1
|
Hao J, Chen Y, Zhang L. Modeling trace elements over Athabasca oil sands region in Alberta, Canada using WRF-Chem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179144. [PMID: 40140263 DOI: 10.1016/j.scitotenv.2025.179144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025]
Abstract
The Athabasca Oil Sands Region (AOSR) in northern Alberta, Canada is a significant source of particulate elements, which may cause negative effects on human and ecosystem health. This study simulates the transport and deposition of eight elements (Al, Ca, Fe, K, Mn, Si, Ti, and Zn) in the AOSR during 2016-2017 using WRF-Chem with a recently developed regional-scale emission database of elements as model input. Point and area emissions of the elements were gridded in the model domain, with stack emissions also considering the plume rise. The model-measurement differences in annual concentrations of the sum of the eight elements were 23 % at AMS1, 25 % at AMS17, and - 56 % at AMS18. Modeled annual average concentrations and atmospheric deposition of individual elements ranged from 0.016 to 2.67 μg m-3 (the sum total of 5.98 μg m-3) and from 2.62 to 385 mg m-2 yr-1 (862 mg m-2 yr-1), respectively, in the central industrial area of the AOSR. The concentration and deposition decreased rapidly with distance from the center industrial area, e.g., by three orders of magnitude in areas 150 km away. Adding the three sites together, modeled total concentrations of the eight elements were 110 % higher during the cold season and 29 % lower during the warm season than the measured values, noting that constant emission rates were used throughout the years of 2016-2017. Two model sensitivity tests were conducted, with the first one using seasonally varying emissions and the second one replacing the default dry and wet deposition schemes in WRF-Chem with different ones found in literature, to demonstrate the magnitudes of the uncertainties in the model simulated ambient concentrations and atmospheric deposition of particulate elements and major causing factors of the uncertainties.
Collapse
Affiliation(s)
- Jingliang Hao
- Department of Earth and Space Science & Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Yongsheng Chen
- Department of Earth and Space Science & Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
2
|
Martin JT, Leshuk TMC, Armstrong K, Chai T, Young ZW, Paradis T, Bekele A, White T, Gu F. Photocatalytic treatment of diverse contaminants of potential concern in oil sands process-affected water. CHEMOSPHERE 2024; 365:143344. [PMID: 39278328 DOI: 10.1016/j.chemosphere.2024.143344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Oil sands process-affected water (OSPW), generated by surface mining in Canada's oil sands, require treatment of environmentally persistent dissolved organic compounds before release to the watershed. Conventional chemical and mechanical treatments have not proved suitable for treating the large quantities of stored OSPW, and the biological recalcitrance of some dissolved organics may not be adequately addressed by conventional passive treatment systems. Previous work has evaluated photocatalytic treatment as a passive advanced oxidation process (P-AOP) for OSPW remediation. This work expands upon this prior research to further characterize the effects of water chemistry on the treatment rate and detoxification threshold. Under artificial sunlight, buoyant photocatalysts (BPCs) detoxified all OSPW samples within 1 week of treatment time with simultaneous treatment of polycyclic aromatic hydrocarbons, naphthenic acid fraction components (NAFCs), and un-ionized ammonia. Overall, these results further demonstrate passive photocatalysis as an effective method for treatment of OSPW contaminants of potential concern (COPCs).
Collapse
Affiliation(s)
| | - Timothy M C Leshuk
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada
| | | | - Tia Chai
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada
| | | | - Theo Paradis
- Canadian Natural Resources Ltd., Calgary, Alberta, T2P 4J8, Canada
| | - Asfaw Bekele
- Imperial Oil Resources Limited, Calgary, Alberta, T2C 4P3, Canada
| | - Todd White
- Teck Resources Ltd., Vancouver, British Columbia, V6C 0B3, Canada
| | - Frank Gu
- H2nanO Inc., Kitchener, Ontario, N2R 1E8, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3E5, Canada.
| |
Collapse
|
3
|
Yang F, Mamun AA, Cheng I, Qiu X, Zhang L. Contributions of the oil sands sources to the ambient concentrations and deposition of particulate elements in the Canadian Athabasca oil sands region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165519. [PMID: 37451466 DOI: 10.1016/j.scitotenv.2023.165519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In this study, model sensitivity tests were conducted to investigate the relative contributions between emission sources of oil sands (OS) activities and other sources to the ambient concentrations and deposition of 29 particulate elements in the Athabasca oil sands region (AOSR) of Canada. Element emission sources from a recently developed emission database were grouped into three source sectors for elements in PM2.5 (OS-Industrial, OS-Dust, and Non-OS) and two source sectors for elements in PM2.5-10 (OS-All and Non-OS). The OS-Dust and OS-Industrial sectors (combined as one sector for PM2.5-10; OS-All) included element sources linked to dust and other industrial activities from the OS activities, respectively, whereas the Non-OS sector included remaining sources in the region, unrelated to the OS activities. The OS-Industrial, OS-Dust, and Non-OS emissions (tonnes/year) of all elements in PM2.5 were 326, 1430, and 562, respectively. The OS-All and Non-OS emissions (tonnes/year) of all elements in PM2.5-10 were 5890 and 2900, respectively. The element concentrations were simulated by the CALPUFF dispersion model. The sum of the domain averaged annual mean concentrations of all elements in PM2.5 and PM2.5-10 from all sources were 57.3 ng/m3 and 30.4 ng/m3, respectively. Except for Co (PM2.5 and PM2.5-10), Sb (PM2.5-10), and Sn (PM2.5-10), major proportions (≥ 59 %) of the ambient concentrations of the individual elements were linked to the OS source sector. Overall, the OS sector was responsible for 78 % and 68 % of the sum of the mean ambient concentrations of all elements in PM2.5 and PM2.5-10, respectively, which are close to the corresponding emission contributions (76 % and 67 %, respectively). Likewise, the bulk proportion (∼74 %) of the sum of the total atmospheric deposition of all elements was also associated with the OS sources. Carcinogenic and non-carcinogenic risks associated with inhalation exposure to airborne elements were below the recommended threshold risk levels.
Collapse
Affiliation(s)
- Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario N1G 5L3, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
4
|
Al Mamun A, Zhang L, Yang F, Cheng I, Qiu X. Atmospheric deposition mapping of particulate elements in the Canadian Athabasca oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121868. [PMID: 37244528 DOI: 10.1016/j.envpol.2023.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
This study used a deposition modeling framework to generate gridded dry, wet, and total (dry + wet) deposition fluxes of 27 particulate elements over the Canadian Athabasca oil sands region and its surrounding areas for the years 2016-2017. The framework employed the element concentrations from the CALPUFF dispersion model outputs that were bias-corrected against measured concentrations, modeled dry deposition velocities, precipitation analysis data, and literature values of element-specific fine mode fractions and scavenging ratios by rain and snow. The annual total deposition (mg/m2/year) of all elements (EM) across the domain ranged from 4.49 to 5450 and the mean and median deposition were 60.9 and 31.0, respectively. Total EM deposition decreased rapidly within a short distance from the oil sands mining area. Annual mean total deposition (mg/m2/year) of EM was 717 in Zone 1 (within 30 km from a reference point, representing the center of the oil sands mining area), 115 in Zone 2 (30-100 km from the reference point), and 35.4 in Zone 3 (beyond 100 km from the reference point). The deposition of individual elements was primarily governed by their respective concentrations and among all elements the annual mean total deposition (μg/m2/year) over the domain varied five orders of magnitude ranging from 0.758 (Ag) to 20,000 (Si). Annual mean dry and wet deposition (mg/m2/year) of EM over the domain were 15.7 and 45.2, respectively. Aside from S, which has relatively lower precipitation scavenging efficiencies, wet deposition was the dominant deposition type in the region contributing from 51% (Pb) to 86% (Ca) of the respective total deposition. Total EM deposition over the domain in the warm season (66.2 mg/m2/year) was slightly higher than that in the cold season (55.6 mg/m2/year). Deposition of individual elements in Zone 1 were generally lower than their deposition at other sites across North America.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada.
| | - Fuquan Yang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada; SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| | - Irene Cheng
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Xin Qiu
- SLR Consulting (Canada) Ltd, 100 Stone Road West, Suite 201, Guelph, Ontario, N1G 5L3, Canada
| |
Collapse
|
5
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
6
|
Li Y, Huang Y, Yuan L, He Y, Yin G, He T, He E, Ding F, Xia H, Xu H, Liu M, Tao S. The deposition mapping of polycyclic aromatic hydrocarbons in megacity Shanghai, China. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130173. [PMID: 36257109 DOI: 10.1016/j.jhazmat.2022.130173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The deposition of polycyclic aromatic hydrocarbon (PAHs) has far-reaching impacts on Earth's surface system and human health. However, a comprehensive understanding of PAHs' deposition in a high urbanized area is still lacking because of limited field measurements data and rough resolution of current models. In this research, a deposition map of PAHs with a resolution of 2 × 2 km in megacity Shanghai, China was established. Gridded annual total deposition of PAHs from July 2020 to June 2021 ranged from 385 to 10,631 ng/(m2·d), with a mean value of 2,611 ng/(m2·d). The highest PAHs deposition was found over the downtown Shanghai, which received 4.3 times the deposition flux of outlying areas. About 77 % of area in Shanghai was dominated by wet deposition which accounted for 62 % of total deposition in Shanghai. The total deposition showed a trend of summer>fall>spring>winter, which was similar to that of the amount of rain. Source apportionment and geographically weighted regression analysis showed that built-up land and human activities are key driving factors of PAHs' deposition in Shanghai. Our results suggest that intensive human activities could alter the PAHs deposition distribution in Shanghai, and improve the understanding of PAHs' environmental behavior in high urbanized area.
Collapse
Affiliation(s)
- Ye Li
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Lina Yuan
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Yue He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Tianhao He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Erkai He
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Fangfang Ding
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Haibin Xia
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China
| | - Haoran Xu
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Minhang District, Shanghai 200241, China.
| | - Shu Tao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Han Y, Du X, Farjad B, Goss G, Gupta A, Faramarzi M. A numerical modeling framework for simulating the key in-stream fate processes of PAH decay in Muskeg River Watershed, Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157246. [PMID: 35908714 DOI: 10.1016/j.scitotenv.2022.157246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/12/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Most previous water quality studies oversimplified in-stream processes for modeling the fate and transport of critical organic contaminants, such as Polycyclic Aromatic Hydrocarbons (PAHs). Taking four selected PAHs as representative organic contaminants, we developed a numerical modeling framework using a Water Quality Analysis Simulation Program 8 (WASP8) and a well-established watershed model, i.e., Soil and Water Assessment Tool (SWAT) to: (1) address the influence of in-stream processes, including direct photolysis, volatilization, partitioning of PAHs to suspended solids, and DOC complexation processes on PAH concentrations; and (2) establish relationships between spatiotemporal distribution of environmental factors (e.g., ice coverage, water temperature, wind, and light attenuation), in-stream processes, and PAH concentrations at a watershed scale. Using calibrated SWAT and WASP8 models, we evaluated the impacts of seasonal changes in environmental factors on in-stream processes in the Muskeg River watershed, which is part of the Athabasca Oil Sands Region (AOSR), the third-largest crude oil reserves of the world in western Canada. Among four selected PAHs, simulation results suggest that Naphthalene primarily decay in the water through volatilization or direct photolysis. For Phenanthrene, Pyrene, and Chrysene, DOC complexation, volatilization, and direct photolysis all contribute to their decay in the water, with a strong dependence on seasonality. Model simulations indicated that direct photolysis and volatilization rates are meager in cold seasons, mainly due to low river temperature and ice coverage. However, these processes gradually resume when entering the warm season. In summary, the model simulation results suggest that critical in-stream processes such as direct photolysis, volatilization, and partitioning and their relationship with environmental factors should be considered when simulating the fate and transport of organic contaminants in the river systems. Our results also reveal that the relationship between environmental factors and fate processes affecting PAH concentrations can vary across a watershed and in different seasons.
Collapse
Affiliation(s)
- Yanlai Han
- Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| | - Xinzhong Du
- Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada; Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Babak Farjad
- Alberta Environment and Parks, Calgary, AB T2E 7J2, Canada
| | - Greg Goss
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Anil Gupta
- Alberta Environment and Parks, Calgary, AB T2E 7J2, Canada
| | - Monireh Faramarzi
- Watershed Science & Modelling Laboratory, Department of Earth and Atmospheric Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
8
|
Incorporating Industrial and Climatic Covariates into Analyses of Fish Health Indicators Measured in a Stream in Canada’s Oil Sands Region. ENVIRONMENTS 2022. [DOI: 10.3390/environments9060073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Industrial and other human activities in Canada’s oil sands region (OSR) influence the environment. However, these impacts can be challenging to separate from natural stresses in flowing waters by comparing upstream reference sites to downstream exposure locations. For example, health indicators of lake chub (Couesius plumbeus) compared between locations in the Ells River (Upper and Lower) in 2013 to 2015 and 2018 demonstrated statistical differences. To further examine the potential sources of variation in fish, we also analyzed data at sites over time. When fish captured in 2018 were compared to pooled reference years (2013–2015), results indicated multiple differences in fish, but most of the differences disappeared when environmental covariates were included in the Elastic Net (EN) regularized regression models. However, when industrial covariates were included separately in the EN, the large differences in 2018 also disappeared, also suggesting the potential influence of these covariables on the health of fish. Further ENs incorporating both environmental and industrial covariates along with other variables which may describe industrial and natural influences, such as spring or summer precipitation and summer wind speeds and distance-based penalty factors, also support some of the suspected and potential mechanisms of impact. Further exploratory analyses simulating changes from zero and the mean (industrial) activity levels using the regression equations respectively suggest effects exceeding established critical effect sizes (CES) for fish measurements may already be present or effects may occur with small future changes in some industrial activities. Additional simulations also suggest that changing regional hydrological and thermal regimes in the future may also cause changes in fish measurements exceeding the CESs. The results of this study suggest the wide applicability of the approach for monitoring the health of fish in the OSR and beyond. The results also suggest follow-up work required to further evaluate the veracity of the suggested relationships identified in this analysis.
Collapse
|
9
|
Arciszewski TJ. A re-analysis and review of elemental and polycyclic aromatic compound deposition in snow and lake sediments from Canada's Oil Sands Region integrating industrial performance and climatic variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153254. [PMID: 35065131 DOI: 10.1016/j.scitotenv.2022.153254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Much of the research from Canada's oil sands region (OSR) shows contaminants of concern (CoCs) throughout the ambient environment surrounding the industrial facilities. While there are some well-established sources of the CoCs, there is also spatial and temporal variability suggesting activity intensity, changes in technology, types and amounts of fuels combusted at the facilities, and climate may affect the results of deposition studies. This study re-analysed published data on the deposition of elements and polycyclic aromatic compounds (PACs) in snow and the sediments of some lakes by incorporating production data from facilities and climate. Using the Elastic Net (EN) regularized regression, variables describing potential associations between facility-specific activity and climate on the deposition of CoCs were identified. Among the selected variables, the combustion of delayed petroleum coke at the Suncor Basemine was associated with the deposition of CoCs, including elements in snow and in some lakes. Similarly, combustion of petroleum coke at Syncrude Mildred Lake was also identified in some models. In both cases, the effects of petroluem coke combustion are likely associated with the emission and deposition of fly ash. The mass of stored petroleum coke was not selected in snow CoC models, but the speed of the wind was a common driver for PACs. However, the mass of stockpiled petcoke was more closely associated with both elements and PACs in lake sediments. While the potential influence of other variables on the occurrence of CoCs in the OSR was also identified, including the production of crude bitumen and synthetic crude, the use of process and natural gases, temperature, and precipitation, these analyses support much of the earlier work and provides additional nuance. While more work is required, these results suggest facility-specific production and climatic data can be coupled with existing approaches to improve the identification of sources of CoCs in Canada's OSR and practices associated with their release.
Collapse
Affiliation(s)
- T J Arciszewski
- Resource Stewardship Division, Alberta Environment and Parks, Calgary, Alberta, Canada.
| |
Collapse
|
10
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
11
|
Horb EC, Wentworth GR, Makar PA, Liggio J, Hayden K, Boutzis EI, Beausoleil DL, Hazewinkel RO, Mahaffey AC, Sayanda D, Wyatt F, Dubé MG. A decadal synthesis of atmospheric emissions, ambient air quality, and deposition in the oil sands region. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:333-360. [PMID: 34676977 PMCID: PMC9299045 DOI: 10.1002/ieam.4539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 05/20/2023]
Abstract
This review is part of a series synthesizing peer-reviewed literature from the past decade on environmental monitoring in the oil sands region (OSR) of northeastern Alberta. It focuses on atmospheric emissions, air quality, and deposition in and downwind of the OSR. Most published monitoring and research activities were concentrated in the surface-mineable region in the Athabasca OSR. Substantial progress has been made in understanding oil sands (OS)-related emission sources using multiple approaches: airborne measurements, satellite measurements, source emission testing, deterministic modeling, and source apportionment modeling. These approaches generally yield consistent results, indicating OS-related sources are regional contributors to nearly all air pollutants. Most pollutants exhibit enhanced air concentrations within ~20 km of surface-mining activities, with some enhanced >100 km downwind. Some pollutants (e.g., sulfur dioxide, nitrogen oxides) undergo transformations as they are transported through the atmosphere. Deposition rates of OS-related substances primarily emitted as fugitive dust are enhanced within ~30 km of surface-mining activities, whereas gaseous and fine particulate emissions have a more diffuse deposition enhancement pattern extending hundreds of kilometers downwind. In general, air quality guidelines are not exceeded, although these single-pollutant thresholds are not comprehensive indicators of air quality. Odor events have occurred in communities near OS industrial activities, although it can be difficult to attribute events to specific pollutants or sources. Nitrogen, sulfur, polycyclic aromatic compounds (PACs), and base cations from OS sources occur in the environment, but explicit and deleterious responses of organisms to these pollutants are not as apparent across all study environments; details of biological monitoring are discussed further in other papers in this special series. However, modeling of critical load exceedances suggests that, at continued emission levels, ecological change may occur in future. Knowledge gaps and recommendations for future work to address these gaps are also presented. Integr Environ Assess Manag 2022;18:333-360. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Erin C. Horb
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Gregory R. Wentworth
- Resource Stewardship DivisionAlberta Environment and ParksEdmontonAlbertaCanada
- Present address: Environmental Protection BranchEnvironment and Climate Change CanadaEdmontonAlbertaCanada
| | - Paul A. Makar
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - John Liggio
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | - Katherine Hayden
- Air Quality Research DivisionEnvironment and Climate Change CanadaTorontoOntarioCanada
| | | | | | | | - Ashley C. Mahaffey
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | - Diogo Sayanda
- Resource Stewardship DivisionAlberta Environment and ParksCalgaryAlbertaCanada
| | | | | |
Collapse
|
12
|
Exploring the Influence of Industrial and Climatic Variables on Communities of Benthic Macroinvertebrates Collected in Streams and Lakes in Canada’s Oil Sands Region. ENVIRONMENTS 2021. [DOI: 10.3390/environments8110123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identifying and tracking the influence of industrial activities on streams and lakes is a priority for monitoring in Canada’s oil sands region (OSR). While differences in indicators are often found in waterbodies adjacent to mining facilities, the confounding influence of natural exposures to bitumen and other stressors can affect the identification of industrial effects. However, recent work suggests metrics of industrial activity at individual facilities, including production and fuel consumption, may be used in site-specific analyses to identify influence of the industry as a whole as well as individual operations. This study further examined the potential relationships between industrial and climatic variables on benthic communities from 13 streams and 4 lakes using publicly available data from the minable region and the Elastic Net (EN) variable selection technique. From the full set of possible industrial and climate variables, the EN commonly identified the negative influence of plant and fuel use of petroleum coke at the Suncor Basemine on benthic communities in streams and lakes. The fuel/plant use of petroleum coke at Suncor likely reflects the emission and regional deposition of delayed coke fly ash. Among the other industrial variables, crude bitumen production at Syncrude Mildred Lake and other facilities, steam injection rates, and petroleum coke stockpiling were also selected for some benthic invertebrate indices at some sites. Land disturbance metrics were also occasionally selected, but the analyses largely support the predominant influence of industrial facilities via (inferred) atmospheric pathways. While climate variables were also commonly selected by EN and follow-up work is needed, this study suggests that integrating industrial performance data into analyses of biota using a site-specific approach may have broad applicability in environmental monitoring in the OSR. More specifically, the approach used here may both resolve the long-standing challenge of natural confounding influences on monitoring the status of streams in the OSR and track the influence of industrial activities in biota below critical effect sizes.
Collapse
|
13
|
Marvin CH, Berthiaume A, Burniston DA, Chibwe L, Dove A, Evans M, Hewitt LM, Hodson PV, Muir DCG, Parrott J, Thomas PJ, Tomy GT. Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117442. [PMID: 34380209 DOI: 10.1016/j.envpol.2021.117442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Collapse
Affiliation(s)
- Christopher H Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| | - Alicia Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, Quebec, Canada
| | - Deborah A Burniston
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Leah Chibwe
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Alice Dove
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Peter V Hodson
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Derek C G Muir
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Joanne Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Philippe J Thomas
- Wildlife and Landscape Research Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Golzadeh N, Barst BD, Baker JM, Auger JC, McKinney MA. Alkylated polycyclic aromatic hydrocarbons are the largest contributor to polycyclic aromatic compound concentrations in traditional foods of the Bigstone Cree Nation in Alberta, Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116625. [PMID: 33582641 DOI: 10.1016/j.envpol.2021.116625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Rising global demand for energy promotes extensive mining of natural resources, such as oil sands extractions in Alberta, Canada. These extractive activities release hazardous chemicals into the environment, such as polycyclic aromatic compounds (PACs), which include the parent polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, and sulfur-containing heterocyclic dibenzothiophenes (DBTs). In areas adjacent to industrial installations, Indigenous communities may be exposed to these PACs through the consumption of traditional foods. Our objective was to evaluate and compare the concentrations of total PACs (∑PAC), expressed as the sum of the 16 U.S. EPA priority PAHs (∑PAH), 49 alkylated PAHs (∑alkyl-PAH), and 7 DBTs (∑DBT) in plant and animal foods collected in 2015 by the Bigstone Cree Nation in Alberta, Canada. We analyzed 42 plant tissues, 40 animal muscles, 5 ribs, and 4 pooled liver samples. Concentrations of ∑PAC were higher in the lichen, old man's beard (Usnea spp.) (808 ± 116 ng g-1 w.w.), than in vascular plants, and were also higher in smoked moose (Alces alces) rib (461 ± 120 ng g-1 w.w.) than in all other non-smoked animal samples. Alkylated-PAHs accounted for between 63% and 95% of ∑PAC, while the concentrations of ∑PAH represented 4%-36% of ∑PAC. Contributions of ∑DBT to ∑PAC were generally lowest, ranging from <1% to 14%. While the concentrations of benzo(a)pyrene (B[a]P) and ∑PAH4 (∑benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and B[a]P) in all samples were below guideline levels for human consumption as determined by the European Commission, guideline levels for the more prevalent alkylated PAHs are not available. Given the predominance of alkylated PAHs in all food samples and the potentially elevated toxicity relative to parent PAHs of this class of PACs, it is critical to consider a broader range of PACs other than just parent PAHs in research conducted close to oil sands mining activities.
Collapse
Affiliation(s)
- Nasrin Golzadeh
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Benjamin D Barst
- Water and Environmental Research Center (WERC), University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Janelle M Baker
- Department of Anthropology, Centre for Social Sciences, Athabasca University, Athabasca, Alberta, Canada
| | - Josie C Auger
- Nukskahtowin and Faculty of Humanities and Social Sciences, Centre for World Indigenous Knowledge and Research, Athabasca University, Athabasca, Alberta, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
15
|
Wang R, Cai J, Cai F, Xia L, Sun X, Zeng EY. Construction of a regional inventory to characterize polycyclic aromatic hydrocarbon emissions from coal-fired power plants in Anhui, China from 2010 to 2030. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115972. [PMID: 33187847 DOI: 10.1016/j.envpol.2020.115972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
The infrastructures of coal-fired power plants in China have changed significantly since 2010, but the magnitude and characteristics of polycyclic aromatic hydrocarbon (PAH) emissions remain to be updated. In the present study, a unit-based PAH emission inventory for coal-fired power plants between 2010 and 2017 was constructed for Anhui Province, China. Atmospheric PAH emissions from pulverized coal (PC) and circulating fluidized bed (CFB) units in 2017 were 8600 kg and 7800 kg, respectively. The emission rates and intensities for CFB units (7.2 kg ton-1 and 2.1 kg MW-1) were significantly higher than those for PC units (1.1 kg ton-1 and 0.19 kg MW-1), primarily because CFB boilers were operated at lower combustion temperatures and poor combustion conditions compared to PC boilers. The distribution patterns of PAH emissions across different age groups largely reflected the time periods for constructing coal-fired units in Anhui and for the transition of small units to large ones. The accomplishment of ultralow emission technologies and phase-out of outdated coal-fired units were responsible for the decreasing trend of PAH emissions between 2012 and 2017. The warmer summer in 2013 and 2017 and colder winter in 2011 compared to other years probably caused increased use of air conditioners, resulting in increased electricity consumption and PAH emissions. Future PAH emissions would decrease by 45-57% during 2017-2030, benefitting from power plant fleet optimization, i.e., phasing out outdated coal-fired units and replacing them with large ones. With the best available optimized power plant fleets and end-of-pipe control measures accomplished in Anhui's CFPPs, PAH emissions in 2030 would potentially be reduced by 56-65%.
Collapse
Affiliation(s)
- Ruwei Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Jiawei Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Feixuan Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Linlin Xia
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangfei Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China; Research Center of Low Carbon Economy for Guangzhou Region, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
16
|
Potential Influence of Sewage Phosphorus and Wet and Dry Deposition Detected in Fish Collected in the Athabasca River North of Fort McMurray. ENVIRONMENTS 2021. [DOI: 10.3390/environments8020014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The health of fish is a primary indicator of ecosystem response in the Oil Sands Region of northeastern Alberta. However, industrial activity is accompanied by other stressors, such as the discharge of sewage, municipal activity, forest fires, and natural weathering and erosion of bitumen. To combat the spatial confounding influences, we examined white sucker (Catostomus commersonii) captured in the Athabasca River at sites over time (2011–2019) and included covariates to account for the possible sources of influence. The analyses suggest spatially heterogeneous influences of natural factors on fish, such as discharge and air temperature, but also the influence of sewage phosphorus and precipitation. Among the stressors examined here, precipitation may be the most complex and may include a mixture of sources including inputs from tributaries, urban activity, industrial development, and forest fires. Although suggestive, the attribution of variance and detection of changes are affected by sample sizes in some years; these analyses may have missed effects or misspecified important relationships, especially in males. Despite these limitations, the analyses suggest potential differences may be associated with precipitation and highlight the need to integrate robust information on known and suspected stressors in future monitoring of aquatic ecosystems in the oil sands region and beyond.
Collapse
|
17
|
Tevlin A, Galarneau E, Zhang T, Hung H. Polycyclic aromatic compounds (PACs) in the Canadian environment: Ambient air and deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116232. [PMID: 33412446 DOI: 10.1016/j.envpol.2020.116232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic compounds (PACs) in Canadian air and deposition were examined at the national scale for the first time in over twenty-five years. Air concentrations spanned four orders of magnitude, and were highest near industrial emitters and lowest in the Arctic. Declines in unsubstituted PAHs were observed at locations close to industrial facilities that had reduced emissions, but trends elsewhere were modest or negligible. Retene concentrations are increasing at several locations. Ambient concentrations of benzo[a]pyrene exceeded Ontario's health-based guideline in many urban/industrial areas. The estimated toxicity of the ambient PAC mixture increased by up to a factor of six when including compounds beyond the US EPA PAHs. Knowledge of PAC deposition is limited to the Laurentian Great Lakes and Athabasca Oil Sands regions. The atmosphere remained a net source of PAHs to the Great Lakes, though atmospheric inputs were decreasing with halving times of 26-30 years. Chemical transport modelling substantially overestimated wet deposition, but model performance is unknown for dry deposition. Sources from Asia, Europe and North America contributed to Arctic and Sub-Arctic concentrations, whereas transboundary or long-range transport have not been assessed outside Canada's north. Climate-related impacts from re-emission and forest fires were implicated in maintaining air concentrations in the high Arctic that were not consistent with global emissions reductions. Industrial emission decreases were substantial at the national scale, but their influence on the environment was limited to areas near relevant facilities. When examined through the lens of ambient levels at the local scale, evidence suggested that contributions from residential wood combustion and motor vehicles were smaller and larger, respectively, than those reported in national inventories. Future work aimed at characterizing PACs beyond the EPA PAHs, improving measurement coverage, elucidating deposition phenomena, and refining estimates of source contributions would assist in reducing remaining knowledge gaps about PACs in Canada.
Collapse
Affiliation(s)
- Alexandra Tevlin
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada.
| | - Tianchu Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| |
Collapse
|
18
|
Muir DCG, Galarneau E. Polycyclic aromatic compounds (PACs) in the Canadian environment: Links to global change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116425. [PMID: 33460875 DOI: 10.1016/j.envpol.2021.116425] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
In this review, global change processes have been linked to polycyclic aromatic compounds (PACs) in Canada and a first national budget of sources and sinks has been derived. Sources are dominated by wildfire emissions that affect western and northern regions of Canada disproportionately due to the location of Pacific and boreal forests and the direction of prevailing winds. Wildfire emissions are projected to increase under climate warming along with releases from the thawing of glaciers and permafrost. Residential wood combustion, domestic transportation and industry contribute the bulk of anthropogenic emissions, though they are substantially smaller than wildfire emissions and are not expected to change considerably in coming years. Other sources such as accidental spills, deforestation, and re-emission of previous industrial deposition are expected to contribute anthropogenic and biogenic PACs to nearby ecosystems. PAC sinks are less well-understood. Atmospheric deposition is similar in magnitude to anthropogenic sources. Considerable knowledge gaps preclude the estimation of environmental transformations and transboundary flows, and assessing the importance of climate change relative to shifts in population distribution and energy production is not yet possible. The outlook for PACs in the Arctic is uncertain due to conflicting assessments of competing factors and limited measurements, some of which provide a baseline but have not been followed up in recent years. Climate change has led to an increase in primary productivity in the Arctic Ocean, but PAC-related impacts on marine biota appear to be modest. The net effect of changes in ecological exposure from changing emissions and environmental conditions throughout Canada remains to be seen. Evidence suggests that the PAC budget at the national scale does not represent impacts at the local or regional level. The ability to assess future trends depends on improvements to Canada's environmental measurement strategy and biogeochemical modelling capability.
Collapse
Affiliation(s)
- Derek C G Muir
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, L7S1A1, Canada.
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada
| |
Collapse
|
19
|
Chibwe L, Muir DCG, Gopalapillai Y, Shang D, Kirk JL, Manzano CA, Atkinson B, Wang X, Teixeira C. Long-term spatial and temporal trends, and source apportionment of polycyclic aromatic compounds in the Athabasca Oil Sands Region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115351. [PMID: 33152634 DOI: 10.1016/j.envpol.2020.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
We investigated the spatio-temporal trends of polycyclic aromatic compounds (PACs) deposition in the Athabasca Oil Sands Region (AOSR) between 2008 and 2017, and applied source apportionment tools to assess sources using snowpacks. Estimated PAC mass deposition was significantly correlated with crude oil production (R2 = 0.48, p = 0.03), and increased between 2008 and 2017. Loadings of alkylated PACs c1-, c2-fluorenes/pyrenes and c1-, c3-benzo[a]anthracenes/chrysenes/triphenylenes significantly increased at mid-field sites (25-50 km from central industrial reference site, AR6) (Mann-Kendall, p < 0.05) reflecting physical expansion of the AOSR. The distance from emission sources was important in the deposition of PACs, including the distance from AR6 (R2 = 0.69-0.91), nearest petcoke storage (R2 = 0.77-0.88), 0.89) and upgrader stack (R2 = 0.56-0.61). Source apportionment PAC distribution profiles of the source materials (petcokes, oil sand ores, road dust) did not show unique matching profiles with the snowpacks. However, the minimal presence of retene in petcokes and an abundance of benzo[ghi]fluoranthene in road dust was observed, and suggests potential for these compounds as chemical markers in distinguishing sources. Furthermore, correlations between PACs and selected metal(loid)s in the AOSR snowpacks were assessed to infer potential common sources. Significant positive (p < 0.05) correlations between metal(loid)s enriched in bitumen (vanadium, molybdenum, nickel) and PACs, at near to mid-field (0-50 km from AR6) sites suggests common sources or similar transfer and fate processes. The results of our study convey data necessary for monitoring studies in the constantly developing AOSR, advance our knowledge of PACs profiles in source materials (including the much less studied alkylated PACs and dibenzothiophenes), which will be valuable for other studies related to oil pollution, urban run-off and forest fires. PACs mass deposition increasing between 2008 and 2017 coincident with crude oil production, and retene and benzo[ghi]fluoranthene show potential in distinguishing AOSR sources.
Collapse
Affiliation(s)
- Leah Chibwe
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada.
| | - Yamini Gopalapillai
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada; Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| | - Dayue Shang
- Pacific and Yukon Laboratory for Environmental Testing, Environment & Climate Change Canada, North Vancouver, BC, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada
| | - Carlos A Manzano
- Center for Environmental Science, Faculty of Science, University of Chile, Santiago, Chile
| | - Beau Atkinson
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada
| | - Camilla Teixeira
- Aquatic Contaminants Research Division, Environment & Climate Change Canada, Burlington, ON, Canada
| |
Collapse
|
20
|
Zhang Y, Shen Z, Sun J, Zhang L, Zhang B, Zhang T, Wang J, Xu H, Liu P, Zhang N, Cao J. Parent, alkylated, oxygenated and nitro polycyclic aromatic hydrocarbons from raw coal chunks and clean coal combustion: Emission factors, source profiles, and health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137696. [PMID: 32182464 DOI: 10.1016/j.scitotenv.2020.137696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
Residential coals are still inevitable using in developing areas in China. Clean coal briquettes, normally using alkaline substance such as lime or red mud (RM) as the additive, were helpful in pollution emission reduction even without changes of stoves. Studies of atmospheric polycyclic aromatic hydrocarbons (PAHs) emission characteristics from RM clear coal combustion were limited. In this study, emission factors (EFs), sources profiles, and health risks of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were investigated for raw coal chunks and clean coal (with red mud) through combustion experiments. EFs of total PAHs were found to be 160.1 ± 100.9 mg·kg-1 and 19.4 ± 6.1 mg·kg-1 for bituminous and anthracite raw coal chunks (B-C and A-C), respectively. EFs values were highest for parent PAHs (p-PAHs), followed by oxygenated PAHs (o-PAHs), alkylated PAHs (a-PAHs), and nitro PAHs (n-PAHs). EFs of p-PAHs account for 80% and 52% of total PAHs emissions for B-C and A-C, respectively, while those for o-PAHs are 22.9% and 44.9%, demonstrating residential coal combustion as a significant primary source for p-PAHs and o-PAHs. Clean coals were developed through cold-press technology with red mud (RM) as additive, and clean coals with RM contents of 10% are referred to as B-10% (bituminous) and A-10% (anthracite). Compared to raw coals chunks, EFs were reduced from 128.1, 2.5, 29.3 mg·kg-1 and 161.8 μg·kg-1 to 83.5, 1.3, 16.4 mg·kg-1 and 102.2 μg·kg-1 by B-10%, and from 10.1, 0.6, 8.7 mg·kg-1 and 20.6 μg·kg-1 to 11.9, 0.2, 2.4 mg·kg-1 and 15.3 μg·kg-1 by A-10% for p-PAHs, o-PAHs, a-PAHs and n-PAHs, respectively. Diagnostic ratios of 5-Nitroacenaphthene / Acenaphthene (0.02-0.05 for coal, 0.0002 for biomass) can be used to separate residential coal and biomass burning in source analysis. When B-C was replaced by B-10%, both noncancer (0.58 to 0.33 for male, 1.65 to 0.95 for female in hazard quotient) and cancer risks (5.68 × 10-4 to 2.73 × 10-4 for male, 2.63 × 10-3 to 1.27 × 10-3 for female) can be reduced. o-PAHs should be paid more attention because of its high cancer risks caused by 6H-Benzo(C,D)Pyrene-6-One (1.74 × 10-5 for male, 8.07 × 10-5 for female), which are even more than the total risks caused by n-PAHs (3.59 × 10-7 for male, 1.66 × 10-6 for female). Results from this study highlighted the environment and health effects of PAHs originated from residential coal combustion, and proposed an effective way by using clean coal to alleviate the associated negative impacts.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China; State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China.
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada
| | - Bin Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tian Zhang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinhui Wang
- NICU, Xi'an Children's Hospital, Xi'an 710003, China
| | - Hongmei Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pingping Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - NingNing Zhang
- State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| | - Junji Cao
- State Key laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710049, China
| |
Collapse
|
21
|
Davidson CJ, Foster KR, Tanna RN. Forest health effects due to atmospheric deposition: Findings from long-term forest health monitoring in the Athabasca Oil Sands Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134277. [PMID: 31689668 DOI: 10.1016/j.scitotenv.2019.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 05/05/2023]
Abstract
Oil sands developments release acidifying compounds (SO2 and NO2) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities. Sulphur, BC and trace metal concentrations in lichens increased between 2008 and 2014. Source apportionment studies suggest fugitive dust in proximity to mining is a primary source of BC, trace element and organic compound deposition, and BC deposition may be neutralizing acidifying deposition. Sulphur accumulation in soils and nitrogen effects on vegetation may indicate early stages of acidification. Deposition estimates for sites close to emissions sources exceed proposed regulatory trigger levels, suggesting a detailed assessment of acidification risk close to the emission sources is warranted. However, there is no evidence of widespread acidification as suggested by recent modeling studies, likely due to high BC deposition. FHM Program evolution should include continued integration with modeling approaches, ongoing collection and assessment of monitoring data and testing for change over time, and addition of monitoring sites to fill gaps in regional coverage.
Collapse
Affiliation(s)
| | | | - Rajiv N Tanna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Altshuler SL, Ahad JME, Chow JC, Duane C, Dubé M, Legge AH, Percy KE, Stevenson ED, Watson JG. Advances in science and applications in air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:1133-1141. [PMID: 31437101 DOI: 10.1080/10962247.2019.1659192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Affiliation(s)
| | - Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada , Québec , QC , Canada
| | - Judith C Chow
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences , Xi'an, Shaanxi Province , People's Republic of China
- Desert Research Institute , Reno , NV , USA
| | - Calvin Duane
- Canadian Natural Resources Limited , Calgary , Alberta , Canada
| | - Monique Dubé
- Integrated Environmental Analytics & Prediction Branch, Alberta Environment and Parks , Edmonton , Alberta , Canada
| | | | - Kevin E Percy
- Atlantic Forest Research Collaborative, University of New Brunswick , Fredericton , New Brunswick , Canada
| | - Eric D Stevenson
- Bay Area Air Quality Management District , San Francisco , CA , USA
| | - John G Watson
- State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences , Xi'an, Shaanxi Province , People's Republic of China
- Desert Research Institute , Reno , NV , USA
| |
Collapse
|
23
|
Vehniäinen ER, Haverinen J, Vornanen M. Polycyclic Aromatic Hydrocarbons Phenanthrene and Retene Modify the Action Potential via Multiple Ion Currents in Rainbow Trout Oncorhynchus mykiss Cardiac Myocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2145-2153. [PMID: 31237719 DOI: 10.1002/etc.4530] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/23/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in aqueous environments. They affect cardiovascular development and function in fishes. The 3-ring PAH phenanthrene has recently been shown to impair cardiac excitation-contraction coupling by inhibiting Ca2+ and K+ currents in marine warm-water scombrid fishes. To see if similar events take place in a boreal freshwater fish, we studied whether the PAHs phenanthrene and retene (an alkylated phenanthrene) modify the action potential (AP) via effects on Na+ (INa ), Ca2+ (ICaL ), or K+ (IKr , IK1 ) currents in the ventricular myocytes of the rainbow trout (Oncorhynchus mykiss) heart. Electrophysiological characteristics of myocytes were measured using whole-cell patch clamp. Micromolar concentrations of phenanthrene and retene modified the shape of the ventricular AP, and retene profoundly shortened the AP at low micromolar concentrations. Both PAHs increased INa and reduced ICaL and IKr , but retene was more potent. Neither of the PAHs had an effect on IK1 . Our results show that phenanthrene and retene affect cardiac function in rainbow trout by a mechanism that involves multiple cardiac ion channels, and the final outcome of these changes (shortening of AP) is opposite to that observed in scombrid fishes (prolongation of AP). The results also show that retene and aryl hydrocarbon receptor (AhR) agonist have an additional mechanism of toxicity besides the previously known AhR-mediated, transcription-dependent one. Environ Toxicol Chem 2019;38:2145-2153. © 2019 SETAC.
Collapse
Affiliation(s)
- Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
24
|
Bilodeau JC, Gutierrez Villagomez JM, Kimpe LE, Thomas PJ, Pauli BD, Trudeau VL, Blais JM. Toxicokinetics and bioaccumulation of polycyclic aromatic compounds in wood frog tadpoles (Lithobates sylvaticus) exposed to Athabasca oil sands sediment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:217-225. [PMID: 30471987 DOI: 10.1016/j.aquatox.2018.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
We performed accumulation-elimination experiments of polycyclic aromatic compounds (PACs) in wood frog tadpoles (Lithobates sylvaticus) using river sediment from Canada's Athabasca oil sands region. The PACs in wood frog tadpoles were ∼2x higher on average when the animals were in direct contact with PAC-contaminated sediment than when they were separated from the sediment with a screen and exposed only to aqueous PACs. These results suggest that sediment exposure/ingestion contributes as much to PAC accumulation in tadpoles as exposure via aqueous pathways. Alkyl-substituted PAC concentrations in exposed tadpoles exceeded those of the unsubstituted (parent) PACs by about 10 × . Bioaccumulation factors ranged between 0.01 and 4.93, with parent PACs having higher bioaccumulation factors than alkylated PACs. Wood frog tadpoles efficiently eliminated and metabolized most parent and alkyl-substituted PACs, though some compounds (e.g., C4-naphthalenes) had higher bioaccumulation potential and may serve as effective markers of exposure. Here we present a comprehensive analysis of the toxicokinetics and bioaccumulation of PACs (52 analytes) in amphibian larvae, and highlight the importance of sediment exposure when considering the bioaccumulation and potential biological impact of PACs in benthic and epibenthic organisms.
Collapse
Affiliation(s)
- J C Bilodeau
- Department of Biology, University of Ottawa, 30 Marie Curie Street, Ottawa, Ontario, K1N 6N5, Canada
| | - J M Gutierrez Villagomez
- Department of Biology, University of Ottawa, 30 Marie Curie Street, Ottawa, Ontario, K1N 6N5, Canada
| | - L E Kimpe
- Department of Biology, University of Ottawa, 30 Marie Curie Street, Ottawa, Ontario, K1N 6N5, Canada
| | - P J Thomas
- Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - B D Pauli
- Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - V L Trudeau
- Department of Biology, University of Ottawa, 30 Marie Curie Street, Ottawa, Ontario, K1N 6N5, Canada
| | - J M Blais
- Department of Biology, University of Ottawa, 30 Marie Curie Street, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|