1
|
Leshuk TC, Young ZW, Wilson B, Chen ZQ, Smith DA, Lazaris G, Gopanchuk M, McLay S, Seelemann CA, Paradis T, Bekele A, Guest R, Massara H, White T, Zubot W, Letinski DJ, Redman AD, Allen DG, Gu F. A Light Touch: Solar Photocatalysis Detoxifies Oil Sands Process-Affected Waters Prior to Significant Treatment of Naphthenic Acids. ACS ES&T WATER 2024; 4:1483-1497. [PMID: 38633367 PMCID: PMC11019557 DOI: 10.1021/acsestwater.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.
Collapse
Affiliation(s)
- Timothy
M. C. Leshuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Zachary W. Young
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Brad Wilson
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Stantec, Waterloo, Ontario, Canada N2L 0A4
| | - Zi Qi Chen
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Danielle A. Smith
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- P&P
Optica, Waterloo, Ontario, Canada N2 V 2C3
| | - Greg Lazaris
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Department
of Mining and Materials Engineering, McGill
University, Montreal, Quebec, Canada H3A 0C5
| | - Mary Gopanchuk
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sean McLay
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Corin A. Seelemann
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Composite Biomaterials Systems Lab, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Theo Paradis
- Canadian
Natural Resources Ltd., Calgary, Alberta, Canada T2P 4J8
| | - Asfaw Bekele
- Imperial
Oil Ltd., Calgary, Alberta, Canada T2C 5N1
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Rodney Guest
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
| | - Hafez Massara
- Suncor Energy Inc., Calgary, Alberta, Canada T2P 3E3
- Trans-Northern Pipelines Inc., Richmond Hill, Ontario, Canada L4B 3P6
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, Canada V6C 0B3
| | - Warren Zubot
- Syncrude Canada Ltd., Fort McMurray, Alberta, Canada T9H 0B6
| | - Daniel J. Letinski
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - Aaron D. Redman
- ExxonMobil
Biomedical Sciences, Inc., Annandale, New Jersey 08801, United States
| | - D. Grant Allen
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
| | - Frank Gu
- H2nanO
Inc., Kitchener, Ontario, Canada N2R 1E8
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3E5
- Department
of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Waterloo
Institute for Nanotechnology, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
2
|
Paul S, Hussain NAS, Lillico DME, Suara MA, Ganiyu SO, Gamal El-Din M, Stafford JL. Examining the immunotoxicity of oil sands process affected waters using a human macrophage cell line. Toxicology 2023; 500:153680. [PMID: 38006929 DOI: 10.1016/j.tox.2023.153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Oil sands process affected water (OSPW) is produced during the surface mining of the oil sands bitumen deposits in Northern Alberta. OSPW contains variable quantities of organic and inorganic components causing toxic effects on living organisms. Advanced Oxidation Processes (AOPs) are widely used to degrade toxic organic components from OSPW including naphthenic acids (NAs). However, there is no established biological procedure to assess the effectiveness of the remediation processes. Our previous study showed that human macrophage cells (THP-1) can be used as a bioindicator system to evaluate the effectiveness of OSPW treatments through examining the proinflammatory gene transcription levels. In the present study, we investigated the immunotoxicological changes in THP-1 cells following exposure to untreated and AOP-treated OSPW. Specifically, using proinflammatory cytokine protein secretion assays we showed that AOP treatment significantly abrogates the ability of OSPW to induce the secretion of IL-1β, IL-6, IL-8, TNF-α, IL-1Ra and MCP-1. By measuring transcriptional activity as well as surface protein expression levels, we also showed that two select immune cell surface markers, CD40 and CD54, were significantly elevated following OSPW exposure. However, AOP treatments abolished the immunostimulatory properties of OSPW to enhance the surface expression of these immune proteins. Finally, a transcriptome-based approach was used to examine the proinflammatory effects of OSPW as well as the abrogation of immunotoxicity following AOP treatments. Overall, this research shows how a human macrophage cell-based biomonitoring system serves as an effective in vitro tool to study the immunotoxicity of OSPW samples before and after targeted remediation strategies.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Monsuru A Suara
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
3
|
Roy MA, Mohan A, Karasik Y, Tobiason JE, Reckhow DA, Timme-Laragy AR. The Zebrafish (Danio rerio) Embryo Model as a Tool to Assess Drinking Water Treatment Efficacy for Freshwater Impacted by Crude Oil Spill. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2822-2834. [PMID: 36040130 PMCID: PMC9711864 DOI: 10.1002/etc.5472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Traditional approaches toward evaluating oil spill mitigation effectiveness in drinking water supplies using analytical chemistry can overlook residual hydrocarbons and treatment byproducts of unknown toxicity. Zebrafish (Danio rerio) were used to address this limitation by evaluating the reduction in toxicity to fish exposed to laboratory solutions of dissolved crude oil constituents treated with 3 mg/L ozone (O3 ) with or without a peroxone-based advanced oxidation process using 0.5 M H2 O2 /M O3 or 1 M H2 O2 /M O3 . Crude oil water mixtures (OWMs) were generated using three mixing protocols-orbital (OWM-Orb), rapid (OWM-Rap), and impeller (OWM-Imp) and contained dissolved total aromatic concentrations of 106-1019 µg/L. In a first experiment, embryos were exposed at 24 h post fertilization (hpf) to OWM-Orb or OWM-Rap diluted to 25%-50% of full-strength samples and in a second experiment, to untreated or treated OWM-Imp mixtures at 50% dilutions. Toxicity profiles included body length, pericardial area, and swim bladder inflation, and these varied depending on the OWM preparation, with OWM-Rap resulting in the most toxicity, followed by OWM-Imp and then OWM-Orb. Zebrafish exposed to a 50% dilution of OWM-Imp resulted in 6% shorter body length, 83% increased pericardial area, and no swim bladder inflation, but exposure to a 50% dilution of OWM-Imp treated with O3 alone or with 0.5 M H2 O2 /M O3 resulted in normal zebrafish development and average total aromatic destruction of 54%-57%. Additional aromatic removal occurred with O3 + 1 M H2 O2 /M O3 but without further attenuation of toxicity to zebrafish. This study demonstrates using zebrafish as an additional evaluation component for modeling the effectiveness of freshwater oil spill treatment methods. Environ Toxicol Chem 2022;41:2822-2834. © 2022 SETAC.
Collapse
Affiliation(s)
- Monika A. Roy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Aarthi Mohan
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Yankel Karasik
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - John E. Tobiason
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - David A. Reckhow
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Khursigara AJ, Rowsey LE, Johansen JL, Esbaugh AJ. Behavioral Changes in a Coastal Marine Fish Lead to Increased Predation Risk Following Oil Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8119-8127. [PMID: 34032421 DOI: 10.1021/acs.est.0c07945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fishes exposed to crude oil have shown reduced sociability and poor habitat selection, which corresponded with increased predation risk. However, the contribution of oil-induced cardiorespiratory impairments to these findings is uncertain. This study explores the effect of oil exposure on predation risk in a model fish species, Sciaenops ocellatus, across a suite of physiological and behavioral end points to elucidate the mechanisms through which any observed effects are manifested. Using mesocosms to assess group predator avoidance, oil exposure to 36.3 μg l-1 ΣPAH reduced the time to 50% mortality from a mean time of 80.0 (74.1-86.0 95% confidence interval [CI]) min to 39.2 (35.6-42.8 95% CI) min. The influence of oil impaired cardiorespiratory and behavioral pathways on predation risk was assessed based on respiratory performance, swim performance, sociability, and routine activity. Swim trials demonstrated that cardiorespiratory and swim performance were unaffected by exposures to 26.6 or 100.8 μg l-1 ΣPAH. Interestingly, behavioral tests revealed that exposure to 26.6 μg l-1 ΣPAH increased distance moved, speed, acceleration, and burst activity. These data indicate that behavioral impairment is more sensitive than cardiorespiratory injury and may be a more important driver of downstream ecological risk following oil exposure in marine species.
Collapse
Affiliation(s)
- Alexis J Khursigara
- Department of Marine Science, The University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, United States
| | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jacob L Johansen
- University of Hawaii at Manoa, Hawaii Institute of Marine Biology, Kaneohe, Hawaii 96744, United States
| | - Andrew J Esbaugh
- Department of Marine Science, The University of Texas at Austin Marine Science Institute, Port Aransas, Texas 78373, United States
| |
Collapse
|
5
|
Abstract
Millions of tons of oil are spilled in aquatic environments every decade, and this oil has the potential to greatly impact fish populations. Here, we review available information on the physiological effects of oil and polycyclic aromatic hydrocarbons on fish. Oil toxicity affects multiple biological systems, including cardiac function, cholesterol biosynthesis, peripheral and central nervous system function, the stress response, and osmoregulatory and acid-base balance processes. We propose that cholesterol depletion may be a significant contributor to impacts on cardiac, neuronal, and synaptic function as well as reduced cortisol production and release. Furthermore, it is possible that intracellular calcium homeostasis-a part of cardiotoxic and neuronal function that is affected by oil exposure-may be related to cholesterol depletion. A detailed understanding of oil impacts and affected physiological processes is emerging, but knowledge of their combined effects on fish in natural habitats is largely lacking. We identify key areas deserving attention in future research.
Collapse
Affiliation(s)
- Martin Grosell
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| | - Christina Pasparakis
- Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA; ,
| |
Collapse
|
6
|
The selective GSK3 inhibitor, SAR502250, displays neuroprotective activity and attenuates behavioral impairments in models of neuropsychiatric symptoms of Alzheimer's disease in rodents. Sci Rep 2019; 9:18045. [PMID: 31792284 PMCID: PMC6888874 DOI: 10.1038/s41598-019-54557-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) has been identified as a promising target for the treatment of Alzheimer’s disease (AD), where abnormal activation of this enzyme has been associated with hyperphosphorylation of tau proteins. This study describes the effects of the selective GSK3 inhibitor, SAR502250, in models of neuroprotection and neuropsychiatric symptoms (NPS) associated with AD. In P301L human tau transgenic mice, SAR502250 attenuated tau hyperphosphorylation in the cortex and spinal cord. SAR502250 prevented the increase in neuronal cell death in rat embryonic hippocampal neurons following application of the neurotoxic peptide, Aβ25–35. In behavioral studies, SAR502250 improved the cognitive deficit in aged transgenic APP(SW)/Tau(VLW) mice or in adult mice after infusion of Aβ25–35. It attenuated aggression in the mouse defense test battery and improved depressive-like state of mice in the chronic mild stress procedure after 4 weeks of treatment. Moreover, SAR502250 decreased hyperactivity produced by psychostimulants. In contrast, the drug failed to modify anxiety-related behaviors or sensorimotor gating deficit. This profile confirms the neuroprotective effects of GSK3 inhibitors and suggests an additional potential in the treatment of some NPS associated with AD.
Collapse
|
7
|
Philibert DA, Lyons DD, Qin R, Huang R, El-Din MG, Tierney KB. Persistent and transgenerational effects of raw and ozonated oil sands process-affected water exposure on a model vertebrate, the zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133611. [PMID: 31634996 DOI: 10.1016/j.scitotenv.2019.133611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure to oil sands process-affected water (OSPW), a by-product of Canadian oil sands mining operations, can cause both acute and chronic adverse effects in aquatic life. Ozonation effectively degrades naphthenic acids in OSPW, mitigating some of the toxicological effects of exposure. In this study we examined the effect of developmental exposure to raw and ozonated OSPW had on the breeding success, prey capture, and alarm cue response in fish months/years after exposure and the transgenerational effect exposure had on gene expression, global DNA methylation, and larval basal activity. Exposure to raw and ozonated OSPW had no effect on breeding success, and global DNA methylation. Exposure altered the expression of vtg and nkx2.5 in the unexposed F1 generation. Exposure to both raw and ozonated OSPW had a transgenerational impact on larval activity levels, anxiety behaviors, and maximum swim speed compared to the control population. Prey capture success was unaffected, however, the variability in the behavioral responses to the introduction of prey was decreased. Fish developmentally exposed to either treatment were less active before exposure and did not have an anxiety response to the alarm cue hypoxanthine-3-n-oxide. Though ozonation was able to mitigate some of the effects of OSPW exposure, further studies are needed to understand the transgenerational effects and the implications of exposure on complex fish behaviors.
Collapse
Affiliation(s)
- Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Ketih B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
8
|
Lyons DD, Philibert DA, Zablocki T, Qin R, Huang R, Gamal El-Din M, Tierney KB. Assessment of raw and ozonated oil sands process-affected water exposure in developing zebrafish: Associating morphological changes with gene expression. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:959-968. [PMID: 30029330 DOI: 10.1016/j.envpol.2018.02.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
With the ever-increasing amounts of oil sands process-affected water (OSPW) accumulating from Canada's oil sands operations, its eventual release must be considered. As OSPW has been found to be both acutely and chronically toxic to aquatic organisms, remediation processes must be developed to lower its toxicity. Ozone treatment is currently being studied as a tool to facilitate the removal of organic constituents associated with toxicity. Biomarkers (e.g. gene expression) are commonly used when studying the effects of environmental contaminants, however, they are not always indicative of adverse effects at the whole organism level. In this study, we assessed the effects of OSPW exposure on developing zebrafish by linking gene expression to relevant cellular and whole organism level endpoints. We also investigated whether or not ozone treatment decreased biomarkers and any associated toxicity observed from OSPW exposure. The concentrations of classical naphthenic acids in the raw and ozonated OSPW used in this study were 16.9 mg/L and 0.6 mg/L, respectively. Ozone treatment reduced the total amount of naphthenic acids (NAs) in the OSPW sample by 92%. We found that exposure to both raw and ozonated OSPW had no effect on the survival of zebrafish embryos. The expression levels of biotransformation genes CYP1A and CYP1B were induced by raw OSPW exposure, with CYP1B being more highly expressed than CYP1A. In contrast, ozonated OSPW exposure did not increase the expression of CYP1A and only slightly induced CYP1B. A decrease in cardiac development and function genes (NKX2.5 and APT2a2a) was not associates with large changes in heart rate, arrhythmia or heart size. We did not find any indications of craniofacial abnormalities or of increased occurrence of apoptotic cells. Overall, our study found that OSPW was not overtly toxic to zebrafish embryos.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Taylor Zablocki
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rui Qin
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Rongfu Huang
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
9
|
Lyons DD, Morrison C, Philibert DA, Gamal El-Din M, Tierney KB. Growth and recovery of zebrafish embryos after developmental exposure to raw and ozonated oil sands process-affected water. CHEMOSPHERE 2018; 206:405-413. [PMID: 29758497 DOI: 10.1016/j.chemosphere.2018.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b.
Collapse
Affiliation(s)
- Danielle D Lyons
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | - Christie Morrison
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mohamed Gamal El-Din
- Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; School of Public Health, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|