1
|
Lu B, Chen M, Wu B, Wu P, Li Y, Dang Z. The role of interface interaction between iron/sulfate-reducing bacteria (ISRB) and goethite in sulfur (S) redox cycling couple with Cd immobilization. ENVIRONMENTAL RESEARCH 2025; 264:120289. [PMID: 39510228 DOI: 10.1016/j.envres.2024.120289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Microbial sulfate reduction leads to the formation of various chalcophile trace metal sulfides, thereby immobilizing chalcophile trace metals in sediments. Iron/sulfate-reducing bacteria (ISRB) are ubiquitous in soils and sediments, its ability to reduce Fe(III) (oxyhydr)oxides and biogeochemical significance have attracted much attention. This research investigated the effect of the goethite and ISRB induced S cycle on cadmium mobility. The experiment demonstrated that the removal of Cd(II) in coexistence of ISRB19 and goethite was more efficiently than their individual components. Combined with X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), Raman spectra and X-ray photoelectron spectroscopy (XPS), conclusions can be drawn that goethite enhanced Cd(II) retention by ISRB, which was attributed to the formation of metabolism product during interaction between ISRB19 (Enterobacter chengduensis) and goethite. Our results revealed the interaction of goethite and ISRB in S cycling under anaerobic conditions with its implications for Cd(II) remediation.
Collapse
Affiliation(s)
- Bingxin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Meiqing Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Bolin Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, PR China.
| | - Yihao Li
- South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou, 510655, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Pothanamkandathil V, Neumann A, Thompson A, Gorski CA. Redox Properties of Structural Fe in Clay Minerals: 4. Reinterpreting Redox Curves by Accounting for Electron Transfer and Structural Rearrangement Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19702-19713. [PMID: 39451190 DOI: 10.1021/acs.est.4c07835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Iron-bearing smectite clay minerals can act as electron sources and sinks in the environment. Previous studies using mediated electrochemical analyses to determine the reduction potential (EH) values of smectites observed that the relationship between the structural Fe2+(s)/FeTotal ratio in the smectite and EH varied based on the redox history of the smectite. We hypothesize that this behavior, referred to as redox hysteresis, results from the smectite particles not equilibrating with the applied EH over the course of the experiment (∼30 min). To test this hypothesis, we developed a model incorporating interfacial electron transfer kinetics and charge redistribution within the particle to simulate the mediated electrochemical experiments from previous studies. The simulated redox curves accurately matched the previously reported experimental redox curves of the smectite SWa-1, demonstrating that longer equilibration periods led to a decrease in redox hysteresis. We validated this experimentally by measuring the redox curve of SWa-1 after an equilibration period of at least 12 h. Furthermore, we extended the simulations to three other smectites (NAu-1, NAu-2, and SWy-2) and extracted their respective thermodynamic and kinetic parameters. This work offers a framework for interpreting and modeling redox reactions on clay surfaces, along with key parameters for four commonly studied smectites.
Collapse
Affiliation(s)
- Vineeth Pothanamkandathil
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Anke Neumann
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Aaron Thompson
- Department of Crop and Soil Sciences, The University of Georgia, Athens, Georgia 30602, United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
3
|
Lahiri N, Miller QRS, Cao R, Depp CT, Schaef HT. Facile Metal Release from Pore-Lining Phases Enables Unique Carbonate Zonation in a Basalt Carbon Mineralization Demonstration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11843-11851. [PMID: 37506221 DOI: 10.1021/acs.est.3c02075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Carbon-negative strategies such as geologic carbon sequestration in continental flood basalts offers a promising route to the removal of greenhouse gases, such as CO2, via safe and permanent storage as stable carbonates. This potential has been successfully demonstrated at a field scale at the Wallula Basalt Carbon Storage Pilot Project where supercritical CO2 was injected into the Columbia River Basalt Group (CRBG). Here, we analyze recovered post-injection sidewall core cross-sections containing carbonate nodules using μ-XRF chemical mapping techniques that revealed compositional zonation within the nodules. The unique nature of the subsurface anthropogenic carbonates is highlighted by the near absence of Mg in an ankerite-like composition. Furthermore, a comparison between pre- and post-injection sidewall cores along with an in-depth chemical mapping of basalt pore lining cements provides a better understanding into the source and fate of critical cationic species involved in the precipitation of carbon mineralization products. Collectively, these results provide crucial insights into carbonate growth mechanisms under a time-dependent pore fluid composition. As such, these findings will enable parameterization of predictive models for future CO2 sequestration efforts in reactive reservoirs around the world.
Collapse
Affiliation(s)
- Nabajit Lahiri
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Quin R S Miller
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Ruoshi Cao
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Charles T Depp
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - H Todd Schaef
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
4
|
Rothwell KA, Pentrak MP, Pentrak LA, Stucki JW, Neumann A. Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37418593 DOI: 10.1021/acs.est.3c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Structural Fe in clay minerals is an important, potentially renewable source of electron equivalents for contaminant reduction, yet our knowledge of how clay mineral Fe reduction pathways and Fe reduction extent affect clay mineral Fe(II) reactivity is limited. Here, we used a nitroaromatic compound (NAC) as a reactive probe molecule to assess the reactivity of chemically reduced (dithionite) and Fe(II)-reduced nontronite across a range of reduction extents. We observed biphasic transformation kinetics for all nontronite reduction extents of ≥5% Fe(II)/Fe(total) regardless of the reduction pathway, indicating that two Fe(II) sites of different reactivities form in nontronite at environmentally relevant reduction extents. At even lower reduction extents, Fe(II)-reduced nontronite completely reduced the NAC whereas dithionite-reduced nontronite could not. Our 57Fe Mössbauer spectroscopy, ultraviolet-visible spectroscopy, and kinetic modeling results suggest that the highly reactive Fe(II) entities likely comprise di/trioctahedral Fe(II) domains in the nontronite structure regardless of the reduction mechanism. However, the second Fe(II) species, of lower reactivity, varies and for Fe(II)-reacted NAu-1 likely comprises Fe(II) associated with an Fe-bearing precipitate formed during electron transfer from aqueous to nontronite Fe. Both our observation of biphasic reduction kinetics and the nonlinear relationship of rate constant and clay mineral reduction potential EH have major implications for contaminant fate and remediation.
Collapse
Affiliation(s)
- Katherine A Rothwell
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin P Pentrak
- Illinois State Geological Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, Illinois 61820, United States
| | - Linda A Pentrak
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joseph W Stucki
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Anke Neumann
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, United Kingdom
- GFZ German Research Centre for Geosciences, Interface Geochemistry, 14473 Potsdam, Germany
| |
Collapse
|
5
|
Betts AR, Siebecker MG, Elzinga EJ, Luxton TP, Scheckel KG, Sparks DL. Influence of clay mineral weathering on green rust formation at iron-reducing conditions. GEOCHIMICA ET COSMOCHIMICA ACTA 2023; 350:46-56. [PMID: 37469621 PMCID: PMC10355121 DOI: 10.1016/j.gca.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Green rusts (GR) are important drivers for trace metal and nutrient cycling in suboxic environments. We investigated whether green rusts would incorporate aluminum (Al) or other elements from naturally-formed clay minerals containing easily-weatherable clay minerals (e.g. mica, interlayered clays). We isolated the clay minerals from a Matapeake silt loam soil by removal of silt and sand, organic matter, and reducible oxides to study mechanisms of interaction between Fe(II) and soil-sourced clay minerals. We conducted batch Fe(II) sorption experiments at multiple near-neutral pHs (6.5-7.5) and reaction times (2 h-365 days). Mineral transformations were characterized by selective extractions, X-ray diffraction (XRD), and Fe X-ray absorption spectroscopy (XAS) analyzed by shell-fitting and linear combination fitting (LCF) with natural and synthetic standards. Clay mineral fraction contained a mixture of quartz, kaolinite, interlayered vermiculite, mica, and chlorite with significant structural Fe (2.6% wt). Uptake of Fe(II) increased with pH and kinetics were rapid until 5 days, followed by slow continuous Fe(II) uptake. Citrate-bicarbonate desorption kinetics from Fe(II) sorbed clay released more Al and silicon (Si) compared with unreacted soil clay fraction whereas magnesium (Mg) and potassium (K) were unaffected. Citrate-bicarbonate extracted Fe contained more Fe(II) than an ideal GR with an Fe(II)/Fe(III) molar ratio of 5.50. Analysis of the Fe EXAFS by both LCF and shell fitting was best modeled as a combination of Fe(III)-clay reduction to Fe(II) and precipitation of GR and Fe(II)-Al LDH. After 7 days of Fe(II) sorption, LCF identified 55.2% total Fe in clay, 33.4% GR(Cl) and 11.4% Fe(II)-Al LDH. These results provide novel evidence of Fe(II)-Al LDHs precipitating on naturally-formed soil clay minerals as a minor phase to GR. The geochemical implications are that GRs formed in soils and sediments should be considered to have Al and Si as well as Mg substitutions affecting their structure and reactivity.
Collapse
Affiliation(s)
- Aaron R. Betts
- Department of Plant and Soil Science, University of Delaware, 221 Academy St, Newark, DE 19716, USA
| | - Matthew G. Siebecker
- Department of Plant and Soil Science, University of Delaware, 221 Academy St, Newark, DE 19716, USA
| | - Evert J. Elzinga
- Department of Earth and Environmental Sciences, Rutgers University, 101 Warren St, Newark, NJ 07102, USA
| | - Todd P. Luxton
- Office of Research & Development, U.S. Environmental Protection Agency, 5995 Center Hill Ave, Cincinnati, OH 45224, USA
| | - Kirk G. Scheckel
- Office of Research & Development, U.S. Environmental Protection Agency, 5995 Center Hill Ave, Cincinnati, OH 45224, USA
| | - Donald L. Sparks
- Department of Plant and Soil Science, University of Delaware, 221 Academy St, Newark, DE 19716, USA
| |
Collapse
|
6
|
Wang X, Xiao W, Wang J, Jones AM, Collins RN. The formation of sulfate-green rust through Fe(II) sorption to montmorillonite: Impacts on abiotic nitrate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161496. [PMID: 36642274 DOI: 10.1016/j.scitotenv.2023.161496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Green rust (GR) minerals are generally considered to be effective reductants of pollutants and the electron transfer from aqueous Fe(II) to structural Fe(III) in montmorillonite has recently been discovered to be a pathway to GR formation at pH ∼7.8. In this study, we have further delineated the pH conditions and examined the effect of aqueous sulfate concentrations that allow for the formation of sulfate-GR through this unique pathway. Iron(II) sorption experiments demonstrated that the amount of 'sorbed' Fe(II) on montmorillonite semi-quantitatively transformed into sulfate-GR at pH values ≥7.5 in the presence of environmentally-relevant sulfate concentrations (i.e., 10 mM). However, excess sulfate concentrations (100 mM) resulted in comparatively less Fe(II) sorption and sulfate-GR was only observed to form at pH 8. As such, it was concluded that the degree of Fe(II) sorption to montmorillonite is critical to GR formation when aqueous Fe(II) and montmorillonite co-exist. In contrast to sulfate-GR minerals formed through other pathways (e.g., co-precipitation of dissolved Fe(II) and Fe(III) species), this montmorillonite-synthesized GR was significantly less reactive towards nitrate reduction, with <2.5 % of 0.2 mM nitrate being reduced over a 6-day period. This behaviour was correlated to reduction potential and it was, therefore, concluded that the relatively high reduction potential that occurs in the presence of montmorillonite exerts a significant influence on the rate of nitrate reduction by sulfate-GR to the point that it may not be a competitive process to microbiological nitrate denitrification. As such, the environmental relevance of green rust to nitrate reduction cannot be inferred simply by its presence, but rather the reduction potential of the environmental system in which it is found.
Collapse
Affiliation(s)
- Xin Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Xiao
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Jiaqi Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adele M Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard N Collins
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Fan Q, Wang L, Fu Y, Li Q, Liu Y, Wang Z, Zhu H. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159003. [PMID: 36155041 DOI: 10.1016/j.scitotenv.2022.159003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Huaiyong Zhu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
8
|
Yao W, Zhang J, Gu K, Li J, Qian J. Synthesis, characterization and performances of green rusts for water decontamination: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119205. [PMID: 35341820 DOI: 10.1016/j.envpol.2022.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the application of green rusts (GRs) for water purification has received significant attention, but its full understanding has not been well achieved. Then, the comprehension about the synthesis and characteristics of GRs can highly favor their decontamination performances for the site-specific conditions. This review comprehensively summarized the synthesis, characteristics and performances of GRs including the GR (Cl-), GR (CO32-) and GR (SO42-) for sequestration of various aqueous pollutants (e.g., tetrachloride, Cr(VI), Se(VI), and U(VI), etc.). Generally, the different reactivity of GRs toward contaminants is strongly dependent on the GRs' characteristics (e.g., interlayer distance, specific surface area, and Fe(II) content) and solution chemistry (e.g., pH, background electrolytes, dissolved oxygen, and contaminant concentration, etc.). In addition, the reaction mechanisms of GRs with the contaminants involve the redox reactions, adsorption, catalytic oxidation, interlayer and octahedral incorporation, which can mutually or singly contribute to the decontamination to varying degrees. Particularly, this review addressed the transformation pathways of GRs under various solution chemistry conditions and clarified that the stability of GRs should be the key challenge for the real application. Finally, how to effectively use the GRs for water decontamination was proposed, which will significantly benefit the rational control of environmental pollution.
Collapse
Affiliation(s)
- Wenjing Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Kaili Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| | - Jieshu Qian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| |
Collapse
|
9
|
Platte T, Finck N, Mangold S, Polly R, Geckeis H. Retention of Iodide and Chloride by Formation of a Green Rust Solid Solution GR-Cl 1-xI x: A Multiscale Approach. Inorg Chem 2021; 60:10585-10595. [PMID: 34196539 DOI: 10.1021/acs.inorgchem.1c01243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uptake of iodide and chloride during the synthesis of green rust (GR), the Fe endmember of the layered double hydroxide (LDH) group, was investigated. GR compounds were prepared by aerial oxidation of Fe(OH)2 in suspension, considering various I/Cl ratios at constant ionic strength. Only GR compounds formed in all experiments, and the associated I/Cl ratio increased with that of the starting suspension. No preferential uptake of any halide could be detected, and all compounds had comparable morphology. Furthermore, the height of the interlayer gallery increased with the I/Cl ratio from ∼7.7 Å for the chloride endmember to ∼8.3 Å for the iodide endmember, and the observed linear increase was attributed to increasing interlayer iodide content. In all compounds, Fe K-edge X-ray absorption spectroscopy evidenced the presence of sixfold coordinated iron with a Fe2+/Fe3+ ratio of 3, homogeneously distributed within flattened octahedral sites, with six Fe as next-nearest neighbors. The Fe short-range environment was not affected by the interlayer composition, and no halide from the interlayer could be detected. Furthermore, iodide and chloride anions are located in a water-like environment, being loosely bound by weak electrostatic interactions to the octahedral sheet likely above ferric iron. Results consistently hint at the formation of a solid solution between chloride and iodide GR endmembers, certainly facilitated by the crystallization of both compounds in the same space group. This study provides further insights into the ability of LDH to simultaneously accommodate several anionic species of various sizes. The formation of such LDH compounds in a deep geological repository for nuclear waste thus represents a possible retention barrier to the migration to the far field of anionic species like 36Cl- and 129I- mobilized from the waste matrix. The extent of retention in disposal sites will depend, among others, on the availability of GR and on the concentration of competing anions.
Collapse
Affiliation(s)
- Tim Platte
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicolas Finck
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Robert Polly
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Horst Geckeis
- Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Huang J, Jones A, Waite TD, Chen Y, Huang X, Rosso KM, Kappler A, Mansor M, Tratnyek PG, Zhang H. Fe(II) Redox Chemistry in the Environment. Chem Rev 2021; 121:8161-8233. [PMID: 34143612 DOI: 10.1021/acs.chemrev.0c01286] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Iron (Fe) is the fourth most abundant element in the earth's crust and plays important roles in both biological and chemical processes. The redox reactivity of various Fe(II) forms has gained increasing attention over recent decades in the areas of (bio) geochemistry, environmental chemistry and engineering, and material sciences. The goal of this paper is to review these recent advances and the current state of knowledge of Fe(II) redox chemistry in the environment. Specifically, this comprehensive review focuses on the redox reactivity of four types of Fe(II) species including aqueous Fe(II), Fe(II) complexed with ligands, minerals bearing structural Fe(II), and sorbed Fe(II) on mineral oxide surfaces. The formation pathways, factors governing the reactivity, insights into potential mechanisms, reactivity comparison, and characterization techniques are discussed with reference to the most recent breakthroughs in this field where possible. We also cover the roles of these Fe(II) species in environmental applications of zerovalent iron, microbial processes, biogeochemical cycling of carbon and nutrients, and their abiotic oxidation related processes in natural and engineered systems.
Collapse
Affiliation(s)
- Jianzhi Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| | - Adele Jones
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yiling Chen
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaopeng Huang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Paul G Tratnyek
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, 2104 Adelbert Road, Cleveland, Ohio 44106, United States
| |
Collapse
|
11
|
Cui HJ, Wang H, Wu C, Wei X, Liao W, Zhou W. Characterization of Coprecipitates of As(III) and Fe(II) in the Presence of Phyllosilicate Nanoparticles. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:205-210. [PMID: 32860520 DOI: 10.1007/s00128-020-02973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Phyllosilicate nanoparticles play an important role in regulating the biogeochemical processes of Fe(II) and As(III) in paddy soils due to their high mobility and activity. In the present work, two prepared muscovite nanoparticles with different sizes (LNPs and SNPs) were used to investigate the effect of the size of phyllosilicate nanoparticles on the coprecipitation of Fe(II) and As(III) during oxidation process. The results showed that muscovite nanoparticles could significantly promote the removal of Fe(II) and As(III) during coprecipitation process. The formation of crystalline iron oxide and oxidation of As(III) tended to be suppressed by the two muscovite nanoparticles, and the suppression increased as muscovite nanoparticle size decrease. The findings of this study provide a contribution to understanding the roles of the natural phyllosilicate nanoparticles in regulating the biogeochemical processes of Fe and As elements in polluted paddy soils.
Collapse
Affiliation(s)
- Hao-Jie Cui
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Hongzheng Wang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Cong Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Xiaoqing Wei
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenjuan Liao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Weijun Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| |
Collapse
|
12
|
Abstract
Aluminosilicate clay minerals are often a major component of soils and sediments and many of these clays contain structural Fe (e.g., smectites and illites). Structural Fe(III) in smectite clays is redox active and can be reduced to Fe(II) by biotic and abiotic processes. Fe(II)-bearing minerals such as magnetite and green rust can reduce Hg(II) to Hg(0); however, the ability of other environmentally relevant Fe(II) phases, such as structural Fe(II) in smectite clays, to reduce Hg(II) is largely undetermined. We conducted experiments examining the potential for reduction of Hg(II) by smectite clay minerals containing 0–25 wt% Fe. Fe(III) in the clays (SYn-1 synthetic mica-montmorillonite, SWy-2 montmorillonite, NAu-1 and NAu-2 nontronite, and a nontronite from Cheney, Washington (CWN)) was reduced to Fe(II) using the citrate-bicarbonate-dithionite method. Experiments were initiated by adding 500 µM Hg(II) to reduced clay suspensions (4 g clay L−1) buffered at pH 7.2 in 20 mM 3-morpholinopropane-1-sulfonic acid (MOPS). The potential for Hg(II) reduction in the presence of chloride (0–10 mM) and at pH 5–9 was examined in the presence of reduced NAu-1. Analysis of the samples by Hg LIII-edge X-ray absorption fine structure (XAFS) spectroscopy indicated little to no reduction of Hg(II) by SYn-1 (0% Fe), while reduction of Hg(II) to Hg(0) was observed in the presence of reduced SWy-2, NAu-1, NAu-2, and CWN (2.8–24.8% Fe). Hg(II) was reduced to Hg(0) by NAu-1 at all pH and chloride concentrations examined. These results suggest that Fe(II)-bearing smectite clays may contribute to Hg(II) reduction in suboxic/anoxic soils and sediments.
Collapse
|
13
|
Van Groeningen N, ThomasArrigo LK, Byrne JM, Kappler A, Christl I, Kretzschmar R. Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1355-1367. [PMID: 32374339 DOI: 10.1039/d0em00063a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In submerged soils and sediments, clay minerals are often exposed to anoxic waters containing ferrous iron (Fe2+). Here, we investigated the sorption of Fe2+ onto a synthetic montmorillonite (Syn-1) low in structural Fe (<0.05 mmol Fe per kg) under anoxic conditions and the effects of subsequent oxidation. Samples were prepared at two Fe-loadings (0.05 and 0.5 mol Fe added per kg clay) and equilibrated for 1 and 30 days under anoxic conditions (O2 < 0.1 ppm), followed by exposure to ambient air. Iron solid-phase speciation and mineral identity was analysed by 57Fe Mössbauer spectroscopy and synchrotron X-ray absorption spectroscopy (XAS). Mössbauer analyses showed that Fe(ii) was partially oxidized (14-100% of total added Fe2+) upon sorption to Syn-1 under anoxic conditions. XAS results revealed that the added Fe2+ mainly formed precipitates (layered Fe minerals, Fe(iii)-bearing clay minerals, ferrihydrite, and lepidocrocite) in different quantities depending on the Fe-loading. Exposing the suspensions to ambient air resulted in rapid and complete oxidation of sorbed Fe(ii) and the formation of Fe(iii)-phases (Fe(iii)-bearing clay minerals, ferrihydrite, and lepidocrocite), demonstrating that the clay minerals were unable to protect ferrous Fe from oxidation, even when equilibrated 30 days under anoxic conditions prior to oxidation. Our findings clarify the role of clay minerals in the formation and stability of Fe-bearing solid phases during redox cycles in periodically anoxic environments.
Collapse
Affiliation(s)
- Natacha Van Groeningen
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zürich, 8092 Zürich, Switzerland.
| | - Laurel K ThomasArrigo
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zürich, 8092 Zürich, Switzerland.
| | - James M Byrne
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG), University of Tübingen, Hölderlinstrasse 12, D-72074, Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology Group, Centre for Applied Geosciences (ZAG), University of Tübingen, Hölderlinstrasse 12, D-72074, Tübingen, Germany
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zürich, 8092 Zürich, Switzerland.
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
14
|
Entwistle J, Latta DE, Scherer MM, Neumann A. Abiotic Degradation of Chlorinated Solvents by Clay Minerals and Fe(II): Evidence for Reactive Mineral Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14308-14318. [PMID: 31802666 DOI: 10.1021/acs.est.9b04665] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For decades, there has been evidence that Fe-containing minerals might contribute to abiotic degradation of chlorinated ethene (CE) plumes. Here, we evaluated whether Fe(II) in clay minerals reduces tetrachloroethene (PCE) and trichloroethene (TCE). We found that structural Fe(II) in both low (SWy-2) and high (NAu-1) Fe clay minerals did not reduce PCE or TCE under anoxic conditions. There was also no reduction of PCE or TCE after adding 5 mM dissolved Fe(II) to the clay mineral suspensions. In the presence of high Fe(II) concentrations (20 mM), however, PCE and TCE reduction products were observed in the presence of low Fe-content clay mineral SWy-2. Mössbauer spectroscopy results indicate that a mixed-valent Fe(II)-Fe(III) precipitate formed in the reactive SWy-2 suspensions. In contrast, in suspensions containing 20 mM Fe(II) alone or Fe-free clay mineral (Syn-1), we observed a purely Fe(II)-containing precipitate (Fe(OH)2) and also PCE and TCE reduction products. Interestingly, the amount of CE products decreased in the order of Fe-free clay mineral Syn-1 > Fe(OH)2 > low Fe-content clay mineral SWy-2, suggesting that clay mineral Fe controlled the formation of the reactive mineral phase. Additional experiments with hexachloroethane (HCA) revealed that faster HCA reduction occurred with decreasing clay mineral Fe content. Kinetic modeling yielded invariable second-order rate constants and increasing concentrations of reactive Fe(II) as the Fe(II)/Fe(total) content of the precipitates increased. Our data suggest that clay mineral Fe(III) is a sink for electrons from added Fe(II) that otherwise might have reduced the CEs. Furthermore, our findings are consistent with the hypothesis that active precipitation of Fe(II)-containing reactive mineral intermediates (RMI) may be important to CE reduction and suggest that RMI formation depends on clay mineral presence and Fe content.
Collapse
Affiliation(s)
- James Entwistle
- School of Engineering , Newcastle University , Newcastle upon Tyne , NE1 7RU , U.K
| | - Drew E Latta
- Civil and Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Michelle M Scherer
- Civil and Environmental Engineering , The University of Iowa , Iowa City , Iowa 52242 , United States
| | - Anke Neumann
- School of Engineering , Newcastle University , Newcastle upon Tyne , NE1 7RU , U.K
| |
Collapse
|
15
|
Huang T, Song D, Wang G, Li G, Geng C, Yao C, Liu W, Zhang S. High adsorption performance of synthesized hexametaphosphate green rust towards Cr(VI) removal and its mechanism explorations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 252:109642. [PMID: 31586745 DOI: 10.1016/j.jenvman.2019.109642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Hexametaphosphate intercalated green rust (hexa-P GR) was fabricated by a coprecipitation process in an anaerobic environment to improve the adsorption of hexa-P GR for Cr(VI) and the total Cr under various aqueous conditions. Three kinetic models including the pseudo-first-order, intraparticle, and Elovich were appropriate in describing the adsorption of hexa-P GR towards Cr(VI) and the total Cr. The maximum mono-layer adsorption capacities (mg/g) of hexa-P GR for Cr(VI) at pH of 2 and 7 were 87.64 and 92.25, respectively, with the theoretical maximum capacity (mg/g) of 52.73 being obtained at pH of 7. Some competing cations existing in solutions such as Al3+, Ca2+, and Mg2+ would consume more hexa-P GR to remove Cr species. The neutral and weak alkaline environment was conducive to the hexa-P GR reuse, while the strong alkaline environment was beneficial to the removal of the total Cr. The orthogonal variables including the initial pH, the flow rate, and the Cr(VI) concentration all significantly influenced Cr removal. The sequences of reaction pathways referring to the adsorption of hexa-P GR differently occurred in various pH conditions.
Collapse
Affiliation(s)
- Tao Huang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Dongping Song
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Guangshuai Wang
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Gen Li
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Cong Geng
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Chen Yao
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Wanhui Liu
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China.
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| |
Collapse
|
16
|
Palchik NA, Razvorotneva LI, Moroz TN, Miroshnichenko LV. Crystal-Chemical Features and Sorption Properties of Natural and Synthetic Smectites. RUSS J INORG CHEM+ 2019. [DOI: 10.1134/s003602361903015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Peng H, Pearce CI, N'Diaye AT, Zhu Z, Ni J, Rosso KM, Liu J. Redistribution of Electron Equivalents between Magnetite and Aqueous Fe 2+ Induced by a Model Quinone Compound AQDS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1863-1873. [PMID: 30673270 DOI: 10.1021/acs.est.8b05098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The complex interactions between magnetite and aqueous Fe2+ (Fe2+(aq)) pertain to many biogeochemical redox processes in anoxic subsurface environments. The effect of natural organic matter, abundant in these same environments, on Fe2+(aq)-magnetite interactions is an additional complex that remains poorly understood. We investigated the influence of a model quinone molecule anthraquinone-2,6-disulfonate (AQDS) on Fe2+(aq)-magnetite interactions by systematically studying equilibrium Fe2+(aq) concentrations, rates and extents of AQDS reduction, and structural versus surface-localized Fe(II)/Fe(III) ratios in magnetite under different controlled experimental conditions. The equilibrium concentration of Fe2+(aq) in Fe2+-amended magnetite suspensions with AQDS proportionally changes with solution pH or initial AQDS concentration, but independent of magnetite loadings through the solid concentrations that were studied here. The rates and extents of AQDS reduction by Fe2+-amended magnetite proportionally increased with solution pH, magnetite loading, and initial Fe2+(aq) concentration, which correlates with the corresponding change of reduction potentials for the Fe2+-magnetite system. AQDS reduction by surface-associated Fe(II) in the Fe2+-magnetite suspensions induces solid-state migration of electron equivalents from particle interiors to the near-surface region and the production of nonmagnetic Fe(II)-containing species, which inhibits Fe2+(aq) incorporation or electron injection into the magnetite structure. This study demonstrates the significant influence of quinones on reductive activity of the Fe2+-magnetite system.
Collapse
Affiliation(s)
- Huan Peng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences , China University of Geosciences , Wuhan , Hubei 430074 , China
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Alpha T N'Diaye
- Advanced Light Source , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences , China University of Geosciences , Wuhan , Hubei 430074 , China
| | - Jinren Ni
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Kevin M Rosso
- Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
18
|
Stewart LC, Houghton K, Carere CR, Power JF, Chambefort I, Stott MB. Interaction between ferruginous clay sediment and an iron-reducing hyperthermophilic Pyrobaculum sp. in a terrestrial hot spring. FEMS Microbiol Ecol 2018; 94:5074396. [DOI: 10.1093/femsec/fiy160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/12/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lucy C Stewart
- Marine Geoscience, GNS Science, 1 Fairway Dr, Lower Hutt 5010, New Zealand
| | - Karen Houghton
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Carlo R Carere
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- Department of Chemical and Process Engineering, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| | - Jean F Power
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Science, University of Waikato, 21 Ruakura Rd, Hamilton 3240, New Zealand
| | - Isabelle Chambefort
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
| | - Matthew B Stott
- Geothermal Science, GNS Science, Wairakei Research Centre, 114 Karetoto Rd, Taupō 3384, New Zealand
- School of Biological Sciences, University of Canterbury, 20 Kirkwood Ave, Upper Riccarton, Christchurch 8041, New Zealand
| |
Collapse
|