1
|
Sansone-Poe DM, Walters HL, Adgate JL, Allshouse WB, McKenzie LM, Dickinson KL. Variation in Proximity to Oil and Gas Well Pads across Race-Ethnicity and Income Groups in Colorado: An Inquiry into Distributive Environmental Justice Patterns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2494-2504. [PMID: 39888008 DOI: 10.1021/acs.est.4c10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Proximity to oil and gas (OG) wells is associated with health risks. Evidence on the relationship between sociodemographic characteristics and OG well proximity is mixed. To investigate this question in Colorado, we combined OG location data with data on birthing people's race-ethnicity and Medicaid eligibility from the state's birth registry. We applied two OG proximity definitions: (1) living within 2,000 ft of an active well and (2) OG well density (inverse distance-weighted sum of wells within 2 miles). Our analysis includes people who gave birth between 2007 and 2017 and resided in one of seven OG-producing counties across three different OG basins. In the Denver-Julesburg basin (DJB), which accounted for 93% of the study sample, White and Medicaid ineligible people are more proximate than Hispanic and Medicaid eligible people. In some DJB counties, People of Color (non-Hispanic) are more proximate than Hispanic people. In the Piceance basin, White non-Hispanic people have higher proximity than Hispanic people, while Medicaid eligibility is associated with higher proximity. In the San Juan basin, Hispanic and Medicaid-eligible people were more proximate than White and Medicaid-ineligible people. Further research should examine differential exposure/proximity across other sensitive groups, and policies should pursue equal protection from OG well exposures.
Collapse
Affiliation(s)
- Danielle M Sansone-Poe
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Hannah L Walters
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Katherine L Dickinson
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| |
Collapse
|
2
|
Daley C, Doris M, Verner MA, Zalzal J, Chesnaux R, Minet L, Kang M, MacLean HL, Hatzopoulou M, Owens-Beek N, Caron-Beaudoin É. Residential proximity to conventional and unconventional wells and exposure to indoor air volatile organic compounds in the Exposures in the Peace River Valley (EXPERIVA) study. Int J Hyg Environ Health 2025; 263:114462. [PMID: 39293310 DOI: 10.1016/j.ijheh.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND In a previous study located in Northeastern British Columbia (Canada), we observed associations between density and proximity of oil and gas wells and indoor air concentrations of certain volatile organic compounds (VOCs). Whether conventional or unconventional well types and phases of unconventional development contribute to these associations remains unknown. OBJECTIVE To investigate the associations between proximity-based metrics for conventional and unconventional wells and measured indoor air VOC concentrations in the Exposures in the Peace River Valley (EXPERIVA) study samples. METHODS Eighty-four pregnant individuals participated in EXPERIVA. Passive indoor air samplers were analyzed for 47 VOCs. Oil and gas well legacy data were sourced from the British Columbia Energy Regulator. For each participant's home, 5 km, 10 km and no buffer distances were delineated, then density and Inverse Distance Square Weighted (ID2W) metrics were calculated to estimate exposure to conventional and unconventional wells during pregnancy and the VOC measurement period. Multiple linear regression models were used to test for associations between the well exposure metrics and indoor air VOCs. For exposure metrics with >30% participants having a value of 0, we dichotomized exposure (0 vs. >0) and performed ANOVAs to assess differences in mean VOCs concentrations. RESULTS Analyses indicated that: 1) conventional well density and ID2W metrics were positively associated with indoor air acetone and decanal; 2) unconventional well density and ID2W metrics were positively associated with indoor air chloroform and decamethylcyclopentasiloxane, and negatively associated with decanal; 3) drilling specific ID2W metrics for unconventional wells were positively associated with indoor air chloroform. CONCLUSION Our analysis revealed that the association between the exposure metrics and indoor air acetone could be attributed to conventional wells and the association between exposure metrics and indoor air chloroform and decamethylcyclopentasiloxane could be attributed to unconventional wells.
Collapse
Affiliation(s)
- Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Miranda Doris
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Marc-André Verner
- Centre de Recherche en Santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Quebec, Canada; Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | - Jad Zalzal
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Romain Chesnaux
- Applied Sciences, University of Quebec at Chicoutimi, Quebec, Canada
| | - Laura Minet
- Civil Engineering, University of Victoria, British Columbia, Canada
| | - Mary Kang
- Civil Engineering, McGill University, Quebec, Canada
| | - Heather L MacLean
- Civil and Mineral Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Élyse Caron-Beaudoin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada; Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
4
|
Clark CJ, Johnson NP, Soriano M, Warren JL, Sorrentino KM, Kadan-Lottick NS, Saiers JE, Ma X, Deziel NC. Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case-Control Study in Pennsylvania, 2009-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87001. [PMID: 35975995 PMCID: PMC9383266 DOI: 10.1289/ehp11092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. OBJECTIVE The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. METHODS We conducted a registry-based case-control study of 405 children ages 2-7 y diagnosed with ALL in Pennsylvania between 2009-2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). RESULTS Children with at least one UOG well within 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) = 1.74 (95% CI: 0.93, 3.27) and OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. DISCUSSION Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD's impacts on children's health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092.
Collapse
Affiliation(s)
- Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicholaus P. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Keli M. Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Nina S. Kadan-Lottick
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - James E. Saiers
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Gonzalez DJX, Francis CK, Shaw GM, Cullen MR, Baiocchi M, Burke M. Upstream oil and gas production and ambient air pollution in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150298. [PMID: 34844318 DOI: 10.1016/j.scitotenv.2021.150298] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Prior studies have found that residential proximity to upstream oil and gas production is associated with increased risk of adverse health outcomes. Emissions of ambient air pollutants from oil and gas wells in the preproduction and production stages have been proposed as conferring risk of adverse health effects, but the extent of air pollutant emissions and resulting nearby pollution concentrations from wells is not clear. OBJECTIVES We examined the effects of upstream oil and gas preproduction (count of drilling sites) and production (total volume of oil and gas) activities on concentrations of five ambient air pollutants in California. METHODS We obtained data on approximately 1 million daily observations from 314 monitors in the EPA Air Quality System, 2006-2019, including daily concentrations of five routinely monitored ambient air pollutants: PM2.5, CO, NO2, O3, and VOCs. We obtained data on preproduction and production operations from Enverus and the California Geographic Energy Management Division (CalGEM) for all wells in the state. For each monitor and each day, we assessed exposure to upwind preproduction wells and total oil and gas production volume within 10 km. We used a panel regression approach in the analysis and fit adjusted fixed effects linear regression models for each pollutant, controlling for geographic, seasonal, temporal, and meteorological factors. RESULTS We observed higher concentrations of PM2.5 and CO at monitors within 3 km of preproduction wells, NO2 at monitors at 1-2 km, and O3 at 2-4 km from the wells. Monitors with proximity to increased production volume observed higher concentrations of PM2.5, NO2, and VOCs within 1 km and higher O3 concentrations at 1-2 km. Results were robust to sensitivity analyses. CONCLUSION Adjusting for geographic, meteorological, seasonal, and time-trending factors, we observed higher concentrations of ambient air pollutants at air quality monitors in proximity to preproduction wells within 4 km and producing wells within 2 km.
Collapse
Affiliation(s)
- David J X Gonzalez
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA.
| | - Christina K Francis
- Program in Environmental Science and Studies, Johns Hopkins University, Baltimore, MD, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mark R Cullen
- Founding Director of the Stanford Center for Population Health Sciences, USA
| | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Marshall Burke
- Department of Earth System Science, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Clark CJ, Xiong B, Soriano MA, Gutchess K, Siegel HG, Ryan EC, Johnson NP, Cassell K, Elliott EG, Li Y, Cox AJ, Bugher N, Glist L, Brenneis RJ, Sorrentino KM, Plano J, Ma X, Warren JL, Plata DL, Saiers JE, Deziel NC. Assessing Unconventional Oil and Gas Exposure in the Appalachian Basin: Comparison of Exposure Surrogates and Residential Drinking Water Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1091-1103. [PMID: 34982938 PMCID: PMC10259677 DOI: 10.1021/acs.est.1c05081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.
Collapse
Affiliation(s)
- Cassandra J Clark
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Boya Xiong
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
- University of Minnesota, Department of Civil, Environmental and Geo-Engineering, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Mario A Soriano
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Kristina Gutchess
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Helen G Siegel
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Emma C Ryan
- Tufts University, Department of Public Health and Community Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, United States
| | - Nicholaus P Johnson
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| | - Kelsie Cassell
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, 60 College Street, New Haven, Connecticut 06510, United States
| | - Elise G Elliott
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Boston, Massachusetts 02115, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yunpo Li
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Austin J Cox
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Nicolette Bugher
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Lukas Glist
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Rebecca J Brenneis
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - Keli M Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Julie Plano
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, 1 Church Street, New Haven, Connecticut 06510, United States
| | - Xiaomei Ma
- Yale School of Public Health, Department of Chronic Disease Epidemiology, 60 College Street, New Haven, Connecticut 06510, United States
| | - Joshua L Warren
- Yale School of Public Health, Department of Biostatistics, 60 College Street, New Haven, Connecticut 06510, United States
| | - Desiree L Plata
- Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, United States
| | - James E Saiers
- Yale School of the Environment, 195 Prospect Street, New Haven, Connecticut 06511, United States
| | - Nicole C Deziel
- Yale School of Public Health, Department of Environmental Health Sciences, 60 College Street, New Haven, Connecticut 06510, United States
| |
Collapse
|
7
|
Deziel NC. Invited Perspective: Oil and Gas Development and Adverse Birth Outcomes: What More Do We Need to Know? ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:71301. [PMID: 34287014 PMCID: PMC8312483 DOI: 10.1289/ehp9715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Blinn HN, Utz RM, Greiner LH, Brown DR. Exposure assessment of adults living near unconventional oil and natural gas development and reported health symptoms in southwest Pennsylvania, USA. PLoS One 2020; 15:e0237325. [PMID: 32810134 PMCID: PMC7446921 DOI: 10.1371/journal.pone.0237325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/25/2020] [Indexed: 01/27/2023] Open
Abstract
Recent research has shown relationships between health outcomes and residence proximity to unconventional oil and natural gas development (UOGD). The challenge of connecting health outcomes to environmental stressors requires ongoing research with new methodological approaches. We investigated UOGD density and well emissions and their association with symptom reporting by residents of southwest Pennsylvania. A retrospective analysis was conducted on 104 unique, de-identified health assessments completed from 2012-2017 by residents living in proximity to UOGD. A novel approach to comparing estimates of exposure was taken. Generalized linear modeling was used to ascertain the relationship between symptom counts and estimated UOGD exposure, while Threshold Indicator Taxa Analysis (TITAN) was used to identify associations between individual symptoms and estimated UOGD exposure. We used three estimates of exposure: cumulative well density (CWD), inverse distance weighting (IDW) of wells, and annual emission concentrations (AEC) from wells within 5 km of respondents' homes. Taking well emissions reported to the Pennsylvania Department of Environmental Protection, an air dispersion and screening model was used to estimate an emissions concentration at residences. When controlling for age, sex, and smoker status, each exposure estimate predicted total number of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information criterion values revealed that CWD was the better predictor of adverse health symptoms in our sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular) constituted 50% of reported symptoms across exposures, suggesting these groupings of symptoms may be more likely reported by respondents when UOGD intensity increases. Our results do not confirm that UOGD was the direct cause of the reported symptoms but raise concern about the growing number of wells around residential areas. Our approach presents a novel method of quantifying exposures and relating them to reported health symptoms.
Collapse
Affiliation(s)
- Hannah N. Blinn
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - Ryan M. Utz
- Falk School of Sustainability, Chatham University, Gibsonia, Pennsylvania, United States of America
| | - Lydia H. Greiner
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| | - David R. Brown
- Southwest Pennsylvania Environmental Health Project, McMurray, Pennsylvania, United States of America
| |
Collapse
|
9
|
Buonocore JJ, Casey JA, Croy R, Spengler JD, McKenzie L. Air Monitoring Stations Far Removed from Drilling Activities do not Represent Residential Exposures to Marcellus Shale Air Pollutants. Response to the Paper by Hess et al. on Proximity-Based Unconventional Natural Gas Exposure Metrics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020504. [PMID: 31941139 PMCID: PMC7013646 DOI: 10.3390/ijerph17020504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Jonathan J. Buonocore
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence:
| | - Joan A. Casey
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10027, USA;
| | - Rachel Croy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (R.C.); (J.D.S.)
| | - John D. Spengler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (R.C.); (J.D.S.)
| | - Lisa McKenzie
- Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO 80204, USA;
| |
Collapse
|
10
|
McKenzie LM, Allshouse W, Daniels S. Congenital heart defects and intensity of oil and gas well site activities in early pregnancy. ENVIRONMENT INTERNATIONAL 2019; 132:104949. [PMID: 31327466 DOI: 10.1016/j.envint.2019.104949] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Preliminary studies suggest that offspring to mothers living near oil and natural gas (O&G) well sites are at higher risk of congenital heart defects (CHDs). OBJECTIVES Our objective was to address the limitations of previous studies in a new and more robust evaluation of the relationship between maternal proximity to O&G well site activities and births with CHDs. METHODS We employed a nested case-control study of 3324 infants born in Colorado between 2005 and 2011. 187, 179, 132, and 38 singleton births with an aortic artery and valve (AAVD), pulmonary artery and valve (PAVD), conotruncal (CTD), or tricuspid valve (TVD) defect, respectively, were frequency matched 1:5 to controls on sex, maternal smoking, and race and ethnicity yielding 2860 controls. We estimated monthly intensities of O&G activity at maternal residences from three months prior to conception through the second gestational month with our intensity adjusted inverse distance weighted model. We used logistic regression models adjusted for O&G facilities other than wells, intensity of air pollution sources not associated with O&G activities, maternal age and socioeconomic status index, and infant sex and parity, to evaluate associations between CHDs and O&G activity intensity groups (low, medium, and high). RESULTS Overall, CHDs were 1.4 (1.0, 2.0) and 1.7 (1.1, 2.6) times more likely than controls in the medium and high intensity groups, respectively, compared to the low intensity group. PAVDs were 1.7 (0.93, 3.0) and 2.5 (1.1, 5.3) times more likely in the medium and high intensity groups for mothers with an address found in the second gestational month. In rural areas, AAVDs, CTDs, and TVDs were 1.8 (0.97, 3.3) and 2.6 (1.1, 6.1); 2.1 (0.96, 4.5) and 4.0 (1.4, 12); and 3.4 (0.95, 12) and 4.6 (0.81, 26) times more likely than controls in the medium and high intensity groups. CONCLUSIONS This study provides further evidence of a positive association between maternal proximity to O&G well site activities and several types of CHDs, particularly in rural areas.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA.
| | - William Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, USA
| |
Collapse
|
11
|
Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173055. [PMID: 31443587 PMCID: PMC6747456 DOI: 10.3390/ijerph16173055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of unconventional resource development (URD) and adverse health effects have been limited by distance-based exposure surrogates. Our study compared exposure classifications between air pollutant concentrations and “well activity” (WA) metrics, which are distance-based exposure proxies used in Marcellus-area studies to reflect variation in time and space of residential URD activity. We compiled Pennsylvania air monitoring data for benzene, carbon monoxide, nitrogen dioxide, ozone, fine particulates and sulfur dioxide, and combined this with data on nearly 9000 Pennsylvania wells. We replicated WA calculations using geo-coordinates of monitors to represent residences and compared exposure categories from air measurements and WA at the site of each monitor. There was little agreement between the two methods for the pollutants included in the analysis, with most weighted kappa coefficients between −0.1 and 0.1. The exposure categories agreed for about 25% of the observations and assigned inverse categories 16%–29% of the time, depending on the pollutant. Our results indicate that WA measures did not adequately distinguish categories of air pollutant exposures and employing them in epidemiology studies can result in misclassification of exposure. This underscores the need for more robust exposure assessment in future analyses and cautious interpretation of these existing studies.
Collapse
|
12
|
Kroepsch AC, Maniloff PT, Adgate JL, McKenzie LM, Dickinson KL. Environmental Justice in Unconventional Oil and Natural Gas Drilling and Production: A Critical Review and Research Agenda. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6601-6615. [PMID: 31117531 DOI: 10.1021/acs.est.9b00209] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The drilling phase of oil and natural gas development is a growing area of environmental justice (EJ) research, particularly in the United States. Its emergence complements the longstanding EJ scholarship on later phases of the oil and gas commodity chain, such as pipeline transport, refining, and consumption. The growing scholarly attention to the EJ implications of drilling has been prompted by the surge in development of unconventional oil and gas resources in recent decades. More specifically, the oil and gas industry's adoption of horizontal drilling and hydraulic fracturing (a.k.a., "fracking" or "fracing") as methods for extracting oil and gas from a wider range of geologic formations has simultaneously heightened oil and gas production, brought extractive activities closer to more people, intensified them, and made well pad siting more flexible. Here, we provide a critical review of the novel EJ research questions that are being prompted by these on-the-ground changes in extractive techniques and patterns, propose an interdisciplinary conceptual framework for guiding EJ inquiry in this context, discuss key methodological considerations, and propose a research agenda to motivate future inquiry.
Collapse
Affiliation(s)
- Adrianne C Kroepsch
- Colorado School of Mines , 1500 Illinois Street , Golden , Colorado 80104 , United States
| | - Peter T Maniloff
- Colorado School of Mines , 1500 Illinois Street , Golden , Colorado 80104 , United States
| | - John L Adgate
- Colorado School of Public Health , University of Colorado Denver , 13001 E. 17th Place, Campus Box B119 , Aurora , Colorado 80045 , United States
| | - Lisa M McKenzie
- Colorado School of Public Health , University of Colorado Denver , 13001 E. 17th Place, Campus Box B119 , Aurora , Colorado 80045 , United States
| | - Katherine L Dickinson
- Colorado School of Public Health , University of Colorado Denver , 13001 E. 17th Place, Campus Box B119 , Aurora , Colorado 80045 , United States
| |
Collapse
|
13
|
Allshouse WB, McKenzie LM, Barton K, Brindley S, Adgate JL. Community Noise and Air Pollution Exposure During the Development of a Multi-Well Oil and Gas Pad. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7126-7135. [PMID: 31136715 DOI: 10.1021/acs.est.9b00052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Unconventional oil and gas development (UOGD) in the United States is increasingly being conducted on multiwell pads (MWPs) and in residential areas. We measured air pollution, noise, and truck traffic during four distinct phases of UOGD: drilling, hydraulic fracturing, flowback, and production. We monitored particulate matter (PM2.5), black carbon (BC), A-weighted (dBA), and C-weighted (dBC) noise using real-time instruments on 1 and 5 min time scales, and truck traffic for 4-7 days per phase at a large 22-well pad sited in a residential area of Weld County, Colorado. Hydraulic fracturing, which requires frequent truck trips to move supplies and diesel engines to power the process, had the highest median air pollution levels of PM2.5 and BC and experienced the greatest number of heavy trucks per hour compared to other phases. Median air pollution was lowest during drilling at this MWP, possibly because an electric drill rig was used. The equivalent continuous noise level ( Leq) exceeded guidelines of 50 dBA and 65 dBC for A-weighted and C-weighted noise, respectively, during all development phases. Our data show that these multiple stressors are present around the clock at these sites, and this work provides baseline measurements on likely human exposure levels near similarly sized MWPs.
Collapse
Affiliation(s)
- William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Kelsey Barton
- Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
14
|
McKenzie LM, Crooks J, Peel JL, Blair BD, Brindley S, Allshouse WB, Malin S, Adgate JL. Relationships between indicators of cardiovascular disease and intensity of oil and natural gas activity in Northeastern Colorado. ENVIRONMENTAL RESEARCH 2019; 170:56-64. [PMID: 30557692 PMCID: PMC6360130 DOI: 10.1016/j.envres.2018.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Oil and natural gas (O&G) extraction emits pollutants that are associated with cardiovascular disease, the leading cause of mortality in the United States. OBJECTIVE We evaluated associations between intensity of O&G activity and cardiovascular disease indicators. METHODS Between October 2015 and May 2016, we conducted a cross-sectional study of 97 adults living in Northeastern Colorado. For each participant, we collected 1-3 measurements of augmentation index, systolic and diastolic blood pressure (SBP and DBP), and plasma concentrations of interleukin (IL)- 1β, IL-6, IL-8 and tumor necrosis factor alpha (TNF-α). We modelled the intensity of O&G activity by weighting O&G well counts within 16 km of a participant's home by intensity and distance. We used linear models accounting for repeated measures within person to evaluate associations. RESULTS Adjusted mean augmentation index differed by 6.0% (95% CI: 0.6, 11.4%) and 5.1% (95%CI: -0.1, 10.4%) between high and medium, respectively, and low exposure tertiles. The greatest mean IL-1β, and α-TNF plasma concentrations were observed for participants in the highest exposure tertile. IL-6 and IL-8 results were consistent with a null result. For participants not taking prescription medications, the adjusted mean SBP differed by 6 and 1 mm Hg (95% CIs: 0.1, 13 mm Hg and -6, 8 mm Hg) between the high and medium, respectively, and low exposure tertiles. DBP results were similar. For participants taking prescription medications, SBP and DBP results were consistent with a null result. CONCLUSIONS Despite limitations, our results support associations between O&G activity and augmentation index, SBP, DBP, IL-1β, and TNF-α. Our study was not able to elucidate possible mechanisms or environmental stressors, such as air pollution and noise.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA.
| | - James Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Jennifer L Peel
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, CO, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Benjamin D Blair
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Stephen Brindley
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| | - Stephanie Malin
- Department of Sociology & Colorado School of Public Health, Colorado State University, Fort Collins, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, CO, USA
| |
Collapse
|
15
|
Janitz AE, Dao HD, Campbell JE, Stoner JA, Peck JD. The association between natural gas well activity and specific congenital anomalies in Oklahoma, 1997-2009. ENVIRONMENT INTERNATIONAL 2019; 122:381-388. [PMID: 30551805 PMCID: PMC6328052 DOI: 10.1016/j.envint.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/11/2018] [Accepted: 12/04/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Natural gas drilling may pose multiple health risks, including congenital anomalies, through air pollutant emissions and contaminated water. Two recent studies have evaluated the relationship between natural gas activity and congenital anomalies, with both observing a positive relationship. OBJECTIVES We aimed to evaluate whether residence near natural gas wells is associated with critical congenital heart defects (CCHD), neural tube defects (NTD), and oral clefts in Oklahoma, the third highest natural gas producing state in the US. METHODS We conducted a retrospective cohort study among singleton births in Oklahoma (n = 476,600) to evaluate natural gas activity and congenital anomalies. We calculated an inverse distance-squared weighted (IDW) score based on the number of actively producing wells within a two-mile radius of the maternal residence during the month of delivery. We used modified Poisson regression with robust error variance to estimate prevalence proportion ratios (PPR) and 95% confidence intervals (CI) for the association between tertiles of natural gas activity (compared to no wells) and CCHD, NTD, and oral clefts adjusted for maternal education. RESULTS We observed an increased, though imprecise, prevalence of NTDs among children with natural gas activity compared to children with no wells (2nd tertile PPR: 1.34, 95% CI: 0.93, 1.93; 3rd tertile PPR: 1.20, 95% CI: 0.82, 1.75). We observed no association with CCHD or oral clefts overall. Specific CCHDs of common truncus, transposition of the great arteries, pulmonary valve atresia and stenosis, tricuspid valve atresia and stenosis, interrupted aortic arch, and total anomalous pulmonary venous connection were increased among those living in areas with natural gas activity compared to those living in areas without activity, though not statistically significant. DISCUSSION Our results were similar to previous studies for NTDs and specific CCHDs. Future directions include evaluating the association between specific phases of the drilling process and congenital anomalies to better refine the relevant exposure period.
Collapse
Affiliation(s)
- Amanda E Janitz
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Hanh Dung Dao
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Janis E Campbell
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Spatiotemporal Distribution of PM2.5 and O3 and Their Interaction During the Summer and Winter Seasons in Beijing, China. SUSTAINABILITY 2018. [DOI: 10.3390/su10124519] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study analyzed the spatiotemporal variations in PM2.5 and O3, and explored their interaction in the summer and winter seasons in Beijing. To this aim, hourly PM2.5 and O3 data for 35 air quality monitoring sites were analyzed during the summer and winter of 2016. Results suggested that the highest PM2.5 concentration and the lowest O3 concentration were observed at traffic monitoring sites during the two seasons. A statistically significant (p < 0.05) different diurnal variation of PM2.5 was observed between the summer and winter seasons, with higher concentrations during daytime summer and nighttime winter. Diurnal variations of O3 concentrations during the two seasons showed a single peak, occurring at 16:00 and 15:00 in summer and winter, respectively. PM2.5 presented a spatial pattern with higher concentrations in southern Beijing than in northern areas, particularly evident during wintertime. On the contrary, O3 concentrations presented a decreasing spatial trend from the north to the south, particularly evident during summer. In addition, we found that PM2.5 concentrations were positively correlated (p < 0.01, r = 0.57) with O3 concentrations in summer, but negatively correlated (p < 0.01, r = −0.72) with O3 concentrations in winter.
Collapse
|
17
|
Elliott EG, Ma X, Leaderer BP, McKay LA, Pedersen CJ, Wang C, Gerber CJ, Wright TJ, Sumner AJ, Brennan M, Silva GS, Warren JL, Plata DL, Deziel NC. A community-based evaluation of proximity to unconventional oil and gas wells, drinking water contaminants, and health symptoms in Ohio. ENVIRONMENTAL RESEARCH 2018; 167:550-557. [PMID: 30145431 DOI: 10.1016/j.envres.2018.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 05/28/2023]
Abstract
Over 4 million Americans live within 1.6 km of an unconventional oil and gas (UO&G) well, potentially placing them in the path of toxic releases. We evaluated relationships between residential proximity to UO&G wells and (1) water contamination and (2) health symptoms in an exploratory study. We analyzed drinking water samples from 66 Ohio households for 13 UO&G-related volatile organic compounds (VOCs) (e.g., benzene, disinfection byproducts [DBPs]), gasoline-range organics (GRO), and diesel-range organics. We interviewed participants about health symptoms and calculated metrics capturing proximity to UO&G wells. Based on multivariable logistic regression, odds of detection of bromoform and dibromochloromethane in surface water decreased significantly as distance to nearest UO&G well increased (odds ratios [OR]: 0.28-0.29 per km). Similarly, distance to nearest well was significantly negatively correlated with concentrations of GRO and toluene in ground water (rSpearman: -0.40 to -0.44) and with concentrations of bromoform and dibromochloromethane in surface water (rSpearman: -0.48 to -0.50). In our study population, those with higher inverse-distance-squared-weighted UO&G well counts within 5 km around the home were more likely to report experiencing general health symptoms (e.g. stress, fatigue) (OR: 1.52, 95%CI: 1.02-2.26). This exploratory study, though limited by small sample size and self-reported health symptoms, suggests that those in closer proximity to multiple UO&G wells may be more likely to experience environmental health impacts. Further, presence of brominated DBPs (linked to UO&G wastewater) raises the question of whether UO&G activities are impacting drinking water sources in the region. The findings from this study support expanded studies to advance knowledge of the potential for water quality and human health impacts; such studies could include a greater number of sampling sites, more detailed chemical analyses to examine source attribution, and objective health assessments.
Collapse
Affiliation(s)
- Elise G Elliott
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Xiaomei Ma
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Brian P Leaderer
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Lisa A McKay
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Courtney J Pedersen
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Chang Wang
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Christopher J Gerber
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Thomas J Wright
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Andrew J Sumner
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Mairead Brennan
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Genevieve S Silva
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Joshua L Warren
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA
| | - Desiree L Plata
- Yale School of Engineering and Applied Science, Yale University, 17 Hillhouse Avenue, New Haven, CT 06510 USA
| | - Nicole C Deziel
- Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06510, USA.
| |
Collapse
|
18
|
Han Y, Jiang P, Dong T, Ding X, Chen T, Villanger GD, Aase H, Huang L, Xia Y. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:457-462. [PMID: 29655847 DOI: 10.1016/j.ecoenv.2018.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Numerous studies have investigated prenatal air pollution and shown that air pollutants have adverse effect on birth outcomes. However, which trimester was the most sensitive and whether the effect was related to maternal age is still ambiguous. OBJECTIVES This study aims to explore the association between maternal air pollution exposure during pregnancy and preterm birth, and if this relationship is modified by maternal age. METHODS In this retrospective cohort study, we examine the causal relationship of prenatal exposure to air pollutants including particulate matters, which are less than 10 µm (PM10), and ozone (O3), which is one of the gaseous pollutants, on preterm birth by gestational age. A total of 6693 pregnant women were recruited from Wuxi Maternal and Child Health Care Hospital. The participants were dichotomized into child-bearing age group (< 35 years old) and advanced age group (> = 35 years old) in order to analyze the effect modification by maternal age. Logistic and linear regression models were performed to assess the risk for preterm birth (gestational age < 37 weeks) caused by prenatal air pollution exposure. RESULTS With adjustment for covariates, the highest level of PM10 exposure significantly increased the risk of preterm birth by 1.42-fold (95% CI: 1.10, 1.85) compared those with the lowest level in the second trimester. Trimester-specific PM10 exposure was positively associated with gestational age, whereas O3 exposure was associated with gestational age in the early pregnancy. When stratified by maternal age, PM10 exposure was significantly associated with an increased risk of preterm birth only in the advanced age group during pregnancy (OR:2.15, 95% CI: 1.13, 4.07). The results suggested that PM10 exposure associated with preterm birth was modified by advanced maternal age (OR interaction = 2.00, 95% CI: 1.02, 3.91, Pinteraction = 0.032). CONCLUSION Prenatal air pollution exposure would increase risk of preterm birth and reduced gestational age. Thus, more attention should be paid to the effects of ambient air pollution exposure on preterm birth especially in pregnant women with advanced maternal age.
Collapse
Affiliation(s)
- Yingying Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Panhua Jiang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China
| | - Tianyu Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Xinliang Ding
- Wuxi Center for Disease Control and Prevention, 499 Jinchen Road, Wuxi 214002, Jiangsu Province, China
| | - Ting Chen
- Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Hospital, Obestetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Gro Dehli Villanger
- Department of Child health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Lu Huang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi 214002, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China.
| |
Collapse
|
19
|
Koehler K, Ellis JH, Casey JA, Manthos D, Bandeen-Roche K, Platt R, Schwartz BS. Exposure Assessment Using Secondary Data Sources in Unconventional Natural Gas Development and Health Studies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6061-6069. [PMID: 29697245 PMCID: PMC6437780 DOI: 10.1021/acs.est.8b00507] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Studies of unconventional natural gas development (UNGD) and health have ranked participants along a gradient of geographic information system (GIS)-based activity that incorporated the distance between participants' home addresses and unconventional natural gas wells. However, studies have used different activity metrics, making result comparisons across the studies difficult. The existing studies have only incorporated wells, without accounting for other components of development (e.g., compressors, impoundments, and flaring events), for which it is often difficult to obtain reliable data but may have relevance to health. Our aims were to (1) describe, in space and time, UNGD-related compressors, impoundments, and flaring events; (2) evaluate whether and how to incorporate these into UNGD activity assessment; and (3) evaluate associations of these different approaches with mild asthma exacerbations. We identified 361 compressor stations, 1218 impoundments, and 216 locations with flaring events. A principal component analysis identified a single component that was approximately an equal mix of the metrics for compressors, impoundments, and four phases of well development (pad preparation, drilling, stimulation, and production). However, temporal coverage for impoundments and flaring data was sparse. Ultimately, we evaluated three UNGD activity metrics, including two based on the existing studies and a novel metric that included well pad development, drilling, stimulation, production, and compressor engine aspects of UNGD. The three metrics had varying magnitudes of association with mild asthma exacerbations, although the highest category of each metric (vs the lowest) was associated with the outcome.
Collapse
Affiliation(s)
- Kirsten Koehler
- Department of Environmental Health and Engineering , Johns Hopkins Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - J Hugh Ellis
- Department of Environmental Health and Engineering , Johns Hopkins Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - Joan A Casey
- Division of Environmental Health Sciences , University of California at Berkeley School of Public Health , Berkeley , California 94720 , United States
| | - David Manthos
- SkyTruth , Shepherdstown , West Virginia 25443 , United States
| | - Karen Bandeen-Roche
- Department of Biostatistics , Johns Hopkins Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - Rutherford Platt
- Department of Environmental Studies , Gettysburg College , Gettysburg , Pennsylvania 17325 , United States
| | - Brian S Schwartz
- Department of Environmental Health and Engineering , Johns Hopkins Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
- Department of Epidemiology and Health Services Research , Geisinger Health System , Danville , Pennsylvania 17822 , United States
- Department of Medicine , Johns Hopkins School of Medicine , Baltimore , Maryland 21205 , United States
| |
Collapse
|
20
|
McKenzie LM, Blair B, Hughes J, Allshouse WB, Blake NJ, Helmig D, Milmoe P, Halliday H, Blake DR, Adgate JL. Ambient Nonmethane Hydrocarbon Levels Along Colorado's Northern Front Range: Acute and Chronic Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4514-4525. [PMID: 29584423 DOI: 10.1021/acs.est.7b05983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oil and gas (O&G) facilities emit air pollutants that are potentially a major health risk for nearby populations. We characterized prenatal through adult health risks for acute (1 h) and chronic (30 year) residential inhalation exposure scenarios to nonmethane hydrocarbons (NMHCs) for these populations. We used ambient air sample results to estimate and compare risks for four residential scenarios. We found that air pollutant concentrations increased with proximity to an O&G facility, as did health risks. Acute hazard indices for neurological (18), hematological (15), and developmental (15) health effects indicate that populations living within 152 m of an O&G facility could experience these health effects from inhalation exposures to benzene and alkanes. Lifetime excess cancer risks exceeded 1 in a million for all scenarios. The cancer risk estimate of 8.3 per 10 000 for populations living within 152 m of an O&G facility exceeded the United States Environmental Protection Agency's 1 in 10 000 upper threshold. These findings indicate that state and federal regulatory policies may not be protective of health for populations residing near O&G facilities. Health risk assessment results can be used for informing policies and studies aimed at reducing and understanding health effects associated with air pollutants emitted from O&G facilities.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Benjamin Blair
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - John Hughes
- Department of Biostatistics and Informatics, Colorado School of Public Health , University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - William B Allshouse
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Nicola J Blake
- Department of Chemistry , University of California , Irvine , California 92617 , United States
| | - Detlev Helmig
- Institute of Arctic and Alpine Research (INSTAAR) , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Pam Milmoe
- Boulder County Public Health , 1333 Iris Avenue , Boulder , Colorado 80304 , United States
| | | | - Donald R Blake
- Department of Chemistry , University of California , Irvine , California 92617 , United States
| | - John L Adgate
- Department of Environmental and Occupational Health , Colorado School of Public Health, University of Colorado Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
21
|
Zhao H, Zheng Y, Li T, Wei L, Guan Q. Temporal and Spatial Variation in, and Population Exposure to, Summertime Ground-Level Ozone in Beijing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E628. [PMID: 29596366 PMCID: PMC5923670 DOI: 10.3390/ijerph15040628] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/15/2018] [Accepted: 03/26/2018] [Indexed: 11/29/2022]
Abstract
Ground-level ozone pollution in Beijing has been causing concern among the public due to the risks posed to human health. This study analyzed the temporal and spatial distribution of, and investigated population exposure to, ground-level ozone. We analyzed hourly ground-level ozone data from 35 ambient air quality monitoring sites, including urban, suburban, background, and traffic monitoring sites, during the summer in Beijing from 2014 to 2017. The results showed that the four-year mean ozone concentrations for urban, suburban, background, and traffic monitoring sites were 95.1, 99.8, 95.9, and 74.2 μg/m³, respectively. A total of 44, 43, 45, and 43 days exceeded the Chinese National Ambient Air Quality Standards (NAAQS) threshold for ground-level ozone in 2014, 2015, 2016, and 2017, respectively. The mean ozone concentration was higher in suburban sites than in urban sites, and the traffic monitoring sites had the lowest concentration. The diurnal variation in ground-level ozone concentration at the four types of monitoring sites displayed a single-peak curve. The peak and valley values occurred at 3:00-4:00 p.m. and 7:00 a.m., respectively. Spatially, ground-level ozone concentrations decreased in gradient from the north to the south. Population exposure levels were calculated based on ground-level ozone concentrations and population data. Approximately 50.38%, 44.85%, and 48.49% of the total population of Beijing were exposed to ground-level ozone concentrations exceeding the Chinese NAAQS threshold in 2014, 2015, and 2016, respectively.
Collapse
Affiliation(s)
- Hui Zhao
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Youfei Zheng
- Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
- Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Ting Li
- Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Li Wei
- Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Qing Guan
- Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
22
|
Konkel L. In the Neighborhood of 18 Million: Estimating How Many People Live Near Oil and Gas Wells. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:124003. [PMID: 29225196 PMCID: PMC5963578 DOI: 10.1289/ehp2553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
|