1
|
Morino Y, Iijima A, Chatani S, Sato K, Kumagai K, Ikemori F, Ramasamy S, Fujitani Y, Kimura C, Tanabe K, Sugata S, Takami A, Ohara T, Tago H, Saito Y, Saito S, Hoshi J. Source apportionment of anthropogenic and biogenic organic aerosol over the Tokyo metropolitan area from forward and receptor models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166034. [PMID: 37595930 DOI: 10.1016/j.scitotenv.2023.166034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/23/2023] [Accepted: 08/02/2023] [Indexed: 08/20/2023]
Abstract
Organic aerosol (OA) is a dominant component of PM2.5, and accurate knowledge of its sources is critical for identification of cost-effective measures to reduce PM2.5. For accurate source apportionment of OA, we conducted field measurements of organic tracers at three sites (one urban, one suburban, and one forest) in the Tokyo Metropolitan Area and numerical simulations of forward and receptor models. We estimated the source contributions of OA by calculating three receptor models (positive matrix factorization, chemical mass balance, and secondary organic aerosol (SOA)-tracer method) using the ambient concentrations, source profiles, and production yields of OA tracers. Sensitivity simulations of the forward model (chemical transport model) for precursor emissions and SOA formation pathways were conducted. Cross-validation between the receptor and forward models demonstrated that biogenic and anthropogenic SOA were better reproduced by the forward model with updated modules for emissions of biogenic volatile organic compounds (VOC) and for SOA formation from biogenic VOC and intermediate-volatility organic compounds than by the default setup. The source contributions estimated by the forward model generally agreed with those of the receptor models for the major OA sources: mobile sources, biomass combustion, biogenic SOA, and anthropogenic SOA. The contributions of anthropogenic SOA, which are the main focus of this study, were estimated by the forward and receptor models to have been between 9 % and 15 % in summer 2019. The observed percent modern carbon data indicate that the amounts of anthropogenic SOA produced during daytime have substantially declined from 2007 to 2019. This trend is consistent with the decreasing trend of anthropogenic VOC, suggesting that reduction of anthropogenic VOC has been effective in reducing anthropogenic SOA in the atmosphere.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Akihiro Iijima
- Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan
| | - Satoru Chatani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kei Sato
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kimiyo Kumagai
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Fumikazu Ikemori
- Nagoya City Institute for Environmental Sciences, 5-16-8 Toyoda, Minami-ku, Nagoya, Aichi 457-0841, Japan
| | - Sathiyamurthi Ramasamy
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Chisato Kimura
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Seiji Sugata
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Akinori Takami
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Toshimasa Ohara
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan; Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Hiroshi Tago
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Yoshinori Saito
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Junya Hoshi
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| |
Collapse
|
2
|
Morino Y, Chatani S, Fujitani Y, Tanabe K, Murphy BN, Jathar SH, Takahashi K, Sato K, Kumagai K, Saito S. Emissions of Condensable Organic Aerosols from Stationary Combustion Sources over Japan. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2022; 289:119319. [PMID: 40012955 PMCID: PMC11864277 DOI: 10.1016/j.atmosenv.2022.119319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Treatment of condensable particulate matter (CPM) is key for accurate simulation of atmospheric particulate matter (PM), because conventional stationary combustion source emission surveys do not measure CPM in many countries. This study updates previously estimated CPM emissions from stationary combustion sources in Japan by considering the relationship between the CPM fraction and filterable PM (FPM) concentrations for individual sources rather than using a uniform CPM/FPM ratio for all sources. As a result, the total emissions ratio of condensable organic aerosol (OA) and filterable PM2.5 (OA CPM ∕ PM 2.5 FPM ) from stationary combustion sources, based on this update, changes from ~2.0 to 0.20, and the estimated concentrations of condensable OA, averaged over winter and over summer, changes from up to 3 μg m-3 to up to 0.2 μg m-3. The normalized mean bias for concentration of the simulated organic carbon (OC) in winter changes from -78% ~ -9% to -83% ~ -28%), although the proportion of modern carbon in total carbon is better estimated. The CPM contribution is likely to be overestimated when the source-dependent relationship between the CPM/FPM ratio and FPM concentration is not considered. Thus, accurate knowledge of the CPM/FPM ratio, particularly for sources with high FPM concentrations, is critical to improve CPM emission estimation.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Satoru Chatani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Shantanu H. Jathar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Katsuyuki Takahashi
- Japan Environmental Sanitation Center, 10-6 Yotsuyakami-Cho, Kawasaki, Kanagawa 210-0828, Japan
| | - Kei Sato
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kimiyo Kumagai
- Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
| | - Shinji Saito
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| |
Collapse
|
3
|
Liu F, Wang Z, Wei Y, Liu R, Jiang C, Gong C, Liu Y, Yan B. The leading role of adsorbed lead in PM 2.5-induced hippocampal neuronal apoptosis and synaptic damage. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125867. [PMID: 34492814 DOI: 10.1016/j.jhazmat.2021.125867] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 06/13/2023]
Abstract
Neurodegenerative diseases may be caused by air pollution, such as PM2.5. However, particles still need to be elucidated the mechanism of synergistic neurotoxicity induced by pollutant-loading PM2.5. In this study, we used a reductionist approach to study leading role of lead (Pb) in PM2.5-induced hippocampal neuronal apoptosis and synaptic damage both in vivo and in vitro. Pb in PM2.5 caused neurotoxicity: 1) by increasing ROS levels and thus causing apoptosis in neuronal cells and 2) by decreasing the expression of PSD95 via interfering with the calcium signaling pathway through cAMP/CREB/pCREB/BDNF/PSD95 pathway and reducing the synapse length by 50%. This study clarifies a key factor in PM2.5-induced neurotoxicity and provides the experimental basis for reducing PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Fang Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengjin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongyi Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Rongrong Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen Gong
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Michikawa T, Ueda K, Takami A, Sugata S, Yoshino A, Nitta H, Yamazaki S. Japanese Nationwide Study on the Association Between Short-term Exposure to Particulate Matter and Mortality. J Epidemiol 2018; 29:471-477. [PMID: 30369511 PMCID: PMC6859079 DOI: 10.2188/jea.je20180122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background From around 2012, the use of automated equipment for fine particulate matter (PM2.5) measurement with equivalence to a reference method has become popular nationwide in Japan. This enabled us to perform a national health effect assessment employing PM2.5 concentrations based on the standardized measurement method. We evaluated the association between non-accidental mortality and short-term exposure to PM2.5 and coarse particulate matter (PM), with the latter estimated as the difference between suspended particulate matter and PM2.5, for the fiscal years 2012–2014. Methods This was a time-stratified case-crossover study in 100 highly-populated Japanese cities. Mortality data was obtained from the Ministry of Health, Labour and Welfare. City-specific estimates of PM-mortality association were calculated by applying a conditional logistic regression analysis, and combined with a random-effects meta-analysis. Results The respective averages of daily mean concentration were 14.6 µg/m3 for PM2.5 and 6.4 µg/m3 for coarse PM. A 10 µg/m3 increase in PM2.5 concentrations for the average of the day of death and the previous day was associated with an increase of 1.3% (95% confidence interval (CI), 0.9–1.6%) in total non-accidental mortality. For cause-specific mortality, PM2.5 was positively associated with cardiovascular and respiratory mortality. After adjustment for PM2.5, we observed a 1.4% (95% CI, 0.2–2.6%) increase in total mortality with a 10 µg/m3 increase in coarse PM. Conclusion The study revealed that short-term exposure to PM2.5 had adverse effects on total non-accidental, cardiovascular, and respiratory mortality in Japan. Coarse PM exposure also increased the risk of total mortality.
Collapse
Affiliation(s)
- Takehiro Michikawa
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies.,Department of Environmental and Occupational Health, School of Medicine, Toho University
| | - Kayo Ueda
- Environmental Health Sciences, Kyoto University Graduate School of Global Environmental Studies.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University
| | - Akinori Takami
- Centre for Regional Environmental Research, National Institute for Environmental Studies
| | - Seiji Sugata
- Centre for Regional Environmental Research, National Institute for Environmental Studies
| | - Ayako Yoshino
- Centre for Regional Environmental Research, National Institute for Environmental Studies
| | - Hiroshi Nitta
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies
| | - Shin Yamazaki
- Centre for Health and Environmental Risk Research, National Institute for Environmental Studies
| |
Collapse
|
5
|
Morino Y, Chatani S, Tanabe K, Fujitani Y, Morikawa T, Takahashi K, Sato K, Sugata S. Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8456-8466. [PMID: 29973047 DOI: 10.1021/acs.est.8b01285] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Because emission rates of particulate matter (PM) from stationary combustion sources have been measured without dilution or cooling in Japan, condensable PM has not been included in Japanese emission inventories. In this study, we modified an emission inventory to include condensable PM from stationary combustion sources based on the recent emission surveys using a dilution method. As a result, emission rates of organic aerosol (OA) increased by a factor of 7 over Japan. Stationary combustion sources in the industrial and energy sectors became the largest contributors to OA emissions over Japan in the revised estimates (filterable-plus-condensable PM), while road transport and biomass burning were the dominant OA sources in the previous estimate (filterable PM). These results indicate that condensable PM from large combustion sources makes critical contributions to total PM2.5 emissions. Simulated contributions of condensable PM from combustion sources to atmospheric OA drastically increased around urban and industrial areas, including the Kanto region, where OA concentrations increased by factors of 2.5-6.1. Consideration of condensable PM from stationary combustion sources improved model estimates of OA in winter but caused overestimation of OA concentrations in summer. Contributions of primary and secondary OA should be further evaluated by comparing with organic tracer measurements.
Collapse
Affiliation(s)
- Yu Morino
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| | - Satoru Chatani
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| | - Kiyoshi Tanabe
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| | - Yuji Fujitani
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| | - Tazuko Morikawa
- Japan Automobile Research Institute , 2530 Karima , Tsukuba , Ibaraki 305-0822 , Japan
| | - Katsuyuki Takahashi
- Japan Environmental Sanitation Center , 10-6 Yotsuyakami-Cho , Kawasaki , Kanagawa 210-0828 , Japan
| | - Kei Sato
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| | - Seiji Sugata
- National Institute for Environmental Studies , 16-2, Onogawa , Tsukuba , Ibaraki 305-8506 , Japan
| |
Collapse
|