1
|
Li X, Song C, Kang X, Chen F, Li A, Wang Y, Zou J, Yin J, Li Y, Sun Z, Ma X, Liu J. Assembly and functional profile of rhizosphere microbial community during the Salix viminalis-AMF remediation of polycyclic aromatic hydrocarbon polluted soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122503. [PMID: 39299104 DOI: 10.1016/j.jenvman.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are positive to the phytoremediation by improving plant biomass and soil properties. However, the role of AM plants to the remediation of polycyclic aromatic hydrocarbons (PAHs) is yet to be widely recognized, and the impact of AM plants to indigenous microbial communities during remediation remains unclear. In this work, a 90-day study was conducted to assess the effect of AMF-Salix viminalis on the removal of PAHs, and explore the impact to the microbial community composition, abundance, and function. Results showed that AMF-Salix viminalis effectively enhanced the removal of benzo[a]pyrene, and enriched more PAH-degrading bacteria, consisting of Actinobacteria, Chloroflexi, Sphingomonas, and Stenotrophobacter, as well as fungi including Basidiomycota, Pseudogymnoascus, and Tomentella. For gene function, AM willow enhanced the enrichment of genes involved in amino acid synthesis, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. F. mosseae inoculation had a greater effect on alpha- and beta-diversity of microbial genes at 90 d. Additionally, AMF inoculation significantly increased the soil microbial biomass carbon and organic matter concentration. All together, the microbial community assembly and function shaped by AM willow promoted the dissipation of PAHs. Our results support the effectiveness of AM remediation and contribute to reveal the enhancing-remediation mechanism to PAHs using multi-omics data.
Collapse
Affiliation(s)
- Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Chuansheng Song
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Xiaofei Kang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Fengzhen Chen
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Ao Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yuancheng Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Junzhu Zou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jiahui Yin
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China; College of Horticulture, Jilin Agricultural University, Changchun, 130000, Jilin, China
| | - Yingying Li
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, Shandong, China
| | - Zhenyuan Sun
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaodong Ma
- Department of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Junxiang Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
2
|
Chen A, Wang C, Cheng Z, Kennes C, Qiu S, Chen J. Enhancing bacterial biodegradation of n-hexane by utilizing the adsorption capacity of non-degrading fungi. CHEMOSPHERE 2024; 363:142900. [PMID: 39029712 DOI: 10.1016/j.chemosphere.2024.142900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Biodegradation of hydrophobic volatile organic compounds (VOCs) such as n-hexane is limited by their poor accessibility. Constructing fungal-bacterial degradation alliances is an effective approach, but the role of those fungi without the capability to degrade VOCs may have been overlooked. In this study, a non-n-hexane-degrading fungus, Fusarium keratoplasticum FK, was utilized to enhance n-hexane degradation by the bacterium Mycobacterium neworleansense WCJ. It was shown that strain WCJ removed 64.84% of n-hexane (at a concentration of 648.20 mg L-1) over 3 d, and 84.04% after introducing strain FK. Microbial growth kinetic studies revealed that the growth of strain WCJ was also promoted. Through a stepwise adsorption-degradation experiment combined with qPCR technology, it was found that the strain WCJ could utilize the n-hexane pre-adsorbed by strain FK, with an increase in copy number from 108.2662 to 108.7731. Therefore, the non-degrading fungi can improved the accessibility of n-hexane by providing n-hexane adsorbed by the mycelium to the degrading bacteria. In addition, the adsorption tests and characterization of the fungal samples before and after Soxhlet extraction indicated that the adsorption of n-hexane on strain FK conformed to Lagergren's pseudo-second-order kinetics and Freundlich adsorption isotherms, and was correlated with the presence of lipids and nonpolar groups. This study emphasizes the potential role of non-degrading fungi in bioremediation and proposes a viable strategy to enhance the bacterial degradation of hydrophobic VOCs.
Collapse
Affiliation(s)
- Aobo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenjie Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research - Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, E-15008, A Coruña, Spain
| | - Songkai Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Haina-Water Engineering Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing, 314000, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
3
|
Wu D, Wang W, Yao Y, Li H, Wang Q, Niu B. Microbial interactions within beneficial consortia promote soil health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165801. [PMID: 37499809 DOI: 10.1016/j.scitotenv.2023.165801] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
By ecologically interacting with various biotic and abiotic agents acting in soil ecosystems, highly diverse soil microorganisms establish complex and stable assemblages and survive in a community context in natural settings. Besides facilitating soil microbiome to maintain great levels of population homeostasis, such microbial interactions drive soil microbes to function as the major engine of terrestrial biogeochemical cycling. It is verified that the regulative effect of microbe-microbe interplay plays an instrumental role in microbial-mediated promotion of soil health, including bioremediation of soil pollutants and biocontrol of soil-borne phytopathogens, which is considered an environmentally friendly strategy for ensuring the healthy condition of soils. Specifically, in microbial consortia, it has been proven that microorganism-microorganism interactions are involved in enhancing the soil health-promoting effectiveness (i.e., efficacies of pollution reduction and disease inhibition) of the beneficial microbes, here defined as soil health-promoting agents. These microbial interactions can positively regulate the soil health-enhancing effect by supporting those soil health-promoting agents utilized in combination, as multi-strain soil health-promoting agents, to overcome three main obstacles: inadequate soil colonization, insufficient soil contaminant eradication and inefficient soil-borne pathogen suppression, all of which can restrict their probiotic functionality. Yet the mechanisms underlying such beneficial interaction-related adjustments and how to efficiently assemble soil health-enhancing consortia with the guidance of microbe-microbe communications remain incompletely understood. In this review, we focus on bacterial and fungal soil health-promoting agents to summarize current research progress on the utilization of multi-strain soil health-promoting agents in the control of soil pollution and soil-borne plant diseases. We discuss potential microbial interaction-relevant mechanisms deployed by the probiotic microorganisms to upgrade their functions in managing soil health. We emphasize the interplay-related factors that should be taken into account when building soil health-promoting consortia, and propose a workflow for assembling them by employing a reductionist synthetic community approach.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Weixiong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yanpo Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Hongtao Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Qi Wang
- Department of Plant Pathology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; The Center for Basic Forestry Research, Northeast Forestry University, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
4
|
Qu W, Wen H, Qu X, Guo Y, Hu L, Liu W, Tian S, He C, Shu D. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived Co xFe 3-xO 4 membrane: Oxygen vacancy-mediated mechanism. CHEMOSPHERE 2022; 303:135301. [PMID: 35691400 DOI: 10.1016/j.chemosphere.2022.135301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional batch configuration is not sustainable due to catalyst leaching and ineffective recovery. Herein, a novel membrane-based catalyst with oxygen vacancies is developed, which assembled metal-organic-framework cobalt ferrite nanocrystals (MOF-d CoxFe3-xO4) on polyvinylidene fluoride membrane to activate peroxymonosulfate (PMS) for catalytic degradation of emerging pollutants. MOF-d CoxFe3-xO4 are synthesized by one-step pyrolysis using Co/Fe bimetallic organic frameworks (CoxFe3-x bi-MOF) with tunable cobalt content as a template (x/3-x represented the molar ratio of Co and Fe in MOF). Intriguingly, MOF-d Co1.75Fe1.25O4 membrane exhibits excellent PMS activation efficiency as indicated by 95.12% removal of the probe chemical (bisphenol A) at 0.5 mM PMS (∼100 L m-2 h-1 at the loading of 10 mg), which is significantly higher than the traditional Co1.75Fe1.25O4 suspension system (34.16%). Experimental results show that the membrane has excellent anti-interference ability to anions and dissolved organic matter, and can effectively degrade a variety of emerging pollutants, and its performance is not inhibited by the change of solution pH (3-9) or the long-term (20 h) continuous flow operation. EPR and quenching experiments show that catalytic degradation is the result of the synergistic effect of radicals and non-radicals. The oxygen vacancy-mediated mechanism can explain the formation of active substances, and the formation of 1O2 plays an important role in the degradation of bisphenol A. This study provides a membrane-based strategy for effective and sustainable removal of emerging pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yifan Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Yu D, Pei Y. Removal of ibuprofen by sodium alginate-coated iron-carbon granules combined with the ultrasound and Fenton technologies: influencing factors and degradation intermediates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:21183-21192. [PMID: 33410016 DOI: 10.1007/s11356-020-10455-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
This study focuses on the preparation of sodium alginate-coated iron-carbon granules (FeCGs) and their capacity to remove ibuprofen (IBU) by combining Fenton and ultrasound technologies. The preferred preparation conditions are as follows: 2% (w/v) sodium alginate, 10% (w/v) iron fillings and biochar, and used CaCl2 as the cross-linking agent. 74.72% of IBU was removed by ultrasound/FeCG under 10 g/L FeCG and 250 W ultrasound power. Fenton/FeCG could remove 92.41% of IBU under 10 g/L FeCG and 2 mM H2O2. Under the above experimental conditions, ultrasound/FeCG has higher reaction speed (9.44 × 10-3 min-1) than Fenton/FeCG (4.95 × 10-3 min-1). However, Fenton/FeCG could remove more TOC than ultrasound/FeCG. During the reaction using the Fenton/FeCG system, 11 degradation intermediates were detected, but only 7 intermediates were produced by the ultrasound/FeCG system. A common single-chain product C5H10O3 formed by IBU degradation was detected in the reaction products during Fenton/FeCG reaction, which benzene ring structure was destroyed; however, the minimum molecular weight of the product detected using the ultrasound/FeCG system was that of C8H10O; the benzene ring structure of IBU is not destroyed. This study provides guidance in the preparation of sodium alginate-coated FeCGs, evaluating the applicability of Fenton/FeCG and ultrasound/FeCG, which was meaningful for organic pollution wastewater treatment.
Collapse
Affiliation(s)
- Dayang Yu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, People's Republic of China
| | - Yuansheng Pei
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing, 100875, People's Republic of China.
| |
Collapse
|
6
|
Mendonça ARV, Zanardi GB, Brum SS, de Campos TA, Cardoso CMM, Zavarize DG. RR2 dye adsorption to Hymenaea courbaril L. bark activated carbon associated with biofilm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28524-28532. [PMID: 30467753 DOI: 10.1007/s11356-018-3786-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
This study addressed the removal performance of RR2 from aqueous solutions in adsorption columns experiments by comparing the potential of activated carbon alone (ACA) and microbially inoculated (MIAC), prepared from barks of a largely available tree in Brazilian Cerrado biome, Hymenaea courbaril L. or "Jatobá," presenting the kinetics, isotherms, breakthrough curves, and dissolved organic carbon removal. ACA presented strong interaction to RR2 dye, evidenced at the first 20 min when absorbance already attained 66.4%. The removal percentage gradually increased with time and the equilibrium occurred around 91.7% within 120 min. Langmuir model best fitted the isotherm data, indicating a maximum adsorption capacity of 4.068 mg g-1 for the amount of 0.5 g of adsorbent. The Langmuir's model parameters KL, RL, and R2 corresponded to 0.0234 L mg-1, 0.4159, and 0.9663, respectively, indicating a favorable adsorption process (0 < RL < 1). The experiments in adsorption columns revealed maximum adsorption capacities of 14.38 and 11.43 mg g-1 for MIAC and ACA, respectively, where the microbial activity favorably retarded the adsorption breakpoint in approximately 20 min and enhanced the RR2 consumption in 25.8%. Effectiveness of DOC removal attained above 90% for both ACA and MIAC, reducing the content from 86.1 to 7.84 mg L-1 and 4.82 mg L-1, respectively.
Collapse
Affiliation(s)
- Andressa Regina Vasques Mendonça
- Instituto de Química: Laboratório de Materiais e Combustíveis, Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, Brasília, CEP: 77297-400, Brazil
| | - Giuliano Brito Zanardi
- Instituto de Química: Laboratório de Materiais e Combustíveis, Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, Brasília, CEP: 77297-400, Brazil
| | - Sarah Silva Brum
- Instituto de Química: Laboratório de Materiais e Combustíveis, Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, Brasília, CEP: 77297-400, Brazil
| | - Tatiana Amabile de Campos
- Instituto de Ciências Biológicas: Laboratório de Análises Moleculares de Patógenos, Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, Brasília, CEP: 70910-900, Brazil
| | - Carlos Magno Marques Cardoso
- Instituto de Química: Laboratório de Materiais e Combustíveis, Universidade de Brasília, Asa Norte, Campus Darcy Ribeiro, Brasília, CEP: 77297-400, Brazil
| | - Danilo Gualberto Zavarize
- Departamento de Engenharia Ambiental: Laboratório de Caracterização de Impactos Ambientais, Universidade Federal do Tocantins, Av. NS 15, ALCNO 14, Campus de Palmas, Palmas, CEP: 77001-090, Brazil.
| |
Collapse
|
7
|
Wei C, Ren P, Cen Q, Zhu Y, Zhang Y. Simultaneous determination of dissolved phenanthrene and its metabolites by derivative synchronous fluorescence spectrometry with double scans method in aqueous solution. Talanta 2019; 195:339-344. [PMID: 30625553 DOI: 10.1016/j.talanta.2018.11.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/15/2018] [Accepted: 11/22/2018] [Indexed: 12/30/2022]
Abstract
A simple and sensitive derivative synchronous fluorescence spectrometry with double scans (DS-DSFS) method was developed for simultaneous determination of dissolved Phenanthrene (Phe) and its metabolites 1-hydroxy-2-naphthoic acid (1H2NA) and salicylic acid (SA) in aqueous solution. The value of 69 nm was selected as the optimal Δλ conditions for Phe and 1H2NA, and the Δλ value of 55 nm was selected for SA. The overlapping fluorescence emission spectra of Phe, 1H2NA and SA were resolved by DS-DSFS. The signals detected at wavelength of 296 nm for Phe, 352 nm for 1H2NA and 307 nm for SA vary linearly when the concentrations in the range of 4.0-1.0 × 103 μg L-1, 4.0-1.2 × 103 μg L-1 and 4.0-8.0 × 102 μg L-1, respectively. The detection limits were 0.08, 0.07 and 0.88 μg L-1 for Phe, 1H2NA and SA, with the relatively standard deviations less than 5.0%. The established method was successfully applied in the determination of Phe and the metabolites during the biodegradation of dissolved Phe in the lab. It was evidenced that the method has potential for the in situ investigation of PAH biodegradation.
Collapse
Affiliation(s)
- Chaoxian Wei
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, 361102 Xiamen, Fujian Province, PR China
| | - Pei Ren
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, 361102 Xiamen, Fujian Province, PR China
| | - Qiulin Cen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, 361102 Xiamen, Fujian Province, PR China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment & Ecology, Xiamen University, 361102 Xiamen, Fujian Province, PR China.
| |
Collapse
|
8
|
Duan X, Wang X, Dai L, Feng L, Yan Y, Zhou Q. Simultaneous enhancement of nonylphenol biodegradation and short-chain fatty acids production in waste activated sludge under acidogenic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:24-31. [PMID: 30223218 DOI: 10.1016/j.scitotenv.2018.09.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
Nonylphenol (NP) biodegradation in waste activated sludge (WAS) under anaerobic conditions is usually slow, and no information on NP biodegradation under acidogenic conditions is currently available. In this study, the simultaneous enhancement of NP biodegradation and short-chain fatty acids (SCFAs) accumulation in a WAS fermentation system under acidogenic conditions was accomplished by controlling pH 10 and adding sodium lauryl sulfate (SLS). The biodegradation efficiency of NP was found to be 55.5% within 8 d under acidogenic conditions, much higher than that in the control (24.6%). Meanwhile, the concentration of SCFAs under the same conditions for NP biodegradation was increased from 2234 mg COD/L (control) to 4691 mg COD/L (at pH 10 with SLS). Mechanism study revealed that the abundances of both NP-degrading microorganisms and acidogenic bacteria increased under acidogenic conditions. Altering the enzymatic activity and the quantity of functional genes in the acidogenic fermentation system were beneficial to NP biodegradation and SCFAs accumulation. Furthermore, organic substrates available for uptake by NP-degrading and acidogenic bacteria, i.e. NP, protein and carbohydrate, were released from WAS under acidogenic conditions. More importantly, intermediate substrates involved in acidogenic fermentation were advantageous to the cometabolic biodegradation of NP.
Collapse
Affiliation(s)
- Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Xiao Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200092, PR China
| | - Lirong Dai
- Key Laboratory of Development and Applicaition of Rural Renewable Energy of Ministry of Agriculture, Biogas Institute of Ministry of Agriculture, Section 4-13, Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Yuanyuan Yan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Qi Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| |
Collapse
|
9
|
Crampon M, Bodilis J, Portet-Koltalo F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:500-509. [PMID: 30086520 DOI: 10.1016/j.jhazmat.2018.07.088] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/02/2018] [Accepted: 07/23/2018] [Indexed: 05/26/2023]
Abstract
The aim of this study was to understand the role of indigenous soil microbial communities on the biodegradation of polycyclic aromatic hydrocarbons (PAHs) and to determine whether PAHs degradation potential in soils may be evaluated by analysis of bacterial diversity and potential metabolisms using a metagenomics approach. Five different soils were artificially contaminated with seven selected PAHs and the most abundant bacterial taxa were assessed by sequencing the 16S rRNA gene, and linking them to PAH biodegradation efficiencies. A PICRUSt approach was then led to estimate the degradation potentials by metagenomics inference. Although the role of bacteria in PAHs degradation is not directly established here, the presence of a large number of bacteria belonging to the Betaproteobacteria class correlated to a higher degradation of LMW PAHs. A link with specific bacterial taxa was more difficult to establish concerning HMW PAHs, which seemed to require more complex mechanisms as shown by PICRUSt.
Collapse
Affiliation(s)
- M Crampon
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France; LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - J Bodilis
- LMSM, EA 4312, Université de Rouen-Normandie, Place Emile Blondel, 76821 Mont Saint Aignan, France.
| | - F Portet-Koltalo
- COBRA UMR CNRS 6014, Université de Rouen-Normandie, 55 rue saint Germain, 27000 Evreux, France.
| |
Collapse
|