1
|
Dong J, Yu Y, Dai Z, Li S, Chen L, Xing P, Wang G, Liu X, Zheng H, Zhu Z. Low-Consumption and High-Efficiency Isotope Analysis by Microultrasonic Single-Droplet Nebulization Sampling Multicollector Inductively Coupled Plasma Mass Spectrometry. Anal Chem 2024; 96:19955-19964. [PMID: 39613481 DOI: 10.1021/acs.analchem.4c04312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Metal stable isotopes are increasingly applied in various fields, including planetary science and medical research, highlighting the need for isotope analysis methods capable of handling precious and microvolume samples. This study introduces a novel, low-consumption, high-efficiency isotope analysis method using MC-ICP-MS based on microultrasonic single-droplet nebulization (MUSDN). The proposed MUSDN enables the complete nebulization of microliter-sized droplets, delivering high-sensitivity transient analytical signals with a duration of several seconds. Under optimized conditions, MUSDN exhibited significantly enhanced sensitivity compared to conventional pneumatic nebulization, achieving 17-fold and 12-fold improvements for 7Li and 63Cu, respectively. The achieved external precisions (2SD) for δ7Li and δ65Cu were 0.3 and 0.08‰, with single analysis consuming only 1 ng of Li and 2 ng of Cu, respectively. This represents a reduction in sample consumption by 1-2 orders of magnitude compared to conventional PN-MC-ICP-MS while also improving the analysis speed by at least 10-fold due to rapid residual washout. Furthermore, our method demonstrated superior δ65Cu analytical precision compared to other high-sensitivity transient analysis methods (0.19‰ with a laser ablation system) with similar sample consumption. Finally, the accuracy of the proposed method was validated through the analysis of geological CRMs, serum CRMs, in-house standard samples, and a series of real serum samples. This novel isotope analysis method provides a promising approach for isotope applications involving precious and microvolume samples.
Collapse
Affiliation(s)
- Junhang Dong
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yang Yu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Dai
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuyang Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Linjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Pengju Xing
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guan Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xing Liu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Hongtao Zheng
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430078, China
| |
Collapse
|
2
|
Melicherová N, Vaculovič T, Kočí R, Trtílek M, Lavická J, Foret F. Determination of nutrient concentration in liquid culture of cyanobacteria Nostoc sp. by capillary electrophoresis and inductively coupled plasma mass spectrometry. Anal Biochem 2024; 694:115630. [PMID: 39059566 DOI: 10.1016/j.ab.2024.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this work, we demonstrate the use of capillary electrophoresis and inductively coupled plasma mass spectrometry, as competitive methods primarily for ion chromatography, to determine changes in the concentration of small inorganic ions in the Nostoc sp. culture medium. Although macronutrients were analyzed by capillary electrophoresis with conductivity detection, micronutrients were analyzed by inductively coupled plasma mass spectrometry. The different light settings (light intensity and spectral composition) had a visible effect on the culture growth and depletion of calcium, magnesium, and phosphate ions, and iron and manganese elements when comparing the behavior under red or violet light with that under blue light.
Collapse
Affiliation(s)
- Natália Melicherová
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, 602 00, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Radka Kočí
- PSI (Photon Systems Instruments), spol. s r.o., Průmyslová 470, 664 24, Drásov, Czech Republic
| | - Martin Trtílek
- PSI (Photon Systems Instruments), spol. s r.o., Průmyslová 470, 664 24, Drásov, Czech Republic
| | - Jana Lavická
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, 602 00, Brno, Czech Republic.
| | - František Foret
- Department of Bioanalytical Instrumentation, Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, 602 00, Brno, Czech Republic
| |
Collapse
|
3
|
Wei R, Liu Y, Kang F, Tian L, Wei Q, Li Z, Xu P, Hu H, Tan Q, Zhao C, Li W, Guo Q. Impact of Rhizosphere Biostimulation on Cd Transport and Isotope Fractionation in Cd-Tolerant and Hyperaccumulating Plants Based on MC-ICP-MS and NanoSIMS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19408-19418. [PMID: 39412176 DOI: 10.1021/acs.est.4c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Phytoremediation efficiency can be enhanced by regulating rhizosphere processes, and the Cd isotope is a useful approach for deciphering Cd transport processes in soil-plant systems. However, the effects of adsorption and complexation on Cd isotope fractionation during the rhizosphere processes remain unclear. Here, we cultivated the Cd hyperaccumulator Sedum alfredii and Cd-tolerance Sedum spectabile in three different soils with citric acid applied as a degradable rhizosphere biostimulant. Cellular elemental distributions in the tissues and Cd isotope compositions were determined through NanoSIMS and MC-ICP-MS, respectively. Cd precipitation/adsorption on cell walls and intracellular regional distribution were the main mechanisms of Cd tolerance in S. spectabile. Plant roots became enriched with heavier Cd isotopes relative to the surrounding soils upon increasing secretion of rhizosphere organic acids. This indicates that organic matter with O and N functional groups preferentially chelates heavy Cd isotopes. In addition, Cd isotope fractionation between roots and shoots varies within the three soils, which could be due to the influence of protein and metallothionein contents in roots and leaves. The finding indicates that sulfur-containing ligands preferentially chelate light Cd isotopes. This study suggests that organic ligands play a vital role in Cd isotope fractionation and consequent hyperaccumulation of soil-plant systems.
Collapse
Affiliation(s)
- Rongfei Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yizhang Liu
- Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Fengxin Kang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Liyan Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiang Wei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhiying Li
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430074, China
| | - Pei Xu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huiying Hu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiyu Tan
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Changqiu Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- School of Earth Sciences and Engineering, Nanjing University, Nanjing 230046, China
| | - Qingjun Guo
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Fu Y, Gao T, Wu Q, Qi M, Wang Z, Liu C. Mechanism of zinc stress on magnesium deficiency in rice plants (Oryza sativa L.): Insights from magnesium isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171463. [PMID: 38447719 DOI: 10.1016/j.scitotenv.2024.171463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Magnesium (Mg) and zinc (Zn) are essential nutrients for plants. Mg deficiency often occurs in rice plants grown in Zn-polluted soil. However, the mechanism for this correlation is unclear. Here, we performed culture experiments on rice plants (Oryza sativa L.) and used Mg isotopes to investigate mechanisms of Zn stress on plant Mg deficiency. Our results show that excess Zn can significantly reduce the uptake of Mg in rice tissues. The root displays positive Δ26Mgplant-nutrient values (δ26Mgplant-δ26Mgnutrient; 1.90 ‰ to 2.06 ‰), which suggests that Mg enters the root cells mainly via Mg-specific transporters rather than non-selective diffusion. The decreased Δ26Mgplant-nutrient values with increasing Zn supply can be explained by the competition between Zn and Mg, both of which combine with same transporters in roots. In contrast, the shoots (stem and leaf) display much lower δ26Mg values than roots, which suggests that the transport of Mg from roots to aerial biomass is mainly via free Mg ions, during which Zn cannot competitively inhibit the movement of Mg. Our study suggests that the Mg deficiency in rice plants can be caused by high Zn-levels in soils and highlights the necessity of soil Zn-remediation in solving Mg deficiency problems in rice plants.
Collapse
Affiliation(s)
- Yucong Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Gao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiqi Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Meng Qi
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengrong Wang
- Department of Earth & Atmospheric Sciences, The City College of New York, CUNY, New York 10031, USA
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
5
|
Andronikov AV, Andronikova IE, Martinkova E, Sebek O, Stepanova M. Translocation of elements and fractionation of Mg, Cu, Zn, and Cd stable isotopes in a penny bun mushroom (Boletus edulis) from western Czech Republic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49339-49353. [PMID: 36773267 PMCID: PMC10104950 DOI: 10.1007/s11356-023-25753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Boletus edulis mushroom behaved as an accumulating biosystem with respect to Ag, Rb, Zn, and K. The mushroom was not an efficient accumulator of toxic As, Pb, and Cr, but Se and Cd displayed much higher concentrations in the mushroom than in the substrate samples. Other elements were bioexclusive. Different elements had different within-mushroom mobilities. The highest mobilities were displayed by Zn and Ag, and the lowest by Ti. The mushroom's fruiting body preferentially took up lighter Mg, Cu, and Cd isotopes (Δ26MgFB-soil = -0.75‰; Δ65CuFB-soil = -0.96‰; Δ114CdFB-soil = -0.63‰), and the heavier 66Zn isotope (Δ66ZnFB-soil = 0.92‰). Positive within-mushroom Zn isotope fractionation resulted in accumulation of the heavier 66Zn (Δ66Zncap-stipe = 0.12‰) in the mushroom's upper parts. Cadmium displayed virtually no within-mushroom isotope fractionation. Different parts of the fruiting body fractionated Mg and Cu isotopes differently. The middle part of the stipe (3-6 cm) was strongly depleted in the heavier 26 Mg with respect to the 0-3 cm (Δ26Mgstipe(3-6)-stipe(0-3) = -0.73‰) and 6-9 cm (Δ26Mgstipe(6-9)-stipe(3-6) = 0.28‰) sections. The same stipe part was strongly enriched in the heavier 65Cu with respect to the 0-3 cm (Δ65Custipe(3-6)-stipe(0-3) = 0.63‰) and 6-9 cm (Δ65Custipe(6-9)-stipe(3-6) = -0.42‰) sections. An overall tendency for the upper mushroom's parts to accumulate heavier isotopes was noted for Mg (Δ26Mgcap-stipe = 0.20‰), Zn (Δ66Zncap-stipe = 0.12‰), and Cd (Δ114Cdcap-stipe = 0.04‰), whereas Cu showed the opposite trend (Δ65Cucap-stipe = -0.08‰).
Collapse
Affiliation(s)
- Alexandre V Andronikov
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic.
| | - Irina E Andronikova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Eva Martinkova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Ondrej Sebek
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| | - Marketa Stepanova
- Division of Geochemistry and Laboratories, Czech Geological Survey, Geologicka 6, 15200, Prague, Czech Republic
| |
Collapse
|
6
|
Zhou H, Tian L, Ni M, Zhu S, Zhang R, Wang L, Wang M, Wang Z. Effect of dissolved organic matter and its fractions on disinfection by-products formation upon karst surface water. CHEMOSPHERE 2022; 308:136324. [PMID: 36084825 DOI: 10.1016/j.chemosphere.2022.136324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, disinfection by-products (DBP) formation from dissolved organic matter (DOM) and its fractions, including both hydrophilic and hydrophobic components, were investigated at a typical karst surface water. The subsequent DBP formation potential was evaluated by deducing chemical characteristics of DOM fractions and representative algal organic matter (Chlorella sp. AOM) under the influence of divalent ions (Ca2+ and Mg2+) via spectra analysis. Both terrigenous and autochthonous DOM performed as critical DBP precursors, and DBP formation patterns were tightly correlated to organic matter chemical variations. DBP formation was significantly higher in drought period compared to that in wet period (P < 0.05). Particularly, trichloromethane (TCM) and dichloroacetonitrile (DCAN) showed distinct formation patterns compared to the scenarios in non-karst water. For DOM fractions, hydrophobic components showed higher DBP formation compared to hydrophilic counterparts, hydrophilic neutral enriched more reactive organic nitrogen for N-DBPs production. It was preferable to enrich humic-like substances after Ca2+ and Mg2+complexation in Chlorella sp. AOM, TCM formation increased whereas DCAN production remained unchanged in the presence of divalent ions. This study innovatively provided a linkage between chemical characteristics of DOM and understanding of DBP formation in karst surface water.
Collapse
Affiliation(s)
- Hui Zhou
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Liye Tian
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sixi Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Runyu Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550009, China
| | - Liying Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550009, China
| | - Ming Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| |
Collapse
|
7
|
Qu R, Han G. Effects of high Ca and Mg stress on plants water use efficiency in a Karst ecosystem. PeerJ 2022; 10:e13925. [PMID: 35996669 PMCID: PMC9392448 DOI: 10.7717/peerj.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Karst ecosystems are widely distributed in the world, with one of the largest continuous Karst landforms in Southwest China. Karst regions are characterized by water shortage, high soil calcium (Ca) and magnesium (Mg) content, and soil nutrient leaching, resulting in drought stress and growth limitation of plants. Methods This study compared nitrogen (N), phosphorus (P), potassium (K), Ca, and Mg of herbaceous and woody plants in a small Karst ecosystem in Southwest China. The indexes of water use efficiency (WUE) were calculated to identify the drought stress of plants in this Karst ecosystem. Meanwhile, the relationship between Ca and Mg accumulation and WUE was evaluated in herbaceous and woody plants. Results Herbaceous plants showed a higher content of leaf N (13.4 to 40.1 g·kg-1), leaf P (2.2 to 4.8 g·kg-1) and leaf K (14.6 to 35.5 g·kg-1) than woody plants (N: 10.4 g to 22.4 g·kg-1; P: 0.4 to 2.3 g·kg-1; K: 5.7 to 15.5 g·kg-1). Herbaceous plants showed a significantly positive correlation between WUE and K:Ca ratio (R = 0.79), while WUE has a strongly positive correlation with K:Mg ratio in woody plants (R = 0.63). Conclusion Herbaceous plants suffered from nitrogen (N) limitation, and woody plants were constrained by P or N+P content. Herbaceous plants had higher leaf N, P, and K than woody plants, while Ca and Mg showed no significant differences, probably resulting from the Karst environment of high Ca and Mg contents. Under high Karst Ca and Mg stress, herbaceous and woody plants responded differently to Ca and Mg stress, respectively. WUE of herbaceous plants is more sensitive to Ca stress, while that of woody plants is more sensitive to Mg stress. These findings establish a link between plant nutrients and hydraulic processes in a unique Karst ecosystem, further facilitating studies of the nutrient-water cycling system in the ecosystem.
Collapse
|
8
|
le Goff S, Godin JP, Albalat E, Nieves JMR, Balter V. Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig. Sci Rep 2022; 12:10941. [PMID: 35768618 PMCID: PMC9243132 DOI: 10.1038/s41598-022-14825-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hypomagnesemia is frequently associated with type 2 diabetes and generally correlates with unfavorable disease progression, but the magnesium status in pre-diabetic conditions remains unclear. Here, the magnesium metabolism is scrutinized in a minipig model of obesity and insulin resistance by measuring variations of the metallome—the set of inorganic elements—and the magnesium stable isotope composition in six organs of lean and obese minipigs raised on normal and Western-type diet, respectively. We found that metallomic variations are most generally insensitive to lean or obese phenotypes. The magnesium stable isotope composition of plasma, liver, kidney, and heart in lean minipigs are significantly heavier than in obese minipigs. For both lean and obese minipigs, the magnesium isotope composition of plasma and liver were negatively correlated to clinical phenotypes and plasma lipoproteins concentration as well as positively correlated to hyperinsulinemic-euglycemic clamp output. Because the magnesium isotope composition was not associated to insulin secretion, our results suggest that it is rather sensitive to whole body insulin sensitivity, opening perspectives to better comprehend the onset of insulin-resistant diabetic conditions.
Collapse
Affiliation(s)
- Samuel le Goff
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - Emmanuelle Albalat
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France
| | | | - Vincent Balter
- Laboratoire de Géologie de Lyon, ENS de Lyon, Université de Lyon, CNRS, Lyon, France.
| |
Collapse
|
9
|
Wiggenhauser M, Moore RET, Wang P, Bienert GP, Laursen KH, Blotevogel S. Stable Isotope Fractionation of Metals and Metalloids in Plants: A Review. FRONTIERS IN PLANT SCIENCE 2022; 13:840941. [PMID: 35519812 PMCID: PMC9063737 DOI: 10.3389/fpls.2022.840941] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
This work critically reviews stable isotope fractionation of essential (B, Mg, K, Ca, Fe, Ni, Cu, Zn, Mo), beneficial (Si), and non-essential (Cd, Tl) metals and metalloids in plants. The review (i) provides basic principles and methodologies for non-traditional isotope analyses, (ii) compiles isotope fractionation for uptake and translocation for each element and connects them to physiological processes, and (iii) interlinks knowledge from different elements to identify common and contrasting drivers of isotope fractionation. Different biological and physico-chemical processes drive isotope fractionation in plants. During uptake, Ca and Mg fractionate through root apoplast adsorption, Si through diffusion during membrane passage, Fe and Cu through reduction prior to membrane transport in strategy I plants, and Zn, Cu, and Cd through membrane transport. During translocation and utilization, isotopes fractionate through precipitation into insoluble forms, such as phytoliths (Si) or oxalate (Ca), structural binding to cell walls (Ca), and membrane transport and binding to soluble organic ligands (Zn, Cd). These processes can lead to similar (Cu, Fe) and opposing (Ca vs. Mg, Zn vs. Cd) isotope fractionation patterns of chemically similar elements in plants. Isotope fractionation in plants is influenced by biotic factors, such as phenological stages and plant genetics, as well as abiotic factors. Different nutrient supply induced shifts in isotope fractionation patterns for Mg, Cu, and Zn, suggesting that isotope process tracing can be used as a tool to detect and quantify different uptake pathways in response to abiotic stresses. However, the interpretation of isotope fractionation in plants is challenging because many isotope fractionation factors associated with specific processes are unknown and experiments are often exploratory. To overcome these limitations, fundamental geochemical research should expand the database of isotope fractionation factors and disentangle kinetic and equilibrium fractionation. In addition, plant growth studies should further shift toward hypothesis-driven experiments, for example, by integrating contrasting nutrient supplies, using established model plants, genetic approaches, and by combining isotope analyses with complementary speciation techniques. To fully exploit the potential of isotope process tracing in plants, the interdisciplinary expertise of plant and isotope geochemical scientists is required.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Group of Plant Nutrition, Department of Environmental System Science, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Rebekah E. T. Moore
- MAGIC Group, Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gerd Patrick Bienert
- Crop Physiology, Molecular Life Sciences, Technical University of Munich, Freising, Germany
| | - Kristian Holst Laursen
- Plant Nutrients and Food Quality Research Group, Plant and Soil Science Section and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Simon Blotevogel
- Laboratoire Matériaux et Durabilité des Constructions (LMDC), UPS/INSA, Université Paul Sabatier - Toulouse III, Toulouse, France
| |
Collapse
|
10
|
Grigoryan R, Costas-Rodríguez M, Van Wonterghem E, Vandenbroucke RE, Vanhaecke F. Effect of Endotoxemia Induced by Intraperitoneal Injection of Lipopolysaccharide on the Mg isotopic Composition of Biofluids and Tissues in Mice. Front Med (Lausanne) 2021; 8:664666. [PMID: 34368182 PMCID: PMC8342922 DOI: 10.3389/fmed.2021.664666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Endotoxemia induced in vivo in mice by intraperitoneal injection of lipopolysaccharide (LPS) leads to (neuro)inflammation and sepsis. Also the homeostasis of mineral elements can be altered through mechanisms that still are poorly understood. The isotopic composition of Mg and the concentrations of the minor elements Ca, K, Mg, Na, P, and S were determined in biological fluids and tissues of young (14–28 weeks) and aged (40–65 weeks) LPS-injected mice and age-matched controls to reveal potential effects of the LPS-induced infection. Blood plasma of young and aged LPS-injected mice showed a heavy Mg isotopic composition, as well as elevated Mg and P concentrations, compared to matched controls. The plasma Mg isotopic composition was correlated with the P concentration in aged mice. Also the liver Mg isotopic composition was strongly affected in the young and aged LPS-injected mice, while for aged mice, an additional effect on the urine Mg isotopic composition was established. These observations were hypothetically associated with liver inflammation and/or hepatotoxicity, and reduced urinary Mg excretion, respectively. Also a regional endotoxin-induced difference was observed in the brain Mg isotopic composition for the aged mice only, and was attributed to potential disruption of the blood-brain barrier.
Collapse
Affiliation(s)
- Rosa Grigoryan
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Marta Costas-Rodríguez
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Le Goff S, Albalat E, Dosseto A, Godin JP, Balter V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9074. [PMID: 33634521 DOI: 10.1002/rcm.9074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Despite a wide range of potential applications, magnesium (Mg) isotope composition has been so far sparsely measured in reference materials with a biological matrix, which is important for the quality control of the results. We describe a method enabling the chemical separation of Mg in geological and biological materials and the determination of its stable isotope composition. METHODS Different geological (BHVO-1, BHVO-2, BCR-1, and IAPSO) and biological (SRM-1577c, BCR-383, BCR380R, ERM-CE464, DORM-2, DORM-4, TORT-3, and FBS) reference materials were used to test the performance of a new sample preparation procedure for Mg isotopic analysis. The procedure consisted of a simple three-stage elution method to separate Mg from the matrix. Mg isotopic analyses were performed in two different laboratories and with three different multi-collector inductively coupled plasma mass spectrometry instruments. RESULTS The biological reference materials show a wide range of δ26 Mg values (relative to DSM3 standard), spanning over 2‰, from 0.52 ± 0.29‰ (2SD, n = 7) in bovine liver (SRM-1577c) to -1.45 ± 0.20‰ (2SD, n = 5) in tuna fish (ERM-CE464), with an external precision of 0.03‰ (2SD, n = 85). CONCLUSIONS This study indicates that isotopic measurements of Mg in biological reference materials show good performance, with the results being within the accepted range. We confirmed that δ26 Mg values in liver are the most positive of all biological materials reported so far.
Collapse
Affiliation(s)
| | | | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | | |
Collapse
|
12
|
Wiggenhauser M, Aucour AM, Telouk P, Blommaert H, Sarret G. Changes of Cadmium Storage Forms and Isotope Ratios in Rice During Grain Filling. FRONTIERS IN PLANT SCIENCE 2021; 12:645150. [PMID: 33995443 PMCID: PMC8116553 DOI: 10.3389/fpls.2021.645150] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Rice poses a major source of the toxic contaminant cadmium (Cd) for humans. Here, we elucidated the role of Cd storage forms (i.e., the chemical Cd speciation) on the dynamics of Cd within rice. In a pot trial, we grew rice on a Cd-contaminated soil in upland conditions and sampled roots and shoots parts at flowering and maturity. Cd concentrations, isotope ratios, Cd speciation (X-ray absorption spectroscopy), and micronutrient concentrations were analyzed. During grain filling, Cd and preferentially light Cd isotopes were strongly retained in roots where the Cd storage form did not change (Cd bound to thiols, Cd-S = 100%). In the same period, no net change of Cd mass occurred in roots and shoots, and the shoots became enriched in heavy isotopes (Δ114/110Cd maturity-flowering = 0.14 ± 0.04‰). These results are consistent with a sequestration of Cd in root vacuoles that includes strong binding of Cd to thiol containing ligands that favor light isotopes, with a small fraction of Cd strongly enriched in heavy isotopes being transferred to shoots during grain filling. The Cd speciation in the shoots changed from predominantly Cd-S (72%) to Cd bound to O ligands (Cd-O, 80%) during grain filling. Cd-O may represent Cd binding to organic acids in vacuoles and/or binding to cell walls in the apoplast. Despite this change of ligands, which was attributed to plant senescence, Cd was largely immobile in the shoots since only 0.77% of Cd in the shoots were transferred into the grains. Thus, both storage forms (Cd-S and Cd-O) contributed to the retention of Cd in the straw. Cd was mainly bound to S in nodes I and grains (Cd-S > 84%), and these organs were strongly enriched in heavy isotopes compared to straw (Δ114/110Cd grains/nodes- straw = 0.66-0.72‰) and flag leaves (Δ114/110Cd grains/nodes-flag leaves = 0.49-0.52‰). Hence, xylem to phloem transfer in the node favors heavy isotopes, and the Cd-S form may persist during the transfer of Cd from node to grain. This study highlights the importance of Cd storage forms during its journey to grain and potentially into the food chain.
Collapse
Affiliation(s)
- Matthias Wiggenhauser
- Institute of Agricultural Sciences, Department of Environmental Systems Science, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Anne-Marie Aucour
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Philippe Telouk
- Laboratoire de Geologie de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Université de Lyon, Centre National de la Recherche Scientifique, Lyon, France
| | - Hester Blommaert
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| | - Géraldine Sarret
- ISTerre, Université Grenoble Alpes, Université Savoie Mont Blanc, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux, Grenoble, France
| |
Collapse
|
13
|
Brewer A, Harrold Z, Chang E, Gorman-Lewis D, Teng FZ. Magnesium isotope fractionation during microbially enhanced forsterite dissolution. GEOBIOLOGY 2020; 18:225-236. [PMID: 31788917 DOI: 10.1111/gbi.12372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/10/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Bacillus subtilis endospore-mediated forsterite dissolution experiments were performed to assess the effects of cell surface reactivity on Mg isotope fractionation during chemical weathering. Endospores present a unique opportunity to study the isolated impact of cell surface reactivity because they exhibit extremely low metabolic activity. In abiotic control assays, 24 Mg was preferentially released into solution during forsterite dissolution, producing an isotopically light liquid phase (δ26 Mg = -0.39 ± 0.06 to -0.26 ± 0.09‰) relative to the initial mineral composition (δ26 Mg = -0.24 ± 0.03‰). The presence of endospores did not have an apparent effect on Mg isotope fractionation associated with the release of Mg from the solid into the aqueous phase. However, the endospore surfaces preferentially adsorbed 24 Mg from the dissolution products, which resulted in relatively heavy aqueous Mg isotope compositions. These aqueous Mg isotope compositions increased proportional to the fraction of dissolved Mg that was adsorbed, with the highest measured δ26 Mg (-0.08 ± 0.07‰) corresponding to the highest degree of adsorption (~76%). The Mg isotope composition of the adsorbed fraction was correspondingly light, at an average δ26 Mg of -0.49‰. Secondary mineral precipitation and Mg adsorption onto secondary minerals had a minimal effect on Mg isotopes at these experimental conditions. Results demonstrate the isolated effects of cell surface reactivity on Mg isotope fractionation separate from other common biological processes, such as metabolism and organic acid production. With further study, Mg isotopes could be used to elucidate the role of the biosphere on Mg cycling in the environment.
Collapse
Affiliation(s)
- Aaron Brewer
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Zoe Harrold
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Elliot Chang
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA, USA
| | - Drew Gorman-Lewis
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Fang-Zhen Teng
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|