1
|
Zhang J, Yuan S, Zhu X, Zhang N, Wang Z. Hypercrosslinked Hydrogel Composite Membranes Targeted for Removal of Volatile Organic Compounds via Selective Solution-Diffusion in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6039-6048. [PMID: 38507701 DOI: 10.1021/acs.est.3c09320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shideng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Xiaohui Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
2
|
Wang C, Wang L, Yu H, Seo A, Wang Z, Rajabzadeh S, Ni BJ, Shon HK. Machine learning for layer-by-layer nanofiltration membrane performance prediction and polymer candidate exploration. CHEMOSPHERE 2024; 350:140999. [PMID: 38151066 DOI: 10.1016/j.chemosphere.2023.140999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
In this study, machine learning-based models were established for layer-by-layer (LBL) nanofiltration (NF) membrane performance prediction and polymer candidate exploration. Four different models, i.e., linear, random forest (RF), boosted tree (BT), and eXtreme Gradient Boosting (XGBoost), were formed, and membrane performance prediction was determined in terms of membrane permeability and selectivity. The XGBoost exhibited optimal prediction accuracy for membrane permeability (coefficient of determination (R2): 0.99) and membrane selectivity (R2: 0.80). The Shapley Additive exPlanation (SHAP) method was utilized to evaluate the effects of different LBL NF membrane fabrication conditions on membrane performances. The SHAP method was also used to identify the relationships between polymer structure and membrane performance. Polymers were represented by Morgan fingerprint, which is an effective description approach for developing modeling. Based on the SHAP value results, two reference Morgan fingerprints were constructed containing atomic groups with positive contributions to membrane permeability and selectivity. According to the reference Morgan fingerprint, 204 potential polymers were explored from the largest polymer database (PoLyInfo). By calculating the similarities between each potential polymer and both reference Morgan fingerprints, 23 polymer candidates were selected and could be further used for LBL NF membrane fabrication with the potential for providing good membrane performance. Overall, this work provided new ways both for LBL NF membrane performance prediction and high-performance polymer candidate exploration. The source code for the models and algorithms used in this study is publicly available to facilitate replication and further research. https://github.com/wangliwfsd/LLNMPP/.
Collapse
Affiliation(s)
- Chen Wang
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Li Wang
- CSIRO Space and Astronomy, PO Box 1130, Bentley, WA, 6102, Australia
| | - Hanwei Yu
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Allan Seo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Saeid Rajabzadeh
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ho Kyong Shon
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales, 2007, Australia.
| |
Collapse
|
3
|
Almarzooqi N, Hong S, Verma P, Shaheen A, Schiffer A, AlMarzooqi F. Photothermal Surface Heating Membrane Distillation Using 3D-Printed Ti 3C 2T x MXene-Based Nanocomposite Spacers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20998-21007. [PMID: 37096876 DOI: 10.1021/acsami.3c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To address the growing global need for freshwater, it has become essential to use nonpotable saline water. Solar membrane distillation is a potential desalination method that does not need conventional electricity and may cut water production costs. In this study, we develop a photothermal surface heating membrane distillation using a new class of photothermal spacers constructed with Ti3C2Tx MXene-based nanocomposites. In contrast to traditional membrane distillation, which utilizes energy-intensive bulk feed heating, solar-powered surface heating membrane distillation removes the external thermal energy input requirements, hence reducing operating costs significantly. In particular, three-dimensional (3D)-printing technology was used to fabricate the functional spacer, which allowed the design and materials to be fine-tuned per the needs of the process. Under solar illumination, the printed spacer can exhibit a localized photothermal conversion-driven heating effect near the surface of distillation membranes, which generates vapor pressure strong enough to operate distillation across membranes. Importantly, a two-dimensional Ti3C2Tx MXene with outstanding photothermal conversion efficiency and stability in hypersaline ionic solutions was incorporated into the 3D-printed spacers as the crucial nanofiller for imparting a local heating effect of feed. The fabricated nanocomposite spacers showed superior photothermal heating response under sunlight with an average permeate flux and energy conversion efficiency of 0.49 kg·m-2·h-1 and 30.6%, respectively. An enhancement in both photothermal efficiency and permeate flux was noticed as the amount of MXene nanosheets increased in the 3D-printed spacers. This study demonstrates the feasibility of using 3D-printed photothermal spacers for high-performance and sustainable surface heating membrane distillation, providing a promising avenue for further improvement with other photothermal nanofillers or spacer modifications.
Collapse
Affiliation(s)
- Noora Almarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Seunghyun Hong
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Pawan Verma
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Alaa Shaheen
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Andreas Schiffer
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Faisal AlMarzooqi
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
4
|
Prasanna NS, Choudhary N, Singh N, Raghavarao KSMS. Omniphobic membranes in membrane distillation for desalination applications: A mini-review. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
5
|
Afsari M, Li Q, Karbassiyazdi E, Shon HK, Razmjou A, Tijing LD. Electrospun nanofiber composite membranes for geothermal brine treatment with lithium enrichment via membrane distillation. CHEMOSPHERE 2023; 318:137902. [PMID: 36669538 DOI: 10.1016/j.chemosphere.2023.137902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
In this study, a composite electrospun nanofiber membrane was fabricated and used to treat a geothermal brine source with lithium enrichment. An in-situ growth technique was applied to incorporate silica nanoparticles on the surface of nanofibers with (3-Aminopropyl) triethoxysilane as the nucleation site. The fabricated composite nanofiber membrane was heat pressed to enhance the integration of the membrane and its mechanical stability. The fabricated membranes were tested to evaluate their performance in feedwater containing different concentrations of NaCl in the range of 0-100 g/L, and the wetting resistivity of the membranes was examined. Finally, the optimal membrane was applied to treat the simulated geothermal brine. The experimental results revealed that the in-situ growth of nanoparticles and coating of flourosilane agent dramatically improved the separation performance of the membrane with high salt rejection, and adequate flux was achieved. The heat-pressed membrane obtained >99% salt rejection and flux of 14-19 L/m2h at varying feedwater salinity (0-100 g/L), and the concentration of the Li during the 24 h test reached >1100 ppm from the initial 360 ppm. Evaluation of the energy efficiency of the membranes showed that the heat-pressed membrane obtained the optimum energy efficiency in the high concentration of salts. Additionally, the economic analysis indicated that MD could achieve a levelized cost of 2.9 USD/m3 of lithium brine concentration as the heat source is within the feed. Overall, this technology would represent a viable alternative to the solar pond to concentrate Li brine, enabling a compact, efficient, and continuous operating system.
Collapse
Affiliation(s)
- Morteza Afsari
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales, 2052, Australia
| | - Elika Karbassiyazdi
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA, 6027, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Leonard D Tijing
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, P. O. Box 123, 15 Broadway, NSW, 2007, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia.
| |
Collapse
|
6
|
Liu D, Liu P, Liu D, Zhao J, Zhang T, Zhong L, Sun F, Liu J, Wang W. Binder-free in-situ reinforced nanofibrous membrane with anti-deformable pore structures for seawater concentration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
7
|
Wang C, Park MJ, Yu H, Matsuyama H, Drioli E, Shon HK. Recent advances of nanocomposite membranes using layer-by-layer assembly. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Tan G, Xu D, Zhu Z, Zhang X, Li J. Tailoring pore size and interface of superhydrophobic nanofibrous membrane for robust scaling resistance and flux enhancement in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Feng D, Li X, Wang Z. Comparison of omniphobic membranes and Janus membranes with a dense hydrophilic surface layer for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Nain A, Sangili A, Hu SR, Chen CH, Chen YL, Chang HT. Recent progress in nanomaterial-functionalized membranes for removal of pollutants. iScience 2022; 25:104616. [PMID: 35789839 PMCID: PMC9250028 DOI: 10.1016/j.isci.2022.104616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Membrane technology has gained tremendous attention for removing pollutants from wastewater, mainly due to their affordable capital cost, miniature equipment size, low energy consumption, and high efficiency even for the pollutants present in lower concentrations. In this paper, we review the literature to summarize the progress of nanomaterial-modified membranes for wastewater treatment applications. Introduction of nanomaterial in the polymeric matrix influences membrane properties such as surface roughness, hydrophobicity, porosity, and fouling resistance. This review also covers the importance of functionalization strategies to prepare thin-film nanocomposite hybrid membranes and their effect on eliminating pollutants. Systematic discussion regarding the impact of the nanomaterials incorporated within membrane, toward the recovery of various pollutants such as metal ions, organic compounds, dyes, and microbes. Successful examples are provided to show the potential of nanomaterial-functionalized membranes for regeneration of wastewater. In the end, future prospects are discussed to develop nanomaterial-based membrane technology.
Collapse
Affiliation(s)
- Amit Nain
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Arumugam Sangili
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shun-Ruei Hu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yen-Ling Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621301, Taiwan
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Zhong L, Zhang X, Ma J, Liu D, Liu D, Wang Y, Cui F, Wang W. Synergy of feed-side aeration and super slippery interface in membrane distillation for enhanced water flux and scaling mitigation. WATER RESEARCH 2022; 215:118246. [PMID: 35259560 DOI: 10.1016/j.watres.2022.118246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Membrane distillation (MD) is an acknowledged promising technology for desalinating hypersaline brine, and as such can be a suitable candidate to further concentrate the seawater discharged from reverse osmosis process. Mineral scaling represents a major constraint against the application of MD for further desalination of concentrated seawater, especially when considering CaSO4 (gypsum) and NaCl. Up until now, it has been difficult to rely solely on membrane modification to mitigate CaSO4 scaling. Permeate-side aeration can lessen CaSO4 scaling, but does not permit to increase the water flux. Herein, we proposed the synergy of feed-side aeration and super slippery interface to perform concentrated seawater desalination via direct contact membrane distillation. The results of this study show that this synergistic effect could significantly increase the water flux, which was approximately 1.5 times higher in comparison to the membrane without aeration. Moreover, the synergistic effect effectively alleviates the complex scaling of concentrated seawater, achieving 90 wt% water recovery rate. Based on the observed results, we elucidated the mechanisms governing the enhanced water flux and scaling mitigation driven by the synergistic effect. In addition, we studied the optimal working condition for this system, unveiling that low-intensity large bubbles are more suitable as they lead to a better equilibrium between the economics and functionality of the process.
Collapse
Affiliation(s)
- Lingling Zhong
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoxin Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu Wang
- School of Materials Science and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400045, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Du X, Alipanahrostami M, Wang W, Tong T. Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23808-23816. [PMID: 35536240 DOI: 10.1021/acsami.2c01499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Omniphobic membranes possessing high wetting resistance have been created for the treatment of challenging hypersaline feedwaters with low surface tension through membrane distillation (MD). However, virtually all such membranes are fabricated with long-chain per- and polyfluoroalkyl substances (PFASs, ≥8 fluorinated carbons). The environmental risks and high bioaccumulation potential of long-chain PFASs have raised increasing concerns. Developing highly wetting-resistant MD membranes while avoiding the use of long-chain PFASs is essential to improve the viability of MD for resilient and sustainable water purification. We demonstrate that MD membranes with exceptional wetting resistance can be designed through the combination of hierarchically structured membranes consisting of re-entrant texture at different length scales and (ultra)short-chain fluorocarbons, which have lower acute toxicity and bioaccumulation potentials than long-chain PFASs. Our hierarchically structured membrane with three-tier micro/nanostructure fabricated with short-chain fluorocarbon possesses superior wetting resistance, which is comparable to or higher than the long-chain PFASs-based omniphobic membranes reported in the literature. Furthermore, the hierarchically structured membranes fabricated with ultrashort-chain fluorocarbons display improved wetting resistance against feedwaters with low surface tension. Our findings indicate that long-chain PFASs are not required when designing wetting-resistant membranes and that the balance between sustainability and wetting resistance should be tailored to the wetting potential of the feedwater.
Collapse
Affiliation(s)
- Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mohammad Alipanahrostami
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Wei Wang
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
14
|
|
15
|
Li H, Feng H, Li M, Zhang X. Engineering a covalently constructed superomniphobic membrane for robust membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Xing X, Zhao Y, Xu C, He Y, Yang C, Xiao K, Zheng J, Deng B. Omniphobic Polyvinylidene Fluoride Membrane Decorated with a ZnO Nano Sea Urchin Structure: Performance Against Surfactant-Wetting in Membrane Distillation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xing Xing
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Yurong Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Yali He
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Chen Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Jianzhong Zheng
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Baolin Deng
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
17
|
Kharraz JA, Farid MU, Jassby D, An AK. A systematic study on the impact of feed composition and substrate wettability on wetting and fouling of omniphobic and janus membranes in membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Hong SK, Kim H, Lee H, Lim G, Cho SJ. A pore-size tunable superhydrophobic membrane for high-flux membrane distillation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119862] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Zhao T, Yang R, Yang Z. Swelling Effects on the Conductivity of Graphene/PSS/PAH Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3280. [PMID: 34947629 PMCID: PMC8708682 DOI: 10.3390/nano11123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/17/2022]
Abstract
Graphene/poly-(sodium-4-styrene sulfonate)(PSS)/poly-(allylamine hydrochloride) (PAH) composite is a frequently adopted system for fabricating polyelectrolyte multilayer films. Swelling is the bottleneck limiting its applications, and its effects on the conductivity is still controversial. Herein, we report successful swelling of a graphene/PSS/PAH composite in a vapor atmosphere, and the relation with the mass fraction of water is uncovered. The composite was prepared via a layer-by-layer assembly technique and systematically characterized. The results indicated that the average thickness for each bilayer was about 0.95 nm. The hardness and modulus were 2.5 ± 0.2 and 68 ± 5 GPa, respectively, and both were independent of thickness. The sheet resistance decreased slightly with the prolongation of immersion time, but was distinct from that of the water mass fraction. It reduced from 2.44 × 105 to 2.34 × 105 ohm/sq, and the change accelerated as the water mass fraction rose, especially when it was larger than 5%. This could be attributing to the lubrication effect of the water molecules, which sped up the migration of charged groups in the polyelectrolytes. Moreover, molecular dynamics simulations confirmed that a microphase separation occurred when the fraction reached an extreme value owing to the dominated interaction between PSS and PAH. These results provide support for the structural stability of this composite material and its applications in devices.
Collapse
Affiliation(s)
- Tianbao Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
- National Research Center of Pumps, Jiangsu University, ZhenJiang 212013, China
| | - Ruyi Yang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
| | - Zhi Yang
- School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; (T.Z.); (R.Y.)
| |
Collapse
|
20
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
23
|
Liao X, Wang Y, Liao Y, You X, Yao L, Razaqpur AG. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Chen Y, Lu KJ, Gai W, Chung TS. Nanofiltration-Inspired Janus Membranes with Simultaneous Wetting and Fouling Resistance for Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7654-7664. [PMID: 34014649 DOI: 10.1021/acs.est.1c01269] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Membranes with robust antiwetting and antifouling properties are highly desirable for membrane distillation (MD) of wastewater. Herein, we have proposed and demonstrated a highly effective method to mitigate wetting and fouling by designing nanofiltration (NF)-inspired Janus membranes for MD applications. The NF-inspired Janus membrane (referred to as PVDF-P-CQD) consists of a hydrophobic polyvinylidene fluoride (PVDF) membrane and a thin polydopamine/polyethylenimine (PDA/PEI) layer grafted by sodium-functionalized carbon quantum dots (Na+-CQDs) to improve its hydrophilicity. The vapor flux data have confirmed that the hydrophilic layer does not add extra resistance to water vapor transport. The PVDF-P-CQD membrane exhibits excellent resistance toward both surfactant-induced wetting and oil-induced fouling in direct contact MD (DCMD) experiments. The impressive performance arises from the fact that the nanoscale pore sizes of the PDA/PEI layer would reject surfactant molecules by size exclusion and lower the propensity of surfactant-induced wetting, while the high surface hydrophilicity resulted from Na+-CQDs would induce a robust hydration layer to prevent oil from attachment. Therefore, this study may provide useful insights and strategies to design novel membranes for next-generation MD desalination with minimal wetting and fouling propensity.
Collapse
Affiliation(s)
- Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Kang-Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Wenxiao Gai
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tai-Shung Chung
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 119077, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
25
|
Woo YC, Yao M, Shim WG, Kim Y, Tijing LD, Jung B, Kim SH, Shon HK. Co-axially electrospun superhydrophobic nanofiber membranes with 3D-hierarchically structured surface for desalination by long-term membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
27
|
Lu C, Su C, Cao H, Horseman T, Duan F, Li Y. Nanoparticle-free and self-healing amphiphobic membrane for anti-surfactant-wetting membrane distillation. J Environ Sci (China) 2021; 100:298-305. [PMID: 33279043 DOI: 10.1016/j.jes.2020.04.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 06/12/2023]
Abstract
In membrane distillation (MD), complicated feed water with amphiphilic contaminants induces fouling/wetting of the MD membrane and can even lead to process failure. This study reports a facile approach to fabricate robust and self-healing hybrid amphiphobic membranes for anti-surfactant-wetting MD based on the ultra-low surface energy of fluorinated polyhedral oligomeric silsesquioxanes (F-POSS) and its thermal induced motivation and rotation. The thermal treatment makes the membranes achieving amphiphobicity at a very low cost of F-POSS (13.04 wt.%), which is about 1/3 of without thermal treatment. The prepared membrane exhibits excellent amphiphobicity, i.e. ethanol contact angle of 120.3°, without using environmentally toxic fluorinated nanoparticles. Robust MD performance was observed for the amphiphobic membrane in concentrated sodium dodecyl sulfate (SDS) feed solutions. Furthermore, the fabricated membrane exhibited stable amphiphobicity even in extreme environments, including strong acid or alkaline solutions. In the event of a damaged or abraded membrane surface where the F-POSS can be removed, the amphiphobic membrane exhibits self-healing ability with additional thermal treatment. This simple approach without the use of nanoparticles provides an environmentally friendly way for fabrication of amphiphobic membranes for anti-surfactant-wetting membrane distillation.
Collapse
Affiliation(s)
- Chun Lu
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chunlei Su
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbin Cao
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China.
| | - Thomas Horseman
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1831, USA
| | - Feng Duan
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Li
- Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
28
|
Hierarchical Janus membrane with superior fouling and wetting resistance for efficient water recovery from challenging wastewater via membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Long Q, Chen J, Wang Z, Zhang Z, Qi G, Liu ZQ. Vein-supported porous membranes with enhanced superhydrophilicity and mechanical strength for oil-water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117517] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
31
|
Li C, Li X, Du X, Zhang Y, Wang W, Tong T, Kota AK, Lee J. Elucidating the Trade-off between Membrane Wetting Resistance and Water Vapor Flux in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10333-10341. [PMID: 32702974 DOI: 10.1021/acs.est.0c02547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane distillation (MD) has been receiving considerable attention as a promising technology for desalinating industrial wastewaters. While hydrophobic membranes are essential for the process, increasing membrane surface hydrophobicity generally leads to the reduction of water vapor flux. In this study, we investigate the mechanisms responsible for this trade-off relation in MD. We prepared hydrophobic membranes with different degrees of wetting resistance through coating quartz fiber membranes with a series of alkylsilane molecules while preserving the fiber structures. A trade-off between wetting resistance and water vapor flux was observed in direct-contact MD experiments, with the least-wetting-resistant membrane exhibiting twice as high vapor flux as the most wetting-resistant membrane. Electrochemical impedance analysis, combined with fluorescence microscopy, elucidated that a lower wetting resistance (still water-repelling) allows deeper penetration of the liquid-air interfaces into the membrane, resulting in an increased interfacial area and therefore a larger evaporative vapor flux. Finally, we performed osmotic distillation experiments employing anodized alumina membranes that possess straight nanopores with different degrees of wetting resistance, observed no trade-off, and substantiated this proposed mechanism. Our study provides a guideline to tailor the membrane surface wettability to ensure stable MD operations while maximizing the water recovery rate.
Collapse
Affiliation(s)
- Chenxi Li
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuewei Du
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80526, United States
| | - Ying Zhang
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wei Wang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80526, United States
| | - Arun Kumar Kota
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
32
|
Qing W, Wu Y, Li X, Shi X, Shao S, Mei Y, Zhang W, Tang CY. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118226] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Kharraz JA, Farid MU, Khanzada NK, Deka BJ, Arafat HA, An AK. Macro-corrugated and nano-patterned hierarchically structured superomniphobic membrane for treatment of low surface tension oily wastewater by membrane distillation. WATER RESEARCH 2020; 174:115600. [PMID: 32088385 DOI: 10.1016/j.watres.2020.115600] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
A hierarchically assembled superomniphobic membrane with three levels of reentrant structure was designed and fabricated to enable effective treatment of low surface tension, hypersaline oily wastewaters using direct contact membrane distillation (DCMD). The overall structure is a combination of macro corrugations obtained by surface imprinting, with the micro spherulites morphology achieved through the applied phase inversion method and nano patterns obtained by fluorinated Silica nanoparticles (SiNPs) coating. This resulted in a superomniphobic membrane surface with remarkable anti-wetting properties repelling both high surface tension water and low surface tension oils. Measurements of contact angle (CA) with DI water, an anionic surfactant, oil, and ethanol demonstrated a robust wetting resistance against low surface tension liquids showing both superhydrophobicity and superoleophobicity. CA values of 160.8 ± 2.3° and 154.3 ± 1.9° for water and oil were obtained, respectively. Calculations revealed a high liquid-vapor interface for the fabricated membrane with more than 89% of the water droplet contact area being with air pockets entrapped between adjacent SiNPs and only 11% come into contact with the solid membrane surface. Moreover, the high liquid-vapor interface imparts the membrane with high liquid repellency, self-cleaning and slippery effects, characterized by a minimum droplet-membrane interaction and complete water droplet bouncing on the surface within only 18 ms. When tested in DCMD with synthetic hypersaline oily wastewaters, the fabricated superomniphobic membrane demonstrated stable, non-wetting MD operation over 24 h, even at high concentrations of low surface tension 1.0 mM Sodium dodecyl sulfate and 400 ppm oil, potentially offering a sustainable option for treatment of low surface tension oily industrial wastewater.
Collapse
Affiliation(s)
- Jehad A Kharraz
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Muhammad Usman Farid
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Noman Khalid Khanzada
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Bhaskar Jyoti Deka
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Alicia Kyoungjin An
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
34
|
Li M, Lu KJ, Wang L, Zhang X, Chung TS. Janus membranes with asymmetric wettability via a layer-by-layer coating strategy for robust membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118031] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Hou D, Christie KS, Wang K, Tang M, Wang D, Wang J. Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117708] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Development of robust and superhydrophobic membranes to mitigate membrane scaling and fouling in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117962] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Li X, Qing W, Wu Y, Shao S, Peng LE, Yang Y, Wang P, Liu F, Tang CY. Omniphobic Nanofibrous Membrane with Pine-Needle-Like Hierarchical Nanostructures: Toward Enhanced Performance for Membrane Distillation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47963-47971. [PMID: 31790582 DOI: 10.1021/acsami.9b17494] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Wetting and fouling phenomena are the main concerns for membrane distillation (MD) in treating high-salinity industrial wastewater. This work developed an omniphobic membrane by growing titanium dioxide (TiO2) nanorods on polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofibers using a hydrothermal technique. The TiO2 nanorods form a uniform pine-needle-like hierarchical nanostructure on PVDF-HFP fibers. A further fluorination treatment provides the membrane with a low-surface-energy omniphobic surface, displaying contact angles of 168° and 153° for water and mineral oil, respectively. Direct contact MD experiments demonstrated that the resulting membrane shows a high and stable salt rejection of >99.9%, while the pristine PVDF-HFP nanofibrous membrane suffers a rejection decline caused by intense pore wetting and oil fouling in the desalination process in the presence of surfactant and mineral oil. The superior antiwetting and antifouling behaviors were ascribed to a nonwetting Cassie-Baxter state established by the accumulation of a great deal of air in the hydrophobized hierarchical re-entrant structures. The development of omniphobic membranes with pine-needle-like hierarchical nanostructures provides an approach to mitigate membrane wetting and fouling in the MD process for the water reclamation from industrial wastewater.
Collapse
Affiliation(s)
- Xianhui Li
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Weihua Qing
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Yifan Wu
- Department of Chemistry , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Senlin Shao
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
- School of Civil Engineering , Wuhan University , Wuhan 430072 , P. R. China
| | - Lu Elfa Peng
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| | - Yang Yang
- Department of Chemical Engineering , Imperial College London , London SW7 2AZ , U.K
| | - Peng Wang
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom , Kowloon , Hong Kong 999077 , P. R. China
| | - Fu Liu
- Key Laboratory of Marine Materials and Related Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering , The University of Hong Kong , Pokfulam , Hong Kong 999077 , P. R. China
| |
Collapse
|
39
|
Recent advances in membrane development for treating surfactant- and oil-containing feed streams via membrane distillation. Adv Colloid Interface Sci 2019; 273:102022. [PMID: 31494337 DOI: 10.1016/j.cis.2019.102022] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/18/2019] [Accepted: 08/27/2019] [Indexed: 11/22/2022]
Abstract
Membrane distillation (MD) has been touted as a promising technology for niche applications such as desalination of surfactant- and oil-containing feed streams. Hitherto, the deployment of conventional hydrophobic MD membranes for such applications is limited and unsatisfactory. This is because the presence of surfactants and oils in aqueous feed streams reduces the surface-tension of these media significantly and the attachment of these contaminants onto hydrophobic membrane surfaces often leads to membrane fouling and pore wetting, which compromises on the quantity and quality of water recovered. Endowing MD membranes with surfaces of special wettabilities has been proposed as a strategy to combat membrane fouling and pore wetting. This involves the design of local kinetic energy barriers such as multilevel re-entrant surface structures, surfaces with ultralow surface-energies, and interfacial hydration layers to impede transition to the fully-wetted Wenzel state. This review critiques the state-of-the-art fabrication and surface-modification methods as well as practices used in the development of omniphobic and Janus MD membranes with specific emphasis on the advances, challenges, and future improvements for application in challenging surfactant- and oil-containing feed streams.
Collapse
|
40
|
Lu KJ, Chen Y, Chung TS. Design of omniphobic interfaces for membrane distillation - A review. WATER RESEARCH 2019; 162:64-77. [PMID: 31255782 DOI: 10.1016/j.watres.2019.06.056] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Membrane distillation (MD) has a great potential in treating high salinity industrial wastewater due to its unique characteristics. Nevertheless, the implementation of MD for industrial wastewater reclamation must be conducted with precaution because low-surface-tension contaminates in feed solutions may easily wet the membranes. In recent years, omniphobic membranes that exhibit strong repellence towards liquids with a wide range of surface tensions have been proposed as a promising solution to deal with the wetting problem. In this paper, we aim to provide a comprehensive review of omniphobic interfaces and illustrate their fundamental working principles, innovative design approaches and novel applications on membrane distillation. The review may provide insights in designing stable solid-liquid-vapor interfaces and serve as a guidance for the development of robust anti-wetting membranes for industrial wastewater reclamation via membrane distillation.
Collapse
Affiliation(s)
- Kang Jia Lu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yuanmiaoliang Chen
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Tai-Shung Chung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore; NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
41
|
Siyal MI, Lee CK, Park C, Khan AA, Kim JO. A review of membrane development in membrane distillation for emulsified industrial or shale gas wastewater treatments with feed containing hybrid impurities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 243:45-66. [PMID: 31078929 DOI: 10.1016/j.jenvman.2019.04.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.
Collapse
Affiliation(s)
- Muhammad Irfan Siyal
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea; Department of Materials and Testing, National Textile University, Faisalabad, Pakistan
| | - Chang-Kyu Lee
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Chansoo Park
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Aftab Ahmed Khan
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
42
|
Trade-off in membrane distillation with monolithic omniphobic membranes. Nat Commun 2019; 10:3220. [PMID: 31324790 PMCID: PMC6642111 DOI: 10.1038/s41467-019-11209-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/23/2019] [Indexed: 01/27/2023] Open
Abstract
Omniphobic membranes are attractive for membrane distillation (MD) because of their superior wetting resistance. However, a design framework for MD membrane remains incomplete, due to the complexity of omniphobic membrane fabrication and the lack of fundamental relationship between wetting resistance and water vapor permeability. Here we present a particle-free approach that enables rapid fabrication of monolithic omniphobic membranes for MD desalination. Our monolithic omniphobic membranes display excellent wetting resistance and water purification performance in MD desalination of hypersaline feedwater containing surfactants. We identify that a trade-off exists between wetting resistance and water vapor permeability of our monolithic MD membranes. Utilizing membranes with tunable wetting resistance and permeability, we elucidate the underlying mechanism of such trade-off. We envision that our fabrication method as well as the mechanistic insight into the wetting resistance-vapor permeability trade-off will pave the way for smart design of MD membranes in diverse water purification applications.
Collapse
|
43
|
Choudhury MR, Anwar N, Jassby D, Rahaman MS. Fouling and wetting in the membrane distillation driven wastewater reclamation process - A review. Adv Colloid Interface Sci 2019; 269:370-399. [PMID: 31129338 DOI: 10.1016/j.cis.2019.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/22/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
Fouling and wetting of membranes are significant concerns that can impede the widespread application of the membrane distillation (MD) process during high-salinity wastewater reclamation. Fouling, caused by the accumulation of undesirable materials on the membrane surface and pores, causes a decrease in permeate flux. Membrane wetting, the direct permeation of the feed solution through the membrane pores, results in reduced contaminant rejection and overall process failure. Lately, the application of MD for water recovery from various types of wastewaters has gained increased attention among researchers. In this review, we discuss fouling and wetting phenomena observed during the MD process, along with the effects of various mitigation strategies. In addition, we examine the interactions between contaminants and different types of MD membranes and the influence of different operating conditions on the occurrence of fouling and wetting. We also report on previously investigated feed pre-treatment options before MD, application of integrated MD processes, the performance of fabricated/modified MD membranes, and strategies for MD membrane maintenance during water reclamation. Energy consumption and economic aspects of MD for wastewater recovery is also discussed. Throughout the review, we engage in dialogues highlighting research needs for furthering the development of MD: the incorporation of MD in the overall wastewater treatment and recovery scheme (including selection of appropriate membrane material, suitable pre-treatment or integrated processes, and membrane maintenance strategies) and the application of MD in long-term pilot-scale studies using real wastewater.
Collapse
|
44
|
Chung TS, Zhao D, Gao J, Lu K, Wan C, Weber M, Maletzko C. Emerging R&D on membranes and systems for water reuse and desalination. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Jia TZ, Lu JP, Cheng XY, Xia QC, Cao XL, Wang Y, Xing W, Sun SP. Surface enriched sulfonated polyarylene ether benzonitrile (SPEB) that enhances heavy metal removal from polyacrylonitrile (PAN) thin-film composite nanofiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
46
|
Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: Electrostatic adsorption vs. chemical bonding. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.079] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
Mi HY, Jing X, Liu Y, Li L, Li H, Peng XF, Zhou H. Highly Durable Superhydrophobic Polymer Foams Fabricated by Extrusion and Supercritical CO 2 Foaming for Selective Oil Absorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7479-7487. [PMID: 30672685 DOI: 10.1021/acsami.8b21858] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The severe water contamination caused by oil leakage is calling for low-cost and high-performance absorbent materials for selective oil removal. In this study, a scalable green method was proposed to produce polypropylene (PP)/poly(tetrafluoroethylene) (PTFE) composite foams via conventional processing techniques including twin-screw extrusion and supercritical carbon dioxide foaming. To produce the superhydrophobic foam, micro- and nanosized PTFE particles were melt blended with PP and subsequently foamed. Ascribed to the nanofibrillation of microsized PTFE during processing, the fabricated foam exhibited a special highly porous structure with PTFE nanofibrils and nanoparticles uniformly distributed on the pore surfaces within the PP matrix, which resulted in a remarkably high water contact angle of 156.8° and a low contact angle hysteresis of 1.9°. Unlike traditional surface-modified superhydrophobic absorbers, the foams prepared are entirely superhydrophobic, which means that they remain superhydrophobic when being fractured or cut. Moreover, they are highly durable and maintained the superhydrophobicity when subjected to ultrasonication and mechanical sanding. When used in selective oil absorption, the durable foams exhibited excellent absorption efficiency and high stability in repetitive and long-term use. These advantages make the PP/PTFE foam a promising superabsorbent material for water remediation.
Collapse
Affiliation(s)
- Hao-Yang Mi
- School of Packaging and Materials Engineering , Hunan University of Technology , Zhuzhou 412007 , China
- Faculty of Construction and Environment , Hong Kong Polytechnic University , Kowloon 518000 , Hong Kong , China
| | - Xin Jing
- School of Packaging and Materials Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Yuejun Liu
- School of Packaging and Materials Engineering , Hunan University of Technology , Zhuzhou 412007 , China
| | - Lengwan Li
- Department of Industrial Equipment and Control Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Heng Li
- Faculty of Construction and Environment , Hong Kong Polytechnic University , Kowloon 518000 , Hong Kong , China
| | - Xiang-Fang Peng
- Department of Industrial Equipment and Control Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Huamin Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology , Huazhong University of Science and Technology , Wuhan 430000 , China
| |
Collapse
|
48
|
Zhu Z, Li Z, Zhong L, Zhang R, Cui F, Wang W. Dual-biomimetic superwetting silica nanofibrous membrane for oily water purification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
49
|
Membrane fouling and reusability in membrane distillation of shale oil and gas produced water: Effects of membrane surface wettability. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.09.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Du J, Lu Y, Zhang J, Wang J, Wang Y, Li M, Chen Q. Tuning Optical Limiting of Heterosized AuNPs and Fullerene by Countable Electrochemical Assembly. ACS OMEGA 2018; 3:12495-12500. [PMID: 31457981 PMCID: PMC6645007 DOI: 10.1021/acsomega.8b02022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 06/10/2023]
Abstract
Tuning optical limiting was achieved based on the nanostructural and synergistic effects of heterosized gold nanoparticles and fullerene on electrochemical assembly. In particular, with thicknesses of 200, 1, and 10 nm, heterosized AuNP multilayers with periodical pairs of layers present a superior threshold of 0.59 J cm-2 to monosized AuNP films with the values of 0.89-2.55 J cm-2, which was further significantly enhanced by the introduction of C70 with a significant threshold drop from 0.43 to 0.13 J cm-2, indicating that the reverse saturable absorption of C70 had a key contribution compared to the free carrier absorption of AuNPs. This paper not only demonstrates that the hybrid engineering of heterosized AuNPs into an identical film is an effective way to enhance the optical limiting but also indicates that the reverse saturable absorption of C70 is superior to free carrier absorption of AuNPs in optical limiting in AuNPs and C70 hybrid films.
Collapse
Affiliation(s)
- Jia Du
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University
of the Chinese Academy of Science, Beijing 100864, China
| | - Yiming Lu
- State
Key Laboratory on Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, China
| | - Jian Zhang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jinxin Wang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yanfang Wang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mao Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qidai Chen
- State
Key Laboratory on Integrated Optoelectronics, College of Electronic
Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|