1
|
Wang Y, Feng H, Wang R, Zhou L, Li N, He Y, Yang X, Lai J, Chen K, Zhu W. Non-targeted metabolomics and 16s rDNA reveal the impact of uranium stress on rhizosphere and non-rhizosphere soil of ryegrass. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 258:107090. [PMID: 36565664 DOI: 10.1016/j.jenvrad.2022.107090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
As a radioactive heavy metal element with a long half-life, uranium causes environmental pollution when it enters the surrounding soil. This study analyzed the changes about soil enzyme activity, non-targeted metabolomics, microbial community structure and function microbial community structure and function to assess the differences in the effects of uranium stress on rhizosphere and non-rhizosphere soil. Results showed that uranium stress significantly inhibited the activities of urease and sucrase in rhizosphere and non-rhizosphere, which had less effect on rhizosphere. Compare to the non-rhizosphere soil, the uranium stress induced the production of gibberellin A1, to promoted several metabolic pathways, such as nitrogen and PTS (Phosphotransferase system) metabolic in rhizosphere soil. The species and abundance of Aspergillus, Acidobacter, and Synechococcus in both rhizosphere and non-rhizosphere soil were decreased by uranium stress. However, the microorganisms in rhizosphere soil were less inhibited according to the soil metabolism and microbial network map analysis. Furthermore, the Chujaibacter in rhizosphere soil under uranium stress was found significantly positively correlated with lipid and organic oxygen compounds. Overall, the results indicated that ryegrass roots significantly alleviated the effects of uranium stress on soil microbial activity and population abundances, thus playing a protective role. The study also provided a theoretical basis for in-depth understanding of the biological effects, prevention and control mechanisms of uranium-contaminated soil.
Collapse
Affiliation(s)
- Yilin Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Huachuan Feng
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ruixiang Wang
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Li Zhou
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Li
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yizhou He
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xu Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jinlong Lai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, School of Life Science and Engineering, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
2
|
Ejaz F, Yousaf MTB, Nawaz MF, Niazi NK, Gul S, Ahmed I, Asif M, Bibi I. Phytoremedial Potential of Perennial Woody Vegetation Under Arsenic Contaminated Conditions in Diverse Environments. GLOBAL ARSENIC HAZARD 2023:355-373. [DOI: 10.1007/978-3-031-16360-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Wang Q, Yang G. Unraveling the photocatalytic mechanisms for U(VI) reduction by TiO2. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Ultrafast laser filament-induced fluorescence for detecting uranium stress in Chlamydomonas reinhardtii. Sci Rep 2022; 12:17205. [PMID: 36229516 PMCID: PMC9562223 DOI: 10.1038/s41598-022-21404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/27/2022] [Indexed: 01/06/2023] Open
Abstract
Plants and other photosynthetic organisms have been suggested as potential pervasive biosensors for nuclear nonproliferation monitoring. We demonstrate that ultrafast laser filament-induced fluorescence of chlorophyll in the green alga Chlamydomonas reinhardtii is a promising method for remote, in-field detection of stress from exposure to nuclear materials. This method holds an advantage over broad-area surveillance, such as solar-induced fluorescence monitoring, when targeting excitation of a specific plant would improve the detectability, for example when local biota density is low. After exposing C. reinhardtii to uranium, we find that the concentration of chlorophyll a, chlorophyll fluorescence lifetime, and carotenoid content increase. The increased fluorescence lifetime signifies a decrease in non-photochemical quenching. The simultaneous increase in carotenoid content implies oxidative stress, further confirmed by the production of radical oxygen species evidence in the steady-state absorption spectrum. This is potentially a unique signature of uranium, as previous work finds that heavy metal stress generally increases non-photochemical quenching. We identify the temporal profile of the chlorophyll fluorescence to be a distinguishing feature between uranium-exposed and unexposed algae. Discrimination of uranium-exposed samples is possible at a distance of [Formula: see text]35 m with a single laser shot and a modest collection system, as determined through a combination of experiment and simulation of distance-scaled uncertainty in discriminating the temporal profiles. Illustrating the potential for remote detection, detection over 125 m would require 100 laser shots, commensurate with the detection time on the order of 1 s.
Collapse
|
5
|
Wang Q, Li T, Zhu C, Huang X, Yang G. Molecular insights for uranium(VI) adsorption at nano-TiO2 surfaces and reduction by alcohols and biomass sugars. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Malakar A, Snow DD, Kaiser M, Shields J, Maharjan B, Walia H, Rudnick D, Ray C. Ferrihydrite enrichment in the rhizosphere of unsaturated soil improves nutrient retention while limiting arsenic and uranium plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150967. [PMID: 34656603 DOI: 10.1016/j.scitotenv.2021.150967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Improvement of nutrient use efficiency and limiting trace elements such as arsenic and uranium bioavailability is critical for sustainable agriculture and food safety. Arsenic and uranium possess different properties and mobility in soils, which complicates the effort to reduce their uptake by plants. Here, we postulate that unsaturated soil amended with ferrihydrite nanominerals leads to improved nutrient retention and helps reduce uptake of these geogenic contaminants. Unsaturated soil is primarily oxic and can provide a stable environment for ferrihydrite nanominerals. To demonstrate the utility of ferrihydrite soil amendment, maize was grown in an unsaturated agricultural soil that is known to contain geogenic arsenic and uranium. The soil was maintained at a gravimetric moisture content of 15.1 ± 2.5%, typical of periodically irrigated soils of the US Corn Belt. Synthetic 2-line ferrihydrite was used in low doses as a soil amendment at three levels (0.00% w/w (control), 0.05% w/w and 0.10% w/w). Further, the irrigation water was fortified (~50 μg L-1 each) with elevated arsenic and uranium levels. Plant dry biomass at maturity was ~13.5% higher than that grown in soil not receiving ferrihydrite, indicating positive impact of ferrihydrite on plant growth. Arsenic and uranium concentrations in maize crops (root, shoot and grain combined) were ~ 20% lower in amended soils than that in control soils. Our findings suggest that the addition of low doses of iron nanomineral soil amendment can positively influence rhizosphere geochemical processes, enhancing nutrient plant availability and reduce trace contaminants plant uptake in sprinkler irrigated agroecosystem, which is 55% of total irrigated area in the United States.
Collapse
Affiliation(s)
- Arindam Malakar
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, United States.
| | - Daniel D Snow
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0844, United States
| | - Michael Kaiser
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, United States
| | - Jordan Shields
- School of Natural Resources, Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute, Water Sciences Laboratory, University of Nebraska, Lincoln, NE 68583-0844, United States
| | - Bijesh Maharjan
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Panhandle Research and Extension Center, 4502 AVE I, Scottsbluff, NE 69361-4939, United States
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, United States
| | - Daran Rudnick
- Biological Systems Engineering Department, 247 L.W. Chase Hall, University of Nebraska-Lincoln, Lincoln, NE 68583-0726, United States
| | - Chittaranjan Ray
- Nebraska Water Center, part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, NE 68588-6204, United States.
| |
Collapse
|
7
|
Chen L, Liu J, Zhang W, Zhou J, Luo D, Li Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125319. [PMID: 33582470 DOI: 10.1016/j.jhazmat.2021.125319] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Uranium(U), a highly toxic radionuclide, is becoming a great threat to soil health development, as returning nuclear waste containing U into the soil systems is increased. Numerous studies have focused on: i) tracing the source in U contaminated soils; ii) exploring U geochemistry; and iii) assessing U phyto-uptake and its toxicity to plants. Yet, there are few literature reviews that systematically summarized the U in soil-plant system in past decade. Thus, we present its source, geochemical behavior, uptake, toxicity, detoxification, and bioremediation strategies based on available data, especially published from 2018 to 2021. In this review, we examine processes that can lead to the soil U contamination, indicating that mining activities are currently the main sources. We discuss the relationship between U bioavailability in the soil-plant system and soil conditions including redox potential, soil pH, organic matter, and microorganisms. We then review the soil-plant transfer of U, finding that U mainly accumulates in roots with a quite limited translocation. However, plants such as willow, water lily, and sesban are reported to translocate high U levels from roots to aerial parts. Indeed, U does not possess any identified biological role, but provokes numerous deleterious effects such as reducing seed germination, inhibiting plant growth, depressing photosynthesis, interfering with nutrient uptake, as well as oxidative damage and genotoxicity. Yet, plants tolerate U toxicity via various defense strategies including antioxidant enzymes, compartmentalization, and phytochelatin. Moreover, we review two biological remediation strategies for U-contaminated soil: (i) phytoremediation and (ii) microbial remediation. They are quite low-cost and eco-friendly compared with traditional physical or chemical remediation technologies. Finally, we conclude some promising research challenges regarding U biogeochemical behavior in soil-plant systems. This review, thus, further indicates that the combined application of U low accumulators and microbial inoculants may be an effective strategy for the bioremediation of U-contaminated soils.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Jinrong Liu
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Weixiong Zhang
- Third Institute Geological and Mineral Exploration of Gansu Provincial Bureau of Geology and Mineral Resources, Lanzhou 730030, Gansu, PR China
| | - Jiqiang Zhou
- Gansu Nonferrous Engineering Exploration & Design Research Institute, Lanzhou 730030, Gansu, PR China
| | - Danqi Luo
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Center of Western China Grassland Industry; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Zimin Li
- Université catholique de Louvain (UCLouvain), Earth and Life Institute, Soil Science, Louvain-La-Neuve 1348, Belgium.
| |
Collapse
|
8
|
Jessat J, Sachs S, Moll H, John W, Steudtner R, Hübner R, Bok F, Stumpf T. Bioassociation of U(VI) and Eu(III) by Plant ( Brassica napus) Suspension Cell Cultures-A Spectroscopic Investigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6718-6728. [PMID: 33929840 DOI: 10.1021/acs.est.0c05881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the interaction of U(VI) and Eu(III) with Brassica napus suspension plant cells as a model system. Concentration-dependent (0-200 μM) bioassociation experiments showed that more than 75% of U(VI) and Eu(III) were immobilized by the cells. In addition to this phenomenon, time-dependent studies for 1 to 72 h of exposure showed a multistage bioassociation process for cells that were exposed to 200 μM U(VI), where, after initial immobilization of U(VI) within 1 h of exposure, it was released back into the culture medium starting within 24 h. A remobilization to this extent has not been previously observed. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to correlate the bioassociation behavior of Eu and U with the cell vitality. Speciation studies by spectroscopy and in silico methods highlighted various U and Eu species over the course of exposure. We were able to observe a new U species, which emerged simultaneously with the remobilization of U back into the solution, which we assume to be a U(VI) phosphate species. Thus, the interaction of U(VI) and Eu(III) with released plant metabolites could be concluded.
Collapse
Affiliation(s)
- Jenny Jessat
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Susanne Sachs
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Warren John
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Robin Steudtner
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Frank Bok
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
9
|
Rodriguez-Freire L, DeVore CL, El Hayek E, Berti D, Ali AMS, Lezama Pacheco JS, Blake JM, Spilde MN, Brearley AJ, Artyushkova K, Cerrato JM. Emerging investigator series: entrapment of uranium-phosphorus nanocrystals inside root cells of Tamarix plants from a mine waste site. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:73-85. [PMID: 33325952 PMCID: PMC8479813 DOI: 10.1039/d0em00306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms of uranium (U) uptake by Tamarix (salt cedars) growing along the Rio Paguate, which flows throughout the Jackpile mine near Pueblo de Laguna, New Mexico. Tamarix were selected for this study due to the detection of U in the roots and shoots of field collected plants (0.6-58.9 mg kg-1), presenting an average bioconcentration factor greater than 1. Synchrotron-based micro X-ray fluorescence analyses of plant roots collected from the field indicate that the accumulation of U occurs in the cortex of the root. The mechanisms for U accumulation in the roots of Tamarix were further investigated in controlled-laboratory experiments where living roots of field plants were macerated for 24 h or 2 weeks in a solution containing 100 μM U. The U concentration in the solution decreased 36-59% after 24 h, and 49-65% in two weeks. Microscopic and spectroscopic analyses detected U precipitation in the root cell walls near the xylems of the roots, confirming the initial results from the field samples. High-resolution TEM was used to study the U fate inside the root cells, and needle-like U-P nanocrystals, with diameter <7 nm, were found entrapped inside vacuoles in cells. EXAFS shell-by-shell fitting suggest that U is associated with carbon functional groups. The preferable binding of U to the root cell walls may explain the U retention in the roots of Tamarix, followed by U-P crystal precipitation, and pinocytotic active transport and cellular entrapment. This process resulted in a limited translocation of U to the shoots in Tamarix plants. This study contributes to better understanding of the physicochemical mechanisms affecting the U uptake and accumulation by plants growing near contaminated sites.
Collapse
Affiliation(s)
- Lucia Rodriguez-Freire
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
| | - Cherie L DeVore
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Eliane El Hayek
- Department of Chemistry, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Debora Berti
- Oceanography Department, Texas A&M University, College Station, Texas 77845, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Juan S Lezama Pacheco
- Department of Environmental Earth System Science, Stanford University, Stanford, California 94305, USA
| | - Johanna M Blake
- Department of Chemistry, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, USA and U.S. Geological Survey, 6700 Edith Blvd NE, Albuquerque, New Mexico 87113, USA
| | - Michael N Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Adrian J Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Kateryna Artyushkova
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - José M Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
10
|
Liu J, Song Y, Tang M, Lu Q, Zhong G. Enhanced dissipation of xenobiotic agrochemicals harnessing soil microbiome in the tillage-reduced rice-dominated agroecosystem. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122954. [PMID: 32506048 DOI: 10.1016/j.jhazmat.2020.122954] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/14/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The ubiquitous contamination generating from the frequent input of agrochemicals is a major hurdle affecting the ecological sustainability of agroecosystems. Here, we investigated the dissipation of multiple pesticides in the subtropical rice-dominated landscapes under tillage intensity management, and unveiled the vital role of soil microbiome in promoting xenobiotic degradation. Three commonly used pesticides (including herbicide butachlor, insecticide clothianidin and fungicide tricyclazole) showed rapid dissipation dynamics in the field where the reduction of tillage intensity with straw incorporation was conducted. In response to pesticide exposure, soil microbial communities adapted quickly with slight changes in community composition and diversity. Meanwhile, the microbial xenobiotic degradation-related functions were stimulated, which possibly related to the increased organic carbon and nitrogen in soil. Importantly, these shifts and effects on microbial communities and functions gradually declined after a length of rice growing seasons, suggesting the flexibility of soil microbiome in tackling with long-term xenobiotic disturbance to maintain a diverse and vibrant soil biota. Overall, our study that displayed the enhanced agrochemical dissipation which benefited markedly from the interaction of tillage management and soil microbial functioning, provides important basis and insights for facilitating green, balanced and sustainable agriculture.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanfeng Song
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Mingxin Tang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Qiqi Lu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Guangzhou, 510642, PR China.
| |
Collapse
|
11
|
Cheng Y, Ding J, Liang X, Ji X, Xu L, Xie X, Zhang YK. Fractions Transformation and Dissipation Mechanism of Dechlorane Plus in the Rhizosphere of the Soil-Plant System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6610-6620. [PMID: 32252527 DOI: 10.1021/acs.est.9b06748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fractions transformation and dissipation mechanism of Dechlorane Plus (DP) in the rhizosphere of soil-plant system were investigated and characterized by a 150-day experiment using a rhizobox system. The depuration, accumulation, and translocation of DP in rice plants were observed. The contributions of plant uptake, microbial degradation, and bound-residue formation to DP dissipation under the rhizosphere effect were modeled and quantified. The gradients of DP concentrations correlated well with microbial biomass in the rhizosphere (R2 = 0.898). The rhizosphere facilitated the bioavailability of DP (excitation) and modified the bound-residue formation of DP (aging). DP concentrations in roots were positively correlated with the labile fraction of DP in soil (R2 = 0.852-0.961). There were spatiotemporal variations in the DP fractions. Dissolved and soil organic carbon were important influences on fraction transformation. Contributions to total DP dissipation were in the following ranges: microbial degradation (8.33-54.14%), bound-residue formation (3.64-16.43%), and plant uptake (0.54-3.85%). With all of these processes operating, the half-life of DP in the rhizosphere was 105 days. The stereoselectivity of DP isomers in both rice and DP fractions in soil were observed, suggesting a link between stereoselective bioaccumulation of DP in terrestrial organisms and dissipation pathways in soil.
Collapse
Affiliation(s)
- Yu Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Jue Ding
- College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Xiuyu Liang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiaowen Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Ling Xu
- Nanjing Innovation Center for Environmental Protection Industry Company, Limited, Nanjing 210042, P. R. China
| | - Xianchuan Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of Earth Sciences and Engineering, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- Nanjing Innovation Center for Environmental Protection Industry Company, Limited, Nanjing 210042, P. R. China
| | - You-Kuan Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
12
|
Edayilam N, Ferguson B, Montgomery D, Al Mamun A, Martinez N, Powell BA, Tharayil N. Dissolution and Vertical Transport of Uranium from Stable Mineral Forms by Plants as Influenced by the Co-occurrence of Uranium with Phosphorus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6602-6609. [PMID: 32319755 DOI: 10.1021/acs.est.9b06559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plants could mobilize (dissolution followed by vertical transport) uranium (U) from mineral forms that are otherwise stable. However, the variability of this plant-mediated mobilization of U as a function of the presence of various essential plant nutrients contained in these minerals remains unknown. A series of column experiments were conducted using Andropogon virginicus to quantify the vertical transport of U from stable mineral forms as influenced by the chemical and physical coexistence of U with the essential nutrient, phosphorus (P). The presence of plants significantly increased the vertical migration of U only when U was precipitated with P (UO2HPO4·4H2O; chernikovite) but not from UO2 (uraninite) that lacks any essential plant nutrient. The U dissolution was further increased when chernikovite co-occurred with a sparingly available form of P (FePO4) under P-limited growing conditions. Similarly, A. virginicus accumulated the highest amount of U from chernikovite (0.05 mg/g) in the presence of FePO4 compared to that of uraninite (no-P) and chernikovite supplemented with KH2PO4. These results signify an increased plant-mediated dissolution, uptake, and leaching of radioactive contaminants in soils that are nutrient deficient, a key factor that should be considered in management at legacy contamination sites.
Collapse
Affiliation(s)
- Nimisha Edayilam
- Department of Plant & Environmental Sciences, Clemson University, Clemson, South Carolina 29634, United States
| | - Brennan Ferguson
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Dawn Montgomery
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Abdullah Al Mamun
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Nicole Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Brian A Powell
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Nishanth Tharayil
- Department of Plant & Environmental Sciences, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
13
|
Galhardi JA, Leles BP, de Mello JWV, Wilkinson KJ. Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:134484. [PMID: 31836238 DOI: 10.1016/j.scitotenv.2019.134484] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 06/10/2023]
Abstract
In order to assess the environmental risks related to mining activities in Southern Brazil, the transfer of trace metals and rare earth elements (REE) from soils to soybeans was evaluated in a U-rich area associated with coal mining. In some samples, As, Ba, Co, Cu and Ni were higher than the guidelines proposed by the Brazilian environmental agency. Soil, coal, ash, tailings and soybean were systematically sampled so that the chemical fractionation/speciation of the elements could be related to their bioavailability. In addition to total concentrations quantified by ICP-MS after microwave digestion, elemental measurements were made following different evaluations of the bioavailable metal, including chemical extractions (10 mM Ca(NO3)2 and 3-step sequential extraction), diffusive gradient in thin films technique (DGT) and chemical modeling (WHAM-free ion). Lower pH and higher clay and organic matter content were reflected by higher metal assimilation by the plants, especially by the roots and leaves. The bioaccumulation factor (BF) was generally higher for the leaves (e.g. Cu, Mn, Sr, Zn, Ba, REE with exception of Tm and Yb) and roots (e.g. Cd, Th and U). The results revealed that for Ba, Cd, Sr, Pb, U and most of the REE, the free ion concentration was strongly correlated with the metal content in the plants, especially for the grains. Values obtained by DGT were also correlated with the bioavailable portion of Ba, Mn, Sr, Zn, Pb, U and REE. Measurements obtained from Ca extractions correlated well with the bioavailable metals for Ba, Cd, Sr, Rb, Pb and Th. The free or extractable metal fractions gave much better correlations of the bioavailable fractions than did the total metal concentrations from the soils, especially for the REE. The paper validates some simplified means of estimating the risks associated with metals and REE in tropical soils affected by mining activities.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada.
| | - Bruno P Leles
- Department of Ecology, São Paulo State University, Rio Claro, SP, Brazil
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
14
|
Bower WR, Morris K, Livens FR, Mosselmans JFW, Fallon CM, Fuller AJ, Natrajan L, Boothman C, Lloyd JR, Utsunomiya S, Grolimund D, Ferreira Sanchez D, Jilbert T, Parker J, Neill TS, Law GTW. Metaschoepite Dissolution in Sediment Column Systems-Implications for Uranium Speciation and Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9915-9925. [PMID: 31317743 DOI: 10.1021/acs.est.9b02292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metaschoepite is commonly found in U-contaminated environments and metaschoepite-bearing wastes may be managed via shallow or deep disposal. Understanding metaschoepite dissolution and tracking the fate of any liberated U is thus important. Here, discrete horizons of metaschoepite (UO3·nH2O) particles were emplaced in flowing sediment/groundwater columns representative of the UK Sellafield Ltd. site. The column systems either remained oxic or became anoxic due to electron donor additions, and the columns were sacrificed after 6- and 12-months for analysis. Solution chemistry, extractions, and bulk and micro/nano-focus X-ray spectroscopies were used to track changes in U distribution and behavior. In the oxic columns, U migration was extensive, with UO22+ identified in effluents after 6-months of reaction using fluorescence spectroscopy. Unusually, in the electron-donor amended columns, during microbially mediated sulfate reduction, significant amounts of UO2-like colloids (>60% of the added U) were found in the effluents using TEM. XAS analysis of the U remaining associated with the reduced sediments confirmed the presence of trace U(VI), noncrystalline U(IV), and biogenic UO2, with UO2 becoming more dominant with time. This study highlights the potential for U(IV) colloid production from U(VI) solids under reducing conditions and the complexity of U biogeochemistry in dynamic systems.
Collapse
Affiliation(s)
- William R Bower
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
- Radiochemistry Unit, Department of Chemistry , The University of Helsinki , Helsinki , Finland , 00014
| | - Katherine Morris
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Francis R Livens
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
| | | | - Connaugh M Fallon
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
- Radiochemistry Unit, Department of Chemistry , The University of Helsinki , Helsinki , Finland , 00014
| | - Adam J Fuller
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Louise Natrajan
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Christopher Boothman
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Jonathan R Lloyd
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Satoshi Utsunomiya
- Kyushu University , Department of Chemistry , 744 Motooka , Nishi-ku , Fukuoka Japan , 819-0395
| | - Daniel Grolimund
- Swiss Light Source , Paul Scherrer Institute , Villigen , Switzerland , 5232
| | | | - Tom Jilbert
- Ecosystems and Environmental Research Programme, Faculty of Biological and Environmental Sciences , The University of Helsinki , Helsinki , Finland , 00014
| | - Julia Parker
- Diamond Light Source , Harwell Science and Innovation Campus , Didcot , U.K. , OX11 0DE
| | - Thomas S Neill
- Research Centre for Radwaste Disposal and Williamson Research Centre, School of Earth and Environmental Sciences , The University of Manchester , Manchester , U.K. , M13 9PL
| | - Gareth T W Law
- Centre for Radiochemistry Research, School of Chemistry , The University of Manchester , Manchester , U.K. , M13 9PL
- Radiochemistry Unit, Department of Chemistry , The University of Helsinki , Helsinki , Finland , 00014
| |
Collapse
|
15
|
Abstract
In the race to enhance agricultural productivity, irrigation will become more dependent on poorly characterized and virtually unmonitored sources of water. Increased use of irrigation water has led to impaired water and soil quality in many areas. Historically, soil salinization and reduced crop productivity have been the primary focus of irrigation water quality. Recently, there is increasing evidence for the occurrence of geogenic contaminants in water. The appearance of trace elements and an increase in the use of wastewater has highlighted the vulnerability and complexities of the composition of irrigation water and its role in ensuring proper crop growth, and long-term food quality. Analytical capabilities of measuring vanishingly small concentrations of biologically-active organic contaminants, including steroid hormones, plasticizers, pharmaceuticals, and personal care products, in a variety of irrigation water sources provide the means to evaluate uptake and occurrence in crops but do not resolve questions related to food safety or human health effects. Natural and synthetic nanoparticles are now known to occur in many water sources, potentially altering plant growth and food standard. The rapidly changing quality of irrigation water urgently needs closer attention to understand and predict long-term effects on soils and food crops in an increasingly fresh-water stressed world.
Collapse
|
16
|
Gupta DK, Chatterjee S, Mitra A, Voronina A, Walther C. Uranium and Plants: Elemental Translocation and Phytoremediation Approaches. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-14961-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
17
|
Adsorption Behavior of Inorganic and Organic Phosphate by Iron Manganese Plaques on Reed Roots in Wetlands. SUSTAINABILITY 2018. [DOI: 10.3390/su10124578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inorganic and organic phosphate adsorption by iron–manganese (Fe–Mn) plaques extracted from reed roots was investigated. Scanning electron microscopy indicated the roots had rough surfaces and fine particles attached. X-ray photoelectron spectra indicated that Fe and Mn in the Fe–Mn plaques were mainly in the +III and +IV oxidation states, respectively. The contact time, initial phosphate concentration, and temperature effects on inorganic and organic phosphate adsorption were investigated by performing batch tests. Pseudo-second-order model described inorganic and organic phosphate adsorption, indicating the chemisorption was the dominant adsorption process. Langmuir and Freundlich isotherm models were fitted to the equilibrium data, and the Langmuir model fitted best. The maximum inorganic and organic phosphate adsorption capacities at 298 K were 7.69 and 3.66 mg/g, respectively. The inorganic and organic phosphate adsorption processes were spontaneous and exothermic. The inorganic phosphate adsorption capacity was higher than the organic phosphate adsorption capacity, and the presence of organic phosphate did not negatively affect adsorption at inorganic to organic phosphate molar ratios between 1:1 and 3:1. Fourier-transform infrared spectra before and after adsorption showed abundant functional groups on Fe–Mn plaques and that phosphate was probably adsorbed via replacement of hydroxyl groups and inner-sphere surface complexation.
Collapse
|
18
|
Hayek EE, Torres C, Rodriguez-Freire L, Blake JM, De Vore CL, Brearley AJ, Spilde MN, Cabaniss S, Ali AMS, Cerrato J. Effect of Calcium on the Bioavailability of Dissolved Uranium(VI) in Plant Roots under Circumneutral pH. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13089-13098. [PMID: 30412391 PMCID: PMC6341987 DOI: 10.1021/acs.est.8b02724] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We integrated field measurements, hydroponic experiments, microscopy, and spectroscopy to investigate the effect of Ca(II) on dissolved U(VI) uptake by plants in 1 mM HCO3- solutions at circumneutral pH. The accumulation of U in plants (3.1-21.3 mg kg-1) from the stream bank of the Rio Paguate, Jackpile Mine, New Mexico served as a motivation for this study. Brassica juncea was the model plant used for the laboratory experiments conducted over a range of U (30-700 μg L-1) and Ca (0-240 mg L-1) concentrations. The initial U uptake followed pseudo-second-order kinetics. The initial U uptake rate ( V0) ranged from 4.4 to 62 μg g-1 h-1 in experiments with no added Ca and from 0.73 to 2.07 μg g-1 h-1 in experiments with 12 mg L-1 Ca. No measurable U uptake over time was detected for experiments with 240 mg L-1 Ca. Ternary Ca-U-CO3 complexes may affect the decrease in U bioavailability observed in this study. Elemental X-ray mapping using scanning transmission electron microscopy-energy-dispersive spectrometry detected U-P-bearing precipitates within root cell walls in water free of Ca. These results suggest that root interactions with Ca and carbonate in solution affect the bioavailability of U in plants. This study contributes relevant information to applications related to U transport and remediation of contaminated sites.
Collapse
Affiliation(s)
- Eliane El Hayek
- Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Phone: (001) (505) 582-1362,
| | - Chris Torres
- Department of Chemical and Biological Engineering, MSC01 1120, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lucia Rodriguez-Freire
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Johanna M. Blake
- U.S. Geological Survey, 6700 Edith Blvd. NE, Albuquerque, New Mexico 87113, United States
| | - Cherie L. De Vore
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Adrian J. Brearley
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Michael N. Spilde
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Stephen Cabaniss
- Department of Chemistry and Chemical Biology, MSC03 2060, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, MSC03 2040, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - JoséM. Cerrato
- Department of Civil Engineering, MSC01 1070, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Corresponding Authors Phone: (001) (505) 277-0870; fax: (001) (505) 277-1918;
| |
Collapse
|
19
|
Davies HS, Rosas-Moreno J, Cox F, Lythgoe P, Bewsher A, Livens FR, Robinson CH, Pittman JK. Multiple environmental factors influence 238U, 232Th and 226Ra bioaccumulation in arbuscular mycorrhizal-associated plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:921-934. [PMID: 30021326 DOI: 10.1016/j.scitotenv.2018.05.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Ecological consequences of low-dose radioactivity from natural sources or radioactive waste are important to understand but knowledge gaps still remain. In particular, the soil transfer and bioaccumulation of radionuclides into plant roots is poorly studied. Furthermore, better knowledge of arbuscular mycorrhizal (AM) fungi association may help understand the complexities of radionuclide bioaccumulation within the rhizosphere. Plant bioaccumulation of uranium, thorium and radium was demonstrated at two field sites, where plant tissue concentrations reached up to 46.93 μg g-1 238U, 0.67 μg g-1 232Th and 18.27 kBq kg-1 226Ra. High root retention of uranium was consistent in all plant species studied. In contrast, most plants showed greater bioaccumulation of thorium and radium into above-ground tissues. The influence of specific soil parameters on root radionuclide bioaccumulation was examined. Total organic carbon significantly explained the variation in root uranium concentration, while other soil factors including copper concentration, magnesium concentration and pH significantly correlated with root concentrations of uranium, radium and thorium, respectively. All four orders of Glomeromycota were associated with root samples from both sites and all plant species studied showed varying association with AM fungi, ranging from zero to >60% root colonisation by fungal arbuscules. Previous laboratory studies using single plant-fungal species association had found a positive role of AM fungi in root uranium transfer, but no significant correlation between the amount of fungal infection and root uranium content in the field samples was found here. However, there was a significant negative correlation between AM fungal infection and radium accumulation. This study is the first to examine the role of AM fungi in radionuclide soil-plant transfer at a community level within the natural environment. We conclude that biotic factors alongside various abiotic factors influence the soil-plant transfer of radionuclides and future mechanistic studies are needed to explain these interactions in more detail.
Collapse
Affiliation(s)
- Helena S Davies
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jeanette Rosas-Moreno
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Filipa Cox
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Paul Lythgoe
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alastair Bewsher
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Francis R Livens
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Clare H Robinson
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Jon K Pittman
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|