1
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Hardikar M, Felix V, Rabe AB, Ikner LA, Hickenbottom KL, Achilli A. Virus rejection and removal in pilot-scale air-gap membrane distillation. WATER RESEARCH 2023; 240:120019. [PMID: 37216784 DOI: 10.1016/j.watres.2023.120019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Membrane distillation (MD) is a thermally-driven process that can treat high concentration streams and provide a dual barrier for rejection and reduction of pathogens. Thus, MD has potential applications in treating concentrated wastewater brines for enhancing water recovery and potable water reuse. In bench-scale studies, it was demonstrated that MD can provide high rejection of MS2 and PhiX174 bacteriophage viruses, and when operating at temperatures greater than 55 °C, can reduce virus levels in the concentrate. However, bench-scale MD results cannot directly be used to predict pilot-scale contaminant rejection and removal of viruses because of the lower water flux and higher transmembrane hydraulic pressure difference in pilot-scale systems. Thus far, virus rejection and removal have not been quantified in pilot-scale MD systems. In this work, the rejection of MS2 and PhiX174 at low (40 °C) and high (70 °C) inlet temperatures is quantified in a pilot-scale air-gap MD system using tertiary treated wastewater. Both viruses were detected in the distillate which suggests the presence of pore flow; the virus rejection at a hot inlet temperature of 40 °C for MS2 and PhiX174 were 1.6-log10 and 3.1-log10, respectively. At 70 °C, virus concentrations in the brine decreased and were below the detection limit (1 PFU per 100 mL) after 4.5 h, however, viruses were also detected in the distillate in that duration. Results demonstrate that virus rejection is lower in pilot-scale experiments because of increased pore flow that is not captured in bench-scale experiments.
Collapse
Affiliation(s)
- Mukta Hardikar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, United States; Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States
| | - Varinia Felix
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, United States; Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States
| | - Andrew B Rabe
- Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States; Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States
| | - Luisa A Ikner
- Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States; Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, United States
| | - Kerri L Hickenbottom
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, United States; Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States
| | - Andrea Achilli
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, United States; Water and Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, AZ 85745, United States.
| |
Collapse
|
3
|
Zhang Y, Li J, Zhang Z, Liu W, Liu Z. Enhancing Thermo-Osmotic Low-Grade Heat Recovery by Applying a Negative Pressure to the Feed. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200238. [PMID: 37020626 PMCID: PMC10069319 DOI: 10.1002/gch2.202200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Indexed: 06/19/2023]
Abstract
A newly developed technology, thermo-osmotic energy conversion (TOEC), is supposed to convert low-grade heat into power. However, the performance of existing TOEC experiments is deficient. This paper discusses the feasibility of strengthening TOEC by applying negative pressure to the feed liquid, which can reduce air pressure in the membrane pores and molecular diffusion resistance. Theoretical calculation shows that when the cooling and heating temperatures are 40 and 80 °C, respectively, and the transmembrane pressure difference is 5.0 MPa, the TOEC system with a negative pressure of 0.5 bar at the feed side can approach an efficiency of 3.01% and a power density of 16.85 W m-2, which increases by 20% and 27% compared with no negative pressure, respectively. Given the nonuniformity in the real system, computational fluid dynamics simulation is used to obtain the correction factor, which is then used to revise the theory prediction results for the first time. Moreover, a lab-scale experiment also proves that a negative pressure at the feed benefits the performance of the TOEC device. Overall, this research presents a feasible method to enhance a TOEC system, which may promote the development of a more-efficiently TOEC system for low-grade heat utilization.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Ji Li
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zikang Zhang
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Wei Liu
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichun Liu
- Department of Engineering ThermophysicsSchool of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
4
|
Lopez KP, Wang R, Hjelvik EA, Lin S, Straub AP. Toward a universal framework for evaluating transport resistances and driving forces in membrane-based desalination processes. SCIENCE ADVANCES 2023; 9:eade0413. [PMID: 36598997 PMCID: PMC9812388 DOI: 10.1126/sciadv.ade0413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Desalination technologies using salt-rejecting membranes are a highly efficient tool to provide fresh water and augment existing water supplies. In recent years, numerous studies have worked to advance a variety of membrane processes with different membrane types and driving forces, but direct quantitative comparisons of these different technologies have led to confusing and contradictory conclusions in the literature. In this Review, we critically assess different membrane-based desalination technologies and provide a universal framework for comparing various driving forces and membrane types. To accomplish this, we first quantify the thermodynamic driving forces resulting from pressure, concentration, and temperature gradients. We then examine the resistances experienced by water molecules as they traverse liquid- and air-filled membranes. Last, we quantify water fluxes in each process for differing desalination scenarios. We conclude by synthesizing results from the literature and our quantitative analyses to compare desalination processes, identifying specific scenarios where each process has fundamental advantages.
Collapse
Affiliation(s)
- Kian P. Lopez
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Elizabeth A. Hjelvik
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Anthony P. Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309-0428, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO 80309-0428, USA
| |
Collapse
|
5
|
Cheng H, Ouyang J. Soret Effect of Ionic Liquid Gels for Thermoelectric Conversion. J Phys Chem Lett 2022; 13:10830-10842. [PMID: 36382894 DOI: 10.1021/acs.jpclett.2c02645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cations and anions can accumulate at the two ends of an ionic conductor under temperature gradient, which is the so-called Soret effect. This can generate a voltage between the two electrodes, and the thermopower can be higher than that of the electronic conductors because of the Seebeck effect by 1-2 orders in magnitude. The thermoelectric properties of ionic conductors depend on the ionic thermopower, ionic conductivity, and thermal conductivity. Compared with other ionic conductors, like liquid electrolytes and hydrogels, ionogels made of an ionic liquid and a gelator can have the advantages of high thermopower and high stability. Great progress was recently made to improve the ionic conductivity and/or ionic thermopower of ionogels. They can be used in ionic thermoelectric capacitors (ITECs) to harvest heat. In addition, they can be integrated with electronic thermoelectric materials to harvest heat from both temperature gradient and temperature fluctuation, which can be caused by waste heat.
Collapse
Affiliation(s)
- Hanlin Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, Singapore117575, Singapore
- National University of Singapore Suzhou Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu215000, China
| |
Collapse
|
6
|
Yu Y, Yuan Z, Yu Z, Wang C, Zhong X, Wei L, Yao Y, Sui X, Han DS, Chen Y. Thermally assisted efficient electrochemical lithium extraction from simulated seawater. WATER RESEARCH 2022; 223:118969. [PMID: 35988333 DOI: 10.1016/j.watres.2022.118969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Extracting lithium electrochemically from seawater has the potential to resolve any future lithium shortage. However, electrochemical extraction only functions efficiently in high lithium concentration solutions. Herein, we discovered that lithium extraction is temperature and concentration dependent. Lithium extraction capacity (i.e., the mass of lithium extracted from the source solutions) and speed (i.e., the lithium extraction rate) in electrochemical extraction can be increased significantly in heated source solutions, especially at low lithium concentrations (e.g., < 3 mM) and high Na+/Li+ molar ratios (e.g., >1000). Comprehensive material characterization and mechanistic analyses revealed that the improved lithium extraction originates from boosted kinetics rather than thermodynamic equilibrium shifts. A higher temperature (i.e., 60 oC) mitigates the activation polarization of lithium intercalation, decreases charge transfer resistances, and improves lithium diffusion. Based on these understandings, we demonstrated that a thermally assisted electrochemical lithium extraction process could achieve rapid (36.8 mg g-1 day-1) and selective (51.79% purity) lithium extraction from simulated seawater with an ultrahigh Na+/Li+ molar ratio of 20,000. The integrated thermally regenerative electrochemical cycle can harvest thermal energy in heated source solutions, enabling a low electrical energy consumption (11.3-16.0 Wh mol-1 lithium). Furthermore, the coupled thermal-driven membrane process in the system can also produce freshwater (13.2 kg m-2 h-1) as a byproduct. Given abundant low-grade thermal energy availability, the thermally assisted electrochemical lithium extraction process has excellent potential to realize mining lithium from seawater.
Collapse
Affiliation(s)
- Yanxi Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| | - Zixun Yu
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Cheng Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Xia Zhong
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Yao
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | - Dong Suk Han
- Center for Advanced Materials & Department of Chemical Engineering, Qatar University, Doha, Qatar
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
7
|
Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations. Nat Commun 2022; 13:3386. [PMID: 35697704 PMCID: PMC9192728 DOI: 10.1038/s41467-022-31183-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing the charge density of ionic membranes is believed to be beneficial for generating high output osmotic energy. Herein, we systematically investigated how the membrane charge populations affect permselectivity by decoupling their effects from the impact of the pore structure using a multivariate strategy for constructing covalent-organic-framework membranes. The thermo-osmotic energy conversion efficiency is improved by increasing the membrane charge density, affording 210 W m−2 with a temperature gradient of 40 K. However, this enhancement occurs only within a narrow window, and subsequently, the efficiency plateaued beyond a threshold density (0.04 C m−2). The complex interplay between pore-pore interactions in response to charge variations for ion transport across the upscaled nanoporous membranes helps explain the obtained results. This study has far-reaching implications for the rational design of ionic membranes to augment energy extraction rather than intuitively focusing on achieving high densities. The development of ionic membranes with a high charge population is critical for realizing efficient thermo-osmotic energy conversion. Here, the authors demonstrated that the thermo-osmotic energy conversion efficiency can be improved by increasing the membrane charge density but this enhancement only occurs within a narrow window.
Collapse
|
8
|
Sun C, Lyu Q, Si Y, Tong T, Lin LC, Yang F, Tang CY, Dong Y. Superhydrophobic Carbon Nanotube Network Membranes for Membrane Distillation: High-Throughput Performance and Transport Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5775-5785. [PMID: 35465657 DOI: 10.1021/acs.est.1c08842] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite increasing sustainable water purification, current desalination membranes still suffer from insufficient permeability and treatment efficiency, greatly hindering extensive practical applications. In this work, we provide a new membrane design protocol and molecule-level mechanistic understanding of vapor transport for the treatment of hypersaline waters via a membrane distillation process by rationally fabricating more robust metal-based carbon nanotube (CNT) network membranes, featuring a superhydrophobic superporous surface (80.0 ± 2.3% surface porosity). With highly permeable ductile metal hollow fibers as substrates, the construction of a superhydrophobic (water contact angle ∼170°) CNT network layer endows the membranes with not only almost perfect salt rejection (over 99.9%) but a promising water flux (43.6 L·m-2·h-1), which outperforms most existing inorganic distillation membranes. Both experimental and molecular dynamics simulation results indicate that such an enhanced water flux can be ascribed to an ultra-low liquid-solid contact interface (∼3.23%), allowing water vapor to rapidly transport across the membrane structure via a combined mechanism of Knudsen diffusion (more dominant) and viscous flow while efficiently repelling high-salinity feed via forming a Cassie-Baxter state. A more hydrophobic surface is more in favor of not only water desorption from the CNT outer surface but superfast and frictionless water vapor transport. By constructing a new superhydrophobic triple-phase interface, the conceptional design strategy proposed in this work can be expected to be extended to other membrane material systems as well as more water treatment applications.
Collapse
Affiliation(s)
- Chunyi Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yiran Si
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S, Sun Q. Thermo-Osmotic Energy Conversion Enabled by Covalent-Organic-Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022; 61:e202116910. [PMID: 35179288 DOI: 10.1002/anie.202116910] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 01/15/2023]
Abstract
A vast amount of energy can be extracted from the untapped low-grade heat from sources below 100 °C and the Gibbs free energy from salinity gradients. Therefore, a process for simultaneous and direct conversion of these energies into electricity using permselective membranes was developed in this study. These membranes screen charges of ion flux driven by the combined salinity and temperature gradients to achieve thermo-osmotic energy conversion. Increasing the charge density in the pore channels enhanced the permselectivity and ion conductance, leading to a larger osmotic voltage and current. A 14-fold increase in power density was achieved by adjusting the ionic site population of covalent organic framework (COF) membranes. The optimal COF membrane was operated under simulated estuary conditions at a temperature difference of 60 K, which yielded a power density of ≈231 W m-2 , placing it among the best performing upscaled membranes. The developed system can pave the way to the utilization of the enormous supply of untapped osmotic power and low-grade heat energy, indicating the tremendous potential of using COF membranes for energy conversion applications.
Collapse
Affiliation(s)
- Xiuhui Zuo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xincheng Zhu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yeqing Wang
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, 310028, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
10
|
Sun Q, Zuo X, Zhu C, Xian W, Meng QW, Guo Q, Zhu X, Wang S, Wang Y, Ma S. Thermo‐Osmotic Energy Conversion Enabled by Covalent‐Organic‐Framework Membranes with Record Output Power Density. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qi Sun
- Zhejiang University College of Chemical and Biological Engineering 310007 Hangzhou CHINA
| | - Xiuhui Zuo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Changjia Zhu
- University of North Texas Department of Chemistry 1508 W Mulberry St DentonDenton 76203-1277 Denton UNITED STATES
| | - Weipeng Xian
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing-Wei Meng
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Qing Guo
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Xincheng Zhu
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Sai Wang
- Zhejiang University College of Chemical and Biological Engineering CHINA
| | - Yeqing Wang
- Zhejiang University Department of Chemistry CHINA
| | - Shengqian Ma
- University of North Texas Department of Chemistry UNITED STATES
| |
Collapse
|
11
|
Herrero C, De San Féliciano M, Merabia S, Joly L. Fast and versatile thermo-osmotic flows with a pinch of salt. NANOSCALE 2022; 14:626-631. [PMID: 34989386 DOI: 10.1039/d1nr06998e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thermo-osmotic flows - flows generated in micro and nanofluidic systems by thermal gradients - could provide an alternative approach to harvest waste heat. However, such use would require massive thermo-osmotic flows, which are up to now only predicted for special and expensive materials. Thus, there is an urgent need to design affordable nanofluidic systems displaying large thermo-osmotic coefficients. In this paper, we propose a general model for thermo-osmosis of aqueous electrolytes in charged nanofluidic channels, taking into account hydrodynamic slip, together with the different solvent and solute contributions to the thermo-osmotic response. We apply this model to a wide range of systems by studying the effects of wetting, salt type and concentration, and surface charge. We show that intense thermo-osmotic flows can be generated using slipping charged surfaces. We also predict for intermediate wettings a transition from a thermophobic to a thermophilic behavior depending on the surface charge and salt concentration. Overall, this theoretical framework opens an avenue for controlling and manipulating thermally induced flows with common charged surfaces and a pinch of salt.
Collapse
Affiliation(s)
- Cecilia Herrero
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Michael De San Féliciano
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Samy Merabia
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
| | - Laurent Joly
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France.
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
12
|
Qian X, Shin J, Tu Y, Zhang JH, Chen G. Thermally regenerative electrochemically cycled flow batteries with pH neutral electrolytes for harvesting low-grade heat. Phys Chem Chem Phys 2021; 23:22501-22514. [PMID: 34590664 DOI: 10.1039/d1cp01988k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Harvesting waste heat with temperatures lower than 100 °C can improve the system efficiency and reduce greenhouse gas emissions, yet it has been a longstanding and challenging task. Electrochemical methods for harvesting low-grade heat have aroused research interest in recent years due to the relatively high effective temperature coefficient of the electrolytes (>1 mV K-1) compared with the thermopower of traditional thermoelectric devices. Compared with other electrochemical devices such as the temperature-variation based thermally regenerative electrochemical cycle and temperature-difference based thermogalvanic cells, the thermally regenerative electrochemically cycled flow battery (TREC-FB) has the advantages of providing a continuous power output, decoupling the heat source and heat sink, and recuperating heat, and compatible with stacking for scaling up. However, the TREC-FB suffers from the issue of stable operation due to the challenge of pH matching between catholyte and anolyte solutions with desirable temperature coefficients. In this work, we demonstrate a pH-neutral TREC-FB based on KI/KI3 and K3Fe(CN)6/K4Fe(CN)6 as the catholyte and anolyte, respectively, with a cell temperature coefficient of 1.9 mV K-1 and a power density of 9 μW cm-2. This work also presents a comprehensive model with a coupled analysis of mass transfer and reaction kinetics in a porous electrode that can accurately capture the flow rate dependence of the power density and energy conversion efficiency. We estimate that the efficiency of the pH-neutral TREC-FB can reach nearly 9% of the Carnot efficiency at the maximum power output with a temperature difference of 37 K. Via analysis, we identify that the mass transfer overpotential inside the porous electrode and the resistance of the ion exchange membrane are the two major factors limiting the efficiency and power density, pointing to directions for future improvements.
Collapse
Affiliation(s)
- Xin Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Jungwoo Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yaodong Tu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - James Han Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gang Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Li J, Zhang Z, Zhao R, Zhang B, Liang Y, Long R, Liu W, Liu Z. Stack Thermo-Osmotic System for Low-Grade Thermal Energy Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21371-21378. [PMID: 33905242 DOI: 10.1021/acsami.1c03395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thermo-osmotic energy conversion (TOEC) technology, developed from membrane distillation, is an emerging method that has the potential of obtaining electricity efficiently from a low-grade heat source but faces the difficult problem of pump power loss. In this study, we build a novel TOEC system with a multistage architecture that can work without pump assistance. The experiment system, made of cheap commercial materials, can obtain a power density of 1.39 ± 0.25 W/m2, with a heating temperature of 80 °C, and its efficiency increased linearly with the total stage number. A theory calculation shows that a 30-stage system with a specific membrane and a working pressure of 5.0 MPa can obtain an efficiency of 2.72% with a power density of 14.0 W/m2. By a molecular dynamics simulation, it is shown that a high-performance membrane has the potential to work at 40 MPa. This study proves that TOEC technology is a practical and competitive approach to covert low-grade thermal energy into power efficiently.
Collapse
Affiliation(s)
- Ji Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zikang Zhang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Runze Zhao
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Zhang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunmin Liang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Long
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhichun Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Li J, Long R, Zhang B, Yang R, Liu W, Liu Z. Nano Heat Pump Based on Reverse Thermo-osmosis Effect. J Phys Chem Lett 2020; 11:9856-9861. [PMID: 32991184 DOI: 10.1021/acs.jpclett.0c02475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heat pumps are widely used in domestic applications, agriculture, and industry. Here, we report a novel heat pump based on the reverse thermo-osmosis (RTO) effect in a nanoporous graphene (NPG) membrane. Through classical molecular dynamics (MD) simulation, we prove that the heat pump can transport mass and heat efficiently. The heat and mass fluxes are increased linearly with the hydraulic pressure provided. Ultrahigh heat fluxes of 6.2 ± 1.0 kW/cm2 and coefficient of performance (COP) of 20.2 are obtained with a temperature increment of 5 K and a working pressure of 80 MPa. It is interesting that water molecules on the NPG membrane can evaporate in a cluster state, and the cluster evaporations reduce the vaporization enthalpy of the processes.
Collapse
Affiliation(s)
- Ji Li
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rui Long
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Zhang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ronggui Yang
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhichun Liu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Zhu M, Mao Y. Large-pore-size membranes tuned by chemically vapor deposited nanocoatings for rapid and controlled desalination. RSC Adv 2020; 10:40562-40568. [PMID: 35520843 PMCID: PMC9057579 DOI: 10.1039/d0ra07629e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/22/2020] [Indexed: 12/03/2022] Open
Abstract
Though membranes with pore size larger than 1 μm are much desired to increase the permeate flux of membrane distillation (MD), the vulnerability of large-pore-size membranes to pore wetting results in the penetration of saline water and consequent failure of MD operation. We report modification of large-pore-size membranes by chemically vapor deposited nanocoatings to achieve both high salt rejection and high permeate flux. The chemical vapor modification not only led to enhanced surface hydrophobicity and increased liquid entry pressure in membranes, but also significantly improved membrane wetting resistance at high temperature. Membranes with 1.0 and 2.0 μm pore size were successfully used for MD desalination with salt rejection higher than 99.99% achieved. Enlarging the pore size from 0.2 μm to 2.0 μm contributed to 48-73% enhancement in the permeate flux of the modified membranes. The modified large-pore-size membranes maintained the high permeate flux at elevated saline concentration and extended the operation time.
Collapse
Affiliation(s)
- Mengfan Zhu
- Departments of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA +1 405 744 4337
| | - Yu Mao
- Departments of Biosystems Engineering, Oklahoma State University Stillwater Oklahoma 74078 USA +1 405 744 4337
| |
Collapse
|
16
|
Moussaddy S, Yuan G, Maisonneuve J. A new concept for generating mechanical work from gas permeation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Facchinetti I, Cobani E, Brogioli D, La Mantia F, Ruffo R. Thermally Regenerable Redox Flow Battery. CHEMSUSCHEM 2020; 13:5460-5467. [PMID: 32833306 DOI: 10.1002/cssc.202001799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The efficient production of energy from low-temperature heat sources (below 100 °C) would open the doors to the exploitation of a huge amount of heat sources such as solar, geothermal, and industrial waste heat. Thermal regenerable redox-flow batteries (TRBs) are flow batteries that store energy in concentration cells that can be recharged by distillation at temperature <100 °C, exploiting low-temperature heat sources. Using a single membrane cell setup and a suitable redox couple (LiBr/Br2 ), a TRB has been developed that is able to store a maximum volumetric energy of 25.5 Wh dm-3 , which can be delivered at a power density of 8 W m-2 . After discharging 30 % of the volumetric energy, a total heat-to-electrical energy conversion efficiency of 4 % is calculated, the highest value reported so far in harvesting of low-temperature heat.
Collapse
Affiliation(s)
- Irene Facchinetti
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| | - Elkid Cobani
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| | - Doriano Brogioli
- Energiespeicher- und Energiewandlersysteme, Universität Bremen, Bibliothekstraße 1, Bremen, 28359, Germany
| | - Fabio La Mantia
- Energiespeicher- und Energiewandlersysteme, Universität Bremen, Bibliothekstraße 1, Bremen, 28359, Germany
| | - Riccardo Ruffo
- Dipartimento di Scienze dei Materiali, Università degli Studi di Milano Bicocca, Via Cozzi, 55, Milano, 20125, Italy
| |
Collapse
|
18
|
Lee S, Straub AP. Opportunities for high productivity and selectivity desalination via osmotic distillation with improved membrane design. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117765] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Chen X, Boo C, Yip NY. Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Kim JH, Lee JH, Palem RR, Suh MS, Lee HH, Kang TJ. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy. Sci Rep 2019; 9:8706. [PMID: 31213633 PMCID: PMC6582052 DOI: 10.1038/s41598-019-45127-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022] Open
Abstract
Remarkable advances have recently been made in the thermocell array with series or parallel interconnection, however, the output power from the thermocell array is mainly limited by the electrolyte performance of an n-type element. In this work, we investigate iron (II/III) perchlorate electrolytes as a new n-type electrolyte and compared with the ferric/ferrous cyanide electrolyte at its introduction with platinum as the electrodes, which has been the benchmark for thermocells. In comparison, the perchlorate electrolyte (Fe2+/Fe3+) exhibits a high temperature coefficient of redox potential of +1.76 mV/K, which is complementary to the cyanide electrolyte (Fe(CN)63−/Fe(CN)64−) with the temperature coefficient of −1.42 mV/K. The power factor and figure of merit for the electrolyte are higher by 28% and 40%, respectively, than those for the cyanide electrolyte. In terms of device performance, the thermocell using the perchlorate electrolyte provides a power density of 687 mW/m2 that is 45% higher compared to the same device but with the cyanide electrolyte for a small temperature difference of 20 °C. The advent of this high performance n-type electrolyte could open up new ways to achieve substantial advances in p-n thermocells as in p-n thermoelectrics, which has steered the way to the possibility of practical use of thermoelectrics.
Collapse
Affiliation(s)
- Ju Hyeon Kim
- Department of Mechanical Engineering, INHA University, Incheon, 22212, South Korea
| | - Ju Hwan Lee
- Department of Mechanical Engineering, INHA University, Incheon, 22212, South Korea
| | | | - Min-Soo Suh
- Energy Efficiency and Materials Research Division, Korea Institute of Energy Research, Daejeon, 34129, South Korea
| | - Hong H Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Tae June Kang
- Department of Mechanical Engineering, INHA University, Incheon, 22212, South Korea.
| |
Collapse
|
22
|
Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Liu X, Shu L, Jin S. A modeling investigation on the thermal effect in osmosis with gap-filled vertically aligned carbon nanotube membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Brogioli D, La Mantia F. Heat recovery in energy production from low temperature heat sources. AIChE J 2018. [DOI: 10.1002/aic.16496] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Doriano Brogioli
- Universität Bremen, Energiespeicher– und Energiewandlersysteme Bibliothekstraße 1, 28359, Bremen Germany
| | - Fabio La Mantia
- Universität Bremen, Energiespeicher– und Energiewandlersysteme Bibliothekstraße 1, 28359, Bremen Germany
| |
Collapse
|
25
|
Wang XQ, Tan CF, Chan KH, Lu X, Zhu L, Kim SW, Ho GW. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nat Commun 2018; 9:3438. [PMID: 30143624 PMCID: PMC6109106 DOI: 10.1038/s41467-018-06011-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
Utilization of ubiquitous low-grade waste heat constitutes a possible avenue towards soft matter actuation and energy recovery opportunities. While most soft materials are not all that smart relying on power input of some kind for continuous response, we conceptualize a self-locked thermo-mechano feedback for autonomous motility and energy generation functions. Here, the low-grade heat usually dismissed as 'not useful' is used to fuel a soft thermo-mechano-electrical system to perform perpetual and untethered multimodal locomotions. The innately resilient locomotion synchronizes self-governed and auto-sustained temperature fluctuations and mechanical mobility without external stimulus change, enabling simultaneous harvesting of thermo-mechanical energy at the pyro/piezoelectric mechanistic intersection. The untethered soft material showcases deterministic motions (translational oscillation, directional rolling, and clockwise/anticlockwise rotation), rapid transitions and dynamic responses without needing power input, on the contrary extracting power from ambient. This work may open opportunities for thermo-mechano-electrical transduction, multigait soft energy robotics and waste heat harvesting technologies.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Chuan Fu Tan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Xin Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Liangliang Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore, 117602, Singapore.
| |
Collapse
|
26
|
Fu L, Merabia S, Joly L. Understanding Fast and Robust Thermo-osmotic Flows through Carbon Nanotube Membranes: Thermodynamics Meets Hydrodynamics. J Phys Chem Lett 2018; 9:2086-2092. [PMID: 29624390 DOI: 10.1021/acs.jpclett.8b00703] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Following our recent theoretical prediction of the giant thermo-osmotic response of the water-graphene interface, we explore the practical implementation of waste heat harvesting with carbon-based membranes, focusing on model membranes of carbon nanotubes (CNT). To that aim, we combine molecular dynamics simulations and an analytical model considering the details of hydrodynamics in the membrane and at the tube entrances. The analytical model and the simulation results match quantitatively, highlighting the need to take into account both thermodynamics and hydrodynamics to predict thermo-osmotic flows through membranes. We show that, despite viscous entrance effects and a thermal short-circuit mechanism, CNT membranes can generate very fast thermo-osmotic flows, which can overcome the osmotic pressure of seawater. We then show that in small tubes confinement has a complex effect on the flow and can even reverse the flow direction. Beyond CNT membranes, our analytical model can guide the search for other membranes to generate fast and robust thermo-osmotic flows.
Collapse
Affiliation(s)
- Li Fu
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne , France
| | - Samy Merabia
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne , France
| | - Laurent Joly
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne , France
| |
Collapse
|
27
|
Park K, Kim DY, Yang DR. Theoretical Analysis of Pressure Retarded Membrane Distillation (PRMD) Process for Simultaneous Production of Water and Electricity. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kiho Park
- Department of Chemical
and
Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Do Yeon Kim
- Department of Chemical
and
Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dae Ryook Yang
- Department of Chemical
and
Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|