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Daisuke Maki
- Technical Staff Office, Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akihiro Nohtomi
- Quantum Radiation Sciences, Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Sentaro Takahashi
- Professor Emeritus, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
Sato I, Sasaki J, Satoh H, Natsuhori M, Murata T, Okada K. Assessments of DNA Damage and Radiation Exposure Dose in Cattle Living in the Contaminated Area Caused by the Fukushima Nuclear Accident. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:496-501. [PMID: 32844262 DOI: 10.1007/s00128-020-02968-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Since the Fukushima nuclear accident in 2011, various abnormalities have been reported in animals living in the contaminated area. In the present study, we examined DNA damage in cattle living in the "difficult-to-return zone" by 8-hydroxy-2'-deoxyguanosine, comet, and micronucleus assays using their peripheral blood. The radiation exposure dose rate at the sampling time was approximately 0.25 or 0.38 mGy/day and the cumulative dose was estimated at approximately 1000 mGy. Significant increase in DNA damage was not detected by any of the three methods. As DNA damage is a stochastic effect of radiation, it might be occurring in animals living in the contaminated area. However, the present results suggest that radiation-induced DNA damage in the cattle did not increase to the level detectable by the assays we used due to the low dose rate in this area.
Collapse
Affiliation(s)
- Itaru Sato
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan.
| | - Jun Sasaki
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Masahiro Natsuhori
- School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Japan
| | - Takahisa Murata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Keiji Okada
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| |
Collapse
|
18
|
Ariyoshi K, Miura T, Kasai K, Goh VST, Fujishima Y, Nakata A, Takahashi A, Shimizu Y, Shinoda H, Yamashiro H, Seymour C, Mothersill C, Yoshida MA. Environmental radiation on large Japanese field mice in Fukushima reduced colony forming potential in hematopoietic progenitor cells without inducing genomic instability. Int J Radiat Biol 2020; 98:1147-1158. [PMID: 32791031 DOI: 10.1080/09553002.2020.1807643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To study the environmental radiation effects of wild animals after the Fukushima Dai-ichi nuclear power plant accident, we assessed effects on hematopoietic progenitor cells (HPCs) in large Japanese field mice (Apodemus speciosus). MATERIALS AND METHODS A. speciosus were collected from three contaminated sites and control area. The air dose-rates at the control and contaminated areas were 0.96 ± 0.05 μGy/d (Hirosaki), 14.4 ± 2.4 μGy/d (Tanashio), 208.8 ± 31.2 μGy/d (Ide), 470.4 ± 93.6 μGy/d (Omaru), respectively. We investigated possible DNA damage and pro-inflammatory markers in the bone marrow (BM) cells. The colony-forming potential of BM cells was estimated by the number of HPC colony-forming cells. Radiation-induced genomic instability (RIGI) in HPCs was also analyzed by quantifying delayed DNA damage in CFU-GM clones. RESULTS Although no significant differences in DNA damage and inflammation markers in BM cells from control and contaminated areas, the number of HPC colonies exhibited an inverse correlation with air dose-rate. With regard to RIGI, no significant differences in DNA damage of CFU-GM clones between the mice from the control and the three contaminated areas. CONCLUSIONS Our study suggests that low dose-rate radiation of more than 200 Gy/d reduced HPCs, possibly eliminating genomically unstable HPCs.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima City, Japan
| | - Tomisato Miura
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Akifumi Nakata
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | | | | | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Nishiku, Japan
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, Canada
| | | | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
19
|
Fujishima Y, Nakata A, Ujiie R, Kasai K, Ariyoshi K, Goh VST, Suzuki K, Tazoe H, Yamada M, Yoshida MA, Miura T. Assessment of chromosome aberrations in large Japanese field mice ( Apodemus speciosus) in Namie Town, Fukushima. Int J Radiat Biol 2020; 98:1159-1167. [PMID: 32602392 DOI: 10.1080/09553002.2020.1787548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in Japan on March 11 2011, the surroundings became contaminated with radionuclides. To understand the possible biological effects after chronic low dose-rate radiation in contaminated areas of Fukushima, we assessed the effects in large Japanese field mice (Apodemus speciosus) by means of chromosome aberration analysis. MATERIALS AND METHODS We collected A. speciosus in five sites around Namie Town, Fukushima (contaminated areas) and in two sites in Hirosaki City, Aomori (control areas, 350 km north of FDNPP) from autumn 2011 to 2013. The number of mice captured and ambient dose-rates were as follows: high (n = 11, 10.1-30.0 µGy h-1), moderate (n = 10, 5.7-15.6 µGy h-1), low (n = 12, 0.23-1.14 µGy h-1) and control (n = 20, 0.04-0.07 µGy h-1). After spleen extraction from rodents, spleen cell culture was performed to obtain metaphase spreads. Chromosome aberrations were assessed on Giemsa-stained metaphase spreads. RESULTS Although the mice in the contaminated areas were chronically exposed, there was no radiation-specific chromosome aberrations observed, such as dicentric chromosomes and rings. Some structural aberrations such as gaps and breaks were observed, and these frequencies decreased annually in mice from Namie Town. CONCLUSION These findings suggest that chromosome aberration analysis is useful to evaluate and monitor radiation effects in wild animals.
Collapse
Affiliation(s)
- Yohei Fujishima
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan.,Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Akifumi Nakata
- Department of Pharmacy, Faculty of Pharmaceutical Science, Hokkaido University of Science, Sapporo, Japan
| | - Risa Ujiie
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Kosuke Kasai
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, Japan
| | - Valerie Swee Ting Goh
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | | | - Hirofumi Tazoe
- Department of International Cooperation and Collaborative Research, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Masatoshi Yamada
- Central Laboratory, Marine Ecology Research Institute, Chiba, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation biology, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
20
|
Azuma R, Hatanaka Y, Shin SW, Murai H, Miyashita M, Anzai M, Matsumoto K. Developmental competence of interspecies cloned embryos produced using cells from large Japanese field mice (Apodemus speciosus) and oocytes from laboratory mice (Mus musculus domesticus). J Reprod Dev 2020; 66:255-263. [PMID: 32213735 PMCID: PMC7297636 DOI: 10.1262/jrd.2019-167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The large Japanese field mouse (Apodemus speciosus) is endemic to Japan and may be used as an animal model for studies related to environmental pollution, medical science, and basic biology. However, the large Japanese field mouse has low reproductive ability due to the small number of oocytes ovulated per female. To produce experimental models, we investigated the in vitro developmental potential of interspecies somatic cell nuclear transfer (iSCNT) embryos produced by fusing tail tip cells from the large Japanese field mouse with enucleated oocytes from laboratory mice (Mus musculus domesticus). Only a small number of iSCNT embryos developed to the 4-cell (0-4%) and blastocysts (0-1%) stages under sequential treatment using trichostatin A (TSA) and vitamin C (VC) supplemented with deionized bovine serum albumin (d-BSA). This sequential treatment led to the reduction in H3K9 trimethylation and did not affect H3K4 trimethylation in at least the 2-cell stage of the iSCNT embryos. Moreover, iSCNT embryos that received tail tip cells with exposure treatment to ooplasm from cell fusion to oocyte activation or VC treatment prior to cell fusion did not exhibit significant in vitro development improvement compared to that of each control group. This suggests that large Japanese field mice/laboratory mice iSCNT embryos that received sequential treatment using TSA and VC with d-BSA may have slightly better developmental potential beyond the 4-cell stage. Our results provide insights into the reprogramming barriers impeding the wider implementation of iSCNT technology.
Collapse
Affiliation(s)
- Rika Azuma
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Yuki Hatanaka
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, W12 0NN London, UK.,RIKEN BioResource Center, Ibaraki 305-0074, Japan
| | - Seung-Wook Shin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Maryland 20892, USA
| | - Hitoshi Murai
- Toyama Municipal Family Park Zoo Co., Ltd., Toyama 930-0151, Japan
| | - Minoru Miyashita
- Foundation Ube Tokiwa Zoological Society, Yamaguchi 755-0001, Japan
| | - Masayuki Anzai
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | - Kazuya Matsumoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| |
Collapse
|
21
|
Overwintering States of the Pale Grass Blue Butterfly Zizeeria maha (Lepidoptera: Lycaenidae) at the Time of the Fukushima Nuclear Accident in March 2011. INSECTS 2019; 10:insects10110389. [PMID: 31690046 PMCID: PMC6920751 DOI: 10.3390/insects10110389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/02/2023]
Abstract
The Fukushima nuclear accident in March 2011 caused the massive release of anthropogenic radioactive materials from the Fukushima Dai-ichi Nuclear Power Plant to its surrounding environment. Its biological effects have been studied using the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae), but the overwintering states of this butterfly remain elusive. Here, we conducted a series of field surveys in March 2018, March 2019, and April 2019 in Fukushima and its vicinity to clarify the overwintering states of this butterfly at the time of the Fukushima nuclear accident. We discovered overwintering individuals in situ associated with the host plant Oxalis corniculata under natural straw mulch as first-instar to fourth-instar larvae in March 2018 and 2019. No other developmental stages were found. The body length and width were reasonably correlated with the accumulated temperature. On the basis of a linear regression equation between body size and accumulated temperature, together with other data, we deduced that the pale grass blue butterfly occurred as fourth-instar larvae in Fukushima and its vicinity at the time of the accident. This study paves the way for subsequent dosimetric analyses that determine the radiation doses absorbed by the butterfly after the accident.
Collapse
|
22
|
Gurung RD, Taira W, Sakauchi K, Iwata M, Hiyama A, Otaki JM. Tolerance of High Oral Doses of Nonradioactive and Radioactive Caesium Chloride in the Pale Grass Blue Butterfly Zizeeria maha. INSECTS 2019; 10:E290. [PMID: 31505757 PMCID: PMC6780287 DOI: 10.3390/insects10090290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
The biological effects of the Fukushima nuclear accident have been examined in the pale grass blue butterfly, Zizeeria maha (Lepidoptera: Lycaenidae). In previous internal exposure experiments, larvae were given field-collected contaminated host plant leaves that contained up to 43.5 kBq/kg (leaf) of radioactive caesium. Larvae ingested up to 480 kBq/kg (larva), resulting in high mortality and abnormality rates. However, these results need to be compared with the toxicological data of caesium. Here, we examined the toxicity of both nonradioactive and radioactive caesium chloride on the pale grass blue butterfly. Larvae were fed a caesium-containing artificial diet, ingesting up to 149 MBq/kg (larva) of radioactive caesium (137Cs) or a much higher amount of nonradioactive caesium. We examined the pupation rate, eclosion rate, survival rate up to the adult stage, and the forewing size. In contrast to previous internal exposure experiments using field-collected contaminated leaves, we could not detect any effect. We conclude that the butterfly is tolerant to ionising radiation from 137Cs in the range tested but is vulnerable to radioactive contamination in the field. These results suggest that the biological effects in the field may be mediated through ecological systems and cannot be estimated solely based on radiation doses.
Collapse
Affiliation(s)
- Raj D Gurung
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Instrumental Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| | - Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Tokyo 156-8502, Japan.
| | - Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan.
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
23
|
Fuma S, Soeda H, Watanabe Y, Kubota Y, Aono T. Dose rate estimation of freshwater wildlife inhabiting irrigation ponds in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 203:172-178. [PMID: 30921607 DOI: 10.1016/j.jenvrad.2019.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
To assess the risks of ionising radiation to freshwater environments in the exclusion zone of the Fukushima Dai-ichi Nuclear Power Plant accident, the absorbed dose rates to aquatic organisms possibly inhabiting the irrigation ponds were estimated using the ERICA Assessment Tool from 134Cs and 137Cs radioactivity monitoring data for the period 2013 to 2017. In each year, the total dose rates to benthic organisms were in the same or higher levels compared with those to pelagic organisms. Among pelagic organisms, the total dose rates to amphibians, birds, and pelagic fish were two orders of magnitude higher than those to plankton. The total dose rates to insect larvae, which attained a maximum of 130 μGy h-1, were higher than those to the other benthic organisms. The dose rates to benthic organisms increased from 2013 to 2015 and remained constant thereafter. In 50-93% of ponds, the dose rates to at least one taxon of freshwater organism, all of which were benthic organisms, exceeded the ERICA screening level (10 μGy h-1). Comparison of the estimated dose rates with the ICRP's derived consideration reference levels (DCRLs) suggests that radioactive contamination was not likely to damage amphibians, birds, pelagic fish, benthic fish, crustaceans, and insect larvae inhabiting most of the irrigation ponds in the exclusion zone. However, this comparison also suggests that there was some chance of deleterious effects occurring to birds and benthic fish in a limited number of the most severely contaminated irrigation ponds.
Collapse
Affiliation(s)
- Shoichi Fuma
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Haruhi Soeda
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshito Watanabe
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yoshihisa Kubota
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tatsuo Aono
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
24
|
Developmental and hemocytological effects of ingesting Fukushima's radiocesium on the cabbage white butterfly Pieris rapae. Sci Rep 2019; 9:2625. [PMID: 30796244 PMCID: PMC6385249 DOI: 10.1038/s41598-018-37325-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/04/2018] [Indexed: 12/22/2022] Open
Abstract
High morphological abnormality and mortality rates have been reported in the pale grass blue butterfly, Zizeeria maha, since the Fukushima nuclear accident. However, it remains uncertain if these effects are restricted to this butterfly. Here, we evaluated the effects of ingesting cabbage leaves grown with contaminated soils from Fukushima on the development and hemocytes of the cabbage white butterfly, Pieris rapae. Contaminated cabbage leaves containing various low levels of anthropogenic 134Cs and 137Cs radioactivity (less than natural 40K radioactivity) were fed to larvae from Okinawa, the least contaminated locality in Japan. Negative developmental and morphological effects were detected in the experimental groups. The cesium (but not potassium) radioactivity concentration was negatively correlated with the granulocyte percentage in hemolymph, and the granulocyte percentage was positively correlated with the pupal eclosion rate, the adult achievement rate, and the total normality rate. These results demonstrated that ingesting low-level radiocesium contaminants in Fukushima (but not natural radiopotassium) imposed biologically negative effects on the cabbage white butterfly, as in the pale grass blue butterfly, at both cellular and organismal levels.
Collapse
|
25
|
Sato I, Sasaki J, Satoh H, Deguchi Y, Chida H, Natsuhori M, Otani K, Okada K. Decreased blood cell counts were not observed in cattle living in the "difficult-to-return zone" of the Fukushima nuclear accident. Anim Sci J 2018; 90:128-134. [PMID: 30358029 PMCID: PMC6587931 DOI: 10.1111/asj.13122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/06/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
White blood cells, especially lymphocytes, are susceptible to radiation exposure. In the present study, red blood cell, total white blood cell, and lymphocyte counts were repeatedly measured in cattle living on three farms located in the "difficult-to-return zone" of the Fukushima nuclear accident, and compared with two control groups from unaffected areas. Blood cell counts differed significantly between the two control groups, although almost all the values fell within the normal range. The blood cell counts of the cattle in the "difficult-to-return zone" varied across sampling times even on the same farms, being sometimes higher or lower than either of the two control groups. However, neither a statistically significant decrease in blood cell counts nor an increase in the rate of cattle with extremely low blood cell counts was observed overall. The estimated cumulative exposure dose for the cattle on the most contaminated farm was within a range of 500-1000 mSv, exceeding the threshold for the lymphopenia. Because of the low dose rate on these farms, potential radiation damages would have been repaired and have not accumulated enough to cause deterministic effects.
Collapse
Affiliation(s)
- Itaru Sato
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Jun Sasaki
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Hiroshi Satoh
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | - Hiroyuki Chida
- Faculty of Agriculture, Iwate University, Morioka, Japan
| | | | - Kumiko Otani
- Society for Animal Refugee and Environment post Nuclear Disaster, Tokyo, Japan
| | - Keiji Okada
- Faculty of Agriculture, Iwate University, Morioka, Japan
| |
Collapse
|
26
|
Ariyoshi K, Miura T, Kasai K, Akifumi N, Fujishima Y, Yoshida MA. Radiation-induced bystander effect in large Japanese field mouse (Apodemus speciosus) embryonic cells. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:223-231. [PMID: 29785486 DOI: 10.1007/s00411-018-0743-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Although evidence suggests that ionizing radiation can induce the bystander effect (radiation-induced bystander effect: RIBE) in cultured cells or mouse models, it is unclear whether the effect occurs in cells of wild animals. We investigated medium-mediated bystander micronucleus (MN) formation and DNA damage in un-irradiated cells from a large Japanese field mouse (Apodemus speciosus). We isolated four clones of A. speciosus embryonic fibroblasts (A603-1, A603-2, A603-3, and A603-4) derived from the same mother, and examined their radiation sensitivity using the colony-forming assay. A603-3 and A603-4 were similar, and A603-1 and A603-2 were highly sensitive compared with A603-3 and A603-4. We examined RIBE in the four clones in autologous medium from cell cultures exposed to 2 Gy X-ray radiation (irradiated cell conditioned medium: ICCM). We only observed increased MN prevalence and induction of DNA damage foci in A603-1 and A603-3 cells after ICCM transfer. The ICCM of A603-3 (RIBE-induced) was able to induce MN in A603-4 (not RIBE-induced). To assess the possible contribution of reactive oxygen species (ROS) or nitric oxide (NO) in medium-mediated RIBE, dimethyl sulfoxide (DMSO; a ROS scavenger) or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO; an NO scavenger) were added to the medium. A suppressive effect was observed after adding DMSO, but there was no effect after treatment with c-PTIO. These results suggest that an enhanced radiosensitivity may not be directly related to the induction of medium-mediated RIBE. Moreover, ROS are involved in the transduction of the RIBE signal in A. speciosus cells, but NO is not. In conclusion, our results suggest that RIBE may be conserved in wild animals. The results contribute to better knowledge of radiation effects on wild, non-human species.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| | - Tomisato Miura
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Kosuke Kasai
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Nakata Akifumi
- Department of Basic Pharmacy, Hokkaido Pharmaceutical University School of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido, 047-0264, Japan
| | - Yohei Fujishima
- Department of Biomedical Sciences, Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki, 036-8564, Japan
| | - Mitsuaki A Yoshida
- Department of Radiation Biology, Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, 036-8564, Japan.
| |
Collapse
|
27
|
Mortazavi S, Bevelacqua JJ, Corrice L, Dobrzyński L, Feinendegen LE, Miller ML, Sacks B, Ulsh B, Pennington CW, Welsh J, Doss M. Comment on "Chromosomal Aberrations in Large Japanese Field Mice (Apodemus speciosus) Captured Near Fukushima Dai-ichi Nuclear Power Plant". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8196-8197. [PMID: 28654249 DOI: 10.1021/acs.est.7b01900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Smj Mortazavi
- Diagnostic Imaging, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| | | | - Leslie Corrice
- Author, Hiroshima Syndrome, Moreland Hills, Ohio 44022, United States
| | | | | | - Mark L Miller
- Sandia Laboratories, Albuquerque, New Mexico 87123, United States
| | - Bill Sacks
- Emeritus Medical Officer, FDA Center for Devices and Radiological Health, Rockville, Maryland 20877, United States
| | - Brant Ulsh
- M. H. Chew & Associates, Cincinnati, Ohio 45245, United States
| | | | - James Welsh
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University- Chicago , Maywood, Illinois 60153, United States
| | - Mohan Doss
- Diagnostic Imaging, Fox Chase Cancer Center , Philadelphia, Pennsylvania 19111, United States
| |
Collapse
|
28
|
Kawaguchi I, Doi K, Kawagoshi T, Kubota Y. Response to Comment on "Chromosomal Aberrations in Large Japanese Field Mice (Apodemus speciosus) Captured near Fukushima Dai-ichi Nuclear Power Plant". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8198-8199. [PMID: 28654247 DOI: 10.1021/acs.est.7b02421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Isao Kawaguchi
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazutaka Doi
- Center for Radiation Protection Knowledge, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Taiki Kawagoshi
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yoshihisa Kubota
- Fukushima Project Headquarters, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|