1
|
Chand N, Krause S, Prajapati SK. The potential of microplastics acting as vector for triclosan in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107381. [PMID: 40311399 DOI: 10.1016/j.aquatox.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
There is increased evidence of the co-occurrence of microplastics (MPs) with other co-pollutants in surface water globally, leading to ecological and environmental concerns. The risks and toxicity of co-occurring pollutants largely depend on the mechanisms controlling the activation of their various sources, their fate and transport in different environmental media. Due to their size-specific surface area, MPs in the environment can have a strong affinity for interactions with hydrophobic compounds and have a high sorption capacity for various emerging contaminants (ECs). ECs like the antibacterial and antifungal agent such as Triclosan (TCS) are persistent in the environment. Moreover, TCS in aquatic environments has a low solubility, and high octanol-water partitioning co-efficient which raises the possibility of TCS to interact with other environmental pollutants such as MPs. The interactions of TCS with MPs in the environment are controlled by a range of mechanism such as hydrogen bonding, hydrophobic interactions, π-π interactions as well as electrostatic interactions. The interacting behaviour of these driving forces needs to be fully understood to determine how the co-occurrence of TCS and MPs may lead to adverse effects on the biological functioning of aquatic ecosystems. Hence, here we conduct a systematic review of the current state-of-the-art and synthesize the available knowledge of how MPs can act as vectors for TCS in aquatic environments. This review reveals MP and TCS interactions in aquatic ecosystems, their individual and collective fate, and toxicological impacts on aquatic organisms, evidencing that MPs can act as potential vectors for transporting TCS across different trophic levels. This review also reveals critical limitations in the research of the combined toxicity and interactions of co-occurring MPs and TCS. Based on the rigorous review of the current knowledge base, we propose that multifactorious investigations along with long-terms monitoring are crucial to fully understand the impacts of co-occurring MPs and TCS in aquatic systems to underline future mitigation policies and management plans.
Collapse
Affiliation(s)
- Naveen Chand
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK; LEHNA- Laboratoire d'ecologie des hydrosystemes naturels et anthropises, University of Lyon, Darwin C & Forel, 3-6 Rue Raphaël Dubois, 69622 Villeurbanne, France; BISCA - Birmingham Institute of Sustainability and Climate Action, Birmingham, UK.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Hydro and Renewable Energy Department, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand - 247667 India.
| |
Collapse
|
2
|
Pan P, Gu Y, Li T, Zhou NY, Xu Y. Deciphering the triclosan degradation mechanism in Sphingomonas sp. strain YL-JM2C: Implications for wastewater treatment and marine resources. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135511. [PMID: 39173390 DOI: 10.1016/j.jhazmat.2024.135511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Triclosan (TCS), an antimicrobial agent extensively incorporated into pharmaceuticals and personal care products, poses significant environmental risks because of its persistence and ecotoxicity. So far, a few microorganisms were suggested to degrade TCS, but the microbial degradation mechanism remains elusive. Here, a two-component angular dioxygenase (TcsAaAb) responsible for the initial TCS degradation was characterized in Sphingomonas sp. strain YL-JM2C. Whole-cell biotransformation and crude enzyme assays demonstrated that TcsAaAb catalyzed the conversion of TCS to 4-chlorocatechol and 3,5-dichlorocatechol rather than the commonly suggested product 2,4-dichlorophenol. Then two intermediates were catabolized by tcsCDEF cluster via an ortho-cleavage pathway. Critical residues (N262, F279, and F391) for substrate binding were identified via molecular docking and mutagenesis. Further, TcsAaAb showed activity toward methyl triclosan and nitrofen, suggesting its versatile potential for bioremediation. In addition, TCS-degrading genes were also present in diverse bacterial genomes in wastewater, ocean and soil, and a relatively high gene abundance was observed in marine metagenomes, revealing the transformation fate of TCS in environments and the microbial potential in pollutant removal. These findings extend the understanding of the microbe-mediated TCS degradation and contribute to the mining of TCS-degrading strains and enzymes, as well as their application in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Piaopiao Pan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yichao Gu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
3
|
Yao L, Liu YH, Zhou X, Yang JH, Zhao JL, Chen ZY. Uptake, tissue distribution, and biotransformation pattern of triclosan in tilapia exposed to environmentally-relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171270. [PMID: 38428603 DOI: 10.1016/j.scitotenv.2024.171270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Although triclosan has been ubiquitously detected in aquatic environment and is known to have various adverse effects to fish, details on its uptake, bioconcentration, and elimination in fish tissues are still limited. This study investigated the uptake and elimination toxicokinetics, bioconcentration, and biotransformation potential of triclosan in Nile tilapia (Oreochromis niloticus) exposed to environmentally-relevant concentrations under semi-static regimes for 7 days. For toxicokinetics, triclosan reached a plateau concentration within 5-days of exposure, and decreased to stable concentration within 5 days of elimination. Approximately 50 % of triclosan was excreted by fish through feces, and up to 29 % of triclosan was excreted through the biliary excretion. For fish exposed to 200 ng·L-1, 2000 ng·L-1, and 20,000 ng·L-1, the bioconcentration factors (log BCFs) of triclosan in fish tissues obeyed similar order: bile ≈ intestine > gonad ≈ stomach > liver > kidney ≈ gill > skin ≈ plasma > brain > muscle. The log BCFs of triclosan in fish tissues are approximately maintained constants, no matter what triclosan concentrations in exposure water. Seven biotransformation products of triclosan, involved in both phase I and phase II metabolism, were identified in this study, which were produced through hydroxylation, bond cleavages, dichlorination, and sulfation pathways. Metabolite of triclosan-O-sulfate was detected in all tissues of tilapia, and more toxic product of 2,4-dichlorophenol was also found in intestine, gonad, and bile of tilapia. Meanwhile, two metabolites of 2,4-dichlorophenol-O-sulfate and monohydroxy-triclosan-O-sulfate were firstly discovered in the skin, liver, gill, intestine, gonad, and bile of tilapia in this study. These findings highlight the importance of considering triclosan biotransformation products in ecological assessment. They also provide a scientific basis for health risk evaluation of triclosan to humans, who are associated with dietary exposure through ingesting fish.
Collapse
Affiliation(s)
- Li Yao
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Yue-Hong Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xi Zhou
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jia-Hui Yang
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Zhi-Yong Chen
- Guangdong Provincial Engineering Research Center for Hazard Identification and Risk Assessment of Solid Waste, Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
4
|
Liu T, Ren X, Fang J, Yu Z, Wang X. Multiomics Sequencing and AlphaFold2 Analysis of the Stereoselective Behavior of Mefentrifluconazole for Bioactivity Improvement and Risk Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21348-21357. [PMID: 38051155 DOI: 10.1021/acs.est.3c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As the first isopropanol chiral triazole fungicide, mefentrifluconazole has broad prospects for application. In this study, the stereoselective stability, bioactivity, fate, and biotoxicity were systematically investigated. Our results indicated that the stability of mefentrifluconazole enantiomers differed between environmental media, and they were stable in water and sediment in the dark. The bactericidal activity of R-mefentrifluconazole against the four target pathogens was 4.6-43 times higher than that of S-mefentrifluconazole. In the water-sediment system, S-mefentrifluconazole dissipated faster than R-mefentrifluconazole in water; however, its accumulation capacity was higher than that of R-mefentrifluconazole in sediment and zebrafish. S-Mefentrifluconazole induced more differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in zebrafish than did R-mefentrifluconazole. Multiomics sequencing results showed that S-mefentrifluconazole enhanced the antioxidant, detoxification, immune, and metabolic functions of zebrafish by interacting with related proteins. Based on AlphaFold2 modeling and molecular docking, mefentrifluconazole enantiomers had different binding modes with key target proteins in pathogens and zebrafish, which may be the main reason for the stereoselective differences in bioactivity and biotoxicity. Based on its excellent bioactivity and low biotoxicity, the R-enantiomer can be developed to improve the bioactivity and reduce the risk of mefentrifluconazole.
Collapse
Affiliation(s)
- Tong Liu
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiangyu Ren
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jianwei Fang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiuguo Wang
- Key Laboratory of Tobacco Pest Monitoring & Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
5
|
Niu SM, Zhang Q, Sangeetha T, Chen L, Liu LY, Wu P, Zhang C, Yan WM, Liu H, Cui MH, Wang AJ. Evaluation of the effect of biofilm formation on the reductive transformation of triclosan in cathode-modified electrolytic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161308. [PMID: 36596419 DOI: 10.1016/j.scitotenv.2022.161308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The performance of electrochemical reduction is often enhanced by electrode modification techniques. However, there is a risk of microbial colonization on the electrode surface to form biofilms in the treatment of actual wastewater with modified electrodes. In this work, the effects of biofilm formation on modified electrodes with reduced graphene oxide (rGO), platinum/carbon (Pt/C), and carbon nanotube (CNT) were investigated in triclosan (TCS) degradation. With biofilm formation, the TCS degradation efficiencies of carbon cloth (CC), rGO@CC, Pt/C@CC, and CNT@CC decayed to 54.53 %, 59.77 %, 69.19 %, and 53.97 %, respectively, compared to the raw electrodes. Confocal laser scanning microscopy and microbial community analysis revealed that the difference in biofilm thickness and activity were the major influencing factors on the discrepant TCS degradation rather than the microbial community structure. The electrochemical performance tests showed that the biofilm formation increased the ohmic resistance by an order of magnitude in rGO@CC, Pt/C@CC, and CNT@CC, and the charge transfer resistance was increased by 2.45, 3.78, and 7.75 times, respectively. The dechlorination and hydrolysis governed the TCS degradation pathway in all electrolysis systems, and the toxicity of electrochemical reductive products was significantly decreased according to the Toxicity Estimation Software Tool analysis. This study presented a systematic assessment of the biofilm formation on modified electrodes in TCS reduction, and the undisputed experimental outcomes were obtained to enrich the knowledge of implementing modified electrodes for practical applications.
Collapse
Affiliation(s)
- Shi-Ming Niu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qian Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Tai'an Water Conservancy Bureau, Tai'an 271299, PR China
| | - Thangavel Sangeetha
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Lei Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Lan-Ying Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Ping Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Wei-Mon Yan
- Department of Energy and Refrigerating Air-Conditioning Engineering and Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, National Taipei University of Technology, Taipei 10608, Taiwan
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Min-Hua Cui
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China
| |
Collapse
|
6
|
Aikins DM, Mehler WT, Veilleux HD, Zhang Y, Goss GG. The Acute and Chronic Effects of a Sediment-Bound Synthetic Musk, Galaxolide, on Hyalella azteca, Chironomus dilutus, and Lumbriculus variegatus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:227-236. [PMID: 36653626 DOI: 10.1007/s00244-023-00978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Galaxolide is one of the most frequently used synthetic polycyclic musks on the market and is commonly detected in aquatic waterways. Previous studies have mainly evaluated the toxicity of this emerging contaminant using water-only exposures; however, its high Log Kow (5.9) suggests that this compound is likely to partition to sediments. Three benthic invertebrates, Chironomus dilutus, Hyalella azteca, and Lumbriculus variegatus, were exposed to sediment-bound Galaxolide using both acute (10 d; survival) and chronic (28 d; survival and growth) bioassays. The acute and chronic LC50s for Galaxolide ranged from 238 to 736 mg/kg sediment (2400-7430 µg/g organic carbon [OC]) for all three species, which were above concentrations commonly detected in the environment (< 2.5 mg/kg). Growth effects (i.e., weight and/or length) were noted in two of the three organisms (with C. dilutus being the exception); however, these effects were also noted at concentrations above those that are environmentally relevant. Molecular level evaluations were conducted with surviving L. variegatus and C. dilutus collected from treatments near the LC50 value. Markers of oxidative stress (glutathione-s-transferase) and endocrine disruption (estrogen-related receptor) in C. dilutus were significantly decreased in the treatment group compared to controls by 0.7-fold and 1.9-fold, respectively. Although acute and chronic effects were largely absent at environmentally relevant concentrations, changes in endocrine response suggest that more sensitive endocrine-based endpoints, such as emergence (for C. dilutus) and molting (for H. azteca), are needed to ensure that the risk of this emerging contaminant is low at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Deborah M Aikins
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - W Tyler Mehler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| | - Heather D Veilleux
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Yifeng Zhang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, T6G 2G3, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
- National Research Council of Canada - University of Alberta Nanotechnology Initiative, Edmonton, AB, T6G 2M9, Canada
| |
Collapse
|
7
|
Cao Z, Li P, Li ZH. A latest review on the application of microcosm model in environmental research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60438-60447. [PMID: 34537949 DOI: 10.1007/s11356-021-16424-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Microcosms are used experimentally to simulate ecosystems. This technology has received increasing attention and is widely used for environmental research. This review briefly introduces the origin and development of microcosm theory, summarizes classification and applications of microcosms across decades, and describes the advantages and limitations of microcosm technology in comparison with other methods. Finally, trends in the development of microcosm models are discussed.
Collapse
Affiliation(s)
- Zhihan Cao
- Marine College, Shandong University, Weihai, 264209, Shandong, China
| | - Ping Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, 264209, Shandong, China.
| |
Collapse
|
8
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
9
|
Jamila N, Khan N, Hwang IM, Park YM, Hyun Lee G, Choi JY, Cho MJ, Park KS, Kim KS. Elemental Analysis of Crustaceans by Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) and Direct Mercury Analysis. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1895188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Nargis Jamila
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Khyber Pakhtunkhwa, Pakistan
| | - In Min Hwang
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Yu Min Park
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ga Hyun Lee
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Ji Yeon Choi
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| | - Min Ja Cho
- National Institute of Food and Drug Safety Evaluation, Cheongju, Republic of Korea
| | - Kyung Su Park
- Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Kyong Su Kim
- Department of Food and Nutrition, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Li X, Gu W, Chen B, Zhu Z, Zhang B. Functional modification of HHCB: Strategy for obtaining environmentally friendly derivatives. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126116. [PMID: 34492911 DOI: 10.1016/j.jhazmat.2021.126116] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/23/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Galaxolide (HHCB), one of the most widely used synthetic musks in personal care products (PCPs), has been recognized as an emerging contaminant with potential human health concerns. To overcome such adverse effects, a systematic molecular design, screening and performance evaluation approach was developed to generate functionally improved and environmentally friendly HHCB derivatives. Among the 90 designed HHCB derivatives, 15 were screened with improved functional properties (i.e., odor stability and intensity) and less environmental impacts (i.e., lower bio-toxicity, bio-accumulation ability, and mobility) using 3D-QSAR models and density functional theory methods. Their human health risks were then assessed by toxicokinetic analysis, which narrowed the candidates to four. Derivative 7, the designed molecule with the least dermal adsorption potential, was evaluated for its interaction with other PCPs additives (i.e., anti-photosensitivity materials and moisturizer) and such impacts on human health risks using molecular docking and molecular dynamic simulation. The environmental fate of Derivative 7 after transformation (i.e., photodegradation, biotransformation, and chlorination) was also discussed. Biotransformation and chlorination were recognized as optimum options for Derivative 7 mitigation. This study provided the theoretical basis for the design of functionally improved and environmentally friendly HHCB alternatives and advanced the understanding of their environmental behaviors and health risks.
Collapse
Affiliation(s)
- Xixi Li
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Wenwen Gu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, Newfoundland, Canada A1B 3X5.
| |
Collapse
|
11
|
Kinetics and Mechanistic Studies of Photochemical and Oxidative Stability of Galaxolide. WATER 2021. [DOI: 10.3390/w13131813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Studies on kinetics of galaxolide (HHCB) degradation under influence of UV, simulated sunlight and some advanced oxidation processes (H2O2, UV/H2O2, and Vis/H2O2) were conducted. Galaxolide appeared to be a photolabile compound. The first-order kinetics model was assumed for all studied processes. It was observed that basic pH favored HHCB degradation. The influence of natural matrices (river water and artificial sweat) on direct photolysis of HHCB was examined. It was stated that the process of the photodegradation proceeded slower at the presence of each matrix. HHCB lactone was identified using the GC-MS technique. The recorded chromatograms showed that apart from the lactone, other degradation products were formed that we could not identify. In order to deeper understand the HHCB degradation process, DFT calculations were performed. The results pointed out that OH radicals play a key role in HHCB decomposition, which mainly proceeds via H abstractions as well as OH additions. It follows from the calculations that the visible light is sufficient to initiate the advanced oxidation processes (AOPs) under the oxidative conditions, whereas UV irradiation is needed to start decay with no oxidative agents.
Collapse
|
12
|
Sheng C, Zhang S, Zhang Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123733. [PMID: 33254764 DOI: 10.1016/j.jhazmat.2020.123733] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 05/23/2023]
Abstract
Although the combined effects of microplastics (MPs) and other organic pollutants have raised increasing attention, the impacts of polymer types on the biological effects (e.g., bioaccumulation and toxicity) of the mixtures are still unclear. This study aimed to evaluate the influence of different polymer types of MPs including polyethylene (PE), polypropylene (PP), and polyvinyl chloride (PVC) on the adsorption, accumulation, and toxic effects of triclosan (TCS) in zebrafish. As a result, all three types of MPs could adsorb TCS and PP-MPs has the highest adsorption capacity for TCS (1.18 mg/g). Compared with the TCS alone, MPs changed the distribution of TCS in tissues and increased the accumulation of TCS in the liver and gut following the order of TCS + PP > TCS + PVC > TCS + PE. Compared with individual TCS and PP-MPs, after co-exposed for 28 days, TCS + PP significantly aggravated oxidative stress and lipid peroxidation in the liver as well as enhanced neurotoxicity in the brain. Moreover, TCS + PP disturbed the metabolism in the liver and MPs contributed more to the metabolic disorders. The upregulated lipid metabolites (e.g., sphingosine and L-palmitoylcarnitine) and downregulated carbohydrate metabolites (e.g., sucrose) could be potential targets for future risk assessment of MPs combined with other pollutants.
Collapse
Affiliation(s)
- Cheng Sheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shenghu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu, 210042, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Gomes MF, de Carvalho Soares de Paula V, Rocha Martins LR, Esquivel Garcia JR, Yamamoto FY, Martins de Freitas A. Sublethal effects of triclosan and triclocarban at environmental concentrations in silver catfish (Rhamdia quelen) embryos. CHEMOSPHERE 2021; 263:127985. [PMID: 32854011 DOI: 10.1016/j.chemosphere.2020.127985] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Although banished in some countries, triclosan (TCS) and triclocarban (TCC) have been detected in surface waters in concentrations ranging from ng L-1 to μg L-1 and have shown to affect non-target organisms posing risk to aquatic ecosystems. However, the majority of the studies consider higher levels of these chemicals and single exposure effects to investigate their potential risks, rather than using environmentally relevant concentrations and their binary mixture. In this study, the toxicity of TCS and TCC, and their binary mixture was assessed in catfish embryos (Rhamdia quelen, a south American native species) exposed to environmental concentrations during 96 h. Organisms were evaluated through the endpoints of developmental abnormalities (spine, fin, facial/cranial and thorax), biochemical biomarkers related to oxidative stress responses: catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST) activities, protein carbonylation (PCO) and neurotoxicity by acetylcholinesterase activity (AChE). The data showed that TCS caused fin abnormalities, decrease of SOD activity and increase of AChE activity in the catfish embryos of 96hpf. On the other hand, TCC and the binary mixture showed a higher abnormality index for the 96hpf embryos, and an induction of CAT and GST activities for the mixture treatment. The results obtained were able to show potential, but not severe, toxicity of TCS and TCC even in low concentrations and a short period of exposure. The relevance of studies approaching real scenarios of exposure should be reinforced, considering environmental concentrations of chemicals, interactions of contaminants in complex mixtures and the use of a native species such as R. quelen exposed during initial stages of development.
Collapse
Affiliation(s)
- Monike Felipe Gomes
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, Brazil.
| | | | - Lucia Regina Rocha Martins
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, Brazil
| | | | | | - Adriane Martins de Freitas
- Laboratory of Ecotoxicology, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, Brazil.
| |
Collapse
|
14
|
Muz M, Escher BI, Jahnke A. Bioavailable Environmental Pollutant Patterns in Sediments from Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15861-15871. [PMID: 33213151 DOI: 10.1021/acs.est.0c05537] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Sediment-associated risks depend on the bioavailable fraction of organic chemicals and cannot be comprehended by their total concentrations. The present study investigated contamination patterns of bioavailable chemicals in sediments from various sites around the globe by using passive equilibrium sampling. The extracts had been characterized previously for mixture effects by in vitro reporter gene assays and were in this study analyzed using gas chromatography-high resolution mass spectrometry for 121 chemicals including both legacy and emerging contaminants. The spatial distribution of the detected chemicals revealed distinct contamination patterns among sampling sites. We identified compounds in common at the different sites but most contaminant mixtures were site-specific. The mixture effects of the detected chemicals were predicted with a mixture toxicity model from effect concentrations of bioactive single chemicals and detected concentrations, applying a joint model for concentration addition and independent action. The predicted mixture effects were dominated by polycyclic aromatic hydrocarbons, and among the chemicals with available effect data, 17% elicited oxidative stress response and 18% activated the arylhydrocarbon receptor. Except for two sites in Sweden, where 11 and 38% of the observed oxidative stress response were explained by the detected chemicals, less than 10% of effects in both biological end points were explained. These results provide a comprehensive investigation of bioavailable contamination patterns of sediments and may serve as an example of employing passive equilibrium sampling as a monitoring technique to integrate the risk of bioavailable sediment-associated chemicals in aquatic environments.
Collapse
Affiliation(s)
- Melis Muz
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Effect Directed Analysis, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Beate I Escher
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Annika Jahnke
- Department of Cell Toxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Department of Ecological Chemistry, UFZ Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
15
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
16
|
Araújo MJ, Quintaneiro C, Soares AMVM, Monteiro MS. Effects of triclosan on early development of Solea senegalensis: from biochemical to individual level. CHEMOSPHERE 2019; 235:885-899. [PMID: 31284137 DOI: 10.1016/j.chemosphere.2019.06.183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/04/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Harmful effects of triclosan (TCS) have been reported on several organisms; however, effects on early life stages of marine vertebrates are limited. Therefore, the objective of this work was to assess the effects of TCS during early development of the flatfish Solea senegalensis after initial characterization of cholinesterases (ChEs) and determination of selected biochemical markers baseline levels. Characterization of ChEs and determination of biochemical markers baseline levels of cholinergic activity, energy metabolism and oxidative stress were analysed in sole at 3 days after hatching (dah) and at the onset and end of metamorphosis. To assess TCS effects, fish were exposed during 96h to 30-500 μg L-1 TCS until 3 dah. Fish at 13 dah were exposed during 48h to 200-1,500 μg L-1 TCS and maintained until complete metamorphosis. Effects on survival, malformations, length, metamorphosis progression and biochemical markers were evaluated. The main ChE active form present in sole early life stages is acetylcholinesterase and baseline levels of oxidative stress and energy metabolism biomarkers changed according to fish developmental stage. Triclosan induced malformations (EC50 = 180 μg L-1 at 3 dah), decreased growth (95 μg L-1 at 3 dah; 548 μg L-1 at 24 dah) and affected metamorphosis progression (391 μg L-1 at 17 dah). Impairment of antioxidant system was observed, with TCS affecting catalase at the end of metamorphosis test, however, no oxidative damage on lipids was detected. Glutathione S-transferase was the most sensitive endpoint during early larval test (LOEC = 30 μg L-1). Exposure to TCS affected S. senegalensis at individual and sub-individual levels, both at early larval stage and during the critical period of metamorphosis.
Collapse
Affiliation(s)
- M J Araújo
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - C Quintaneiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M S Monteiro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Li X, An J, Li H, Qiu X, Wei Y, Shang Y. The methyl-triclosan induced caspase-dependent mitochondrial apoptosis in HepG2 cells mediated through oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109391. [PMID: 31272020 DOI: 10.1016/j.ecoenv.2019.109391] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/25/2019] [Indexed: 05/06/2023]
Abstract
Methyl-triclosan (MTCS) is a dominant transformation product of triclosan (TCS), which has been widely used as an effective antimicrobial ingredient with increasing concentrations in the environment. MTCS shows higher persistence in environment than its parent chemical TCS. The toxic effects of MTCS and toxicological mechanism are not well understood up to now. This study investigated the cytotoxic effects of MTCS in HepG2 cells in terms of cell viability, apoptosis induction, ROS production, GSH/GSSG levels, Mitochondrial Membrane Potential (MMP) reduction, LDH release, glucose uptake and ATP production. Moreover, the related gene transcripts were measured with RT-qPCR assay. Cytotoxic experiments in HepG2 cells revealed that MTCS exposure at micromol per liter levels had toxic effects as evidenced by decreased cell survival, elevated cell apoptosis, reduced MMP and increased LDH release. These toxic effects were associated with increased ROS production and reduced GSH/GSSG ratio. Meanwhile, elevated glucose uptake and ATP production indicated that MTCS induced membrane damages resulted not from a typical mitochondrial uncoupler, but from oxidative stress. Analysis of gene transcripts showed that MTCS exposure induced mRNA expressions alterations associated with oxidative stress response, energy production, cell cycle regulation and cell apoptosis. In general, the caspase-dependent mitochondrial apoptosis pathway might play a role in MTCS induced cytotoxicity in HepG2 cells.
Collapse
Affiliation(s)
- Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
18
|
Chen H, Yan L, Zhao J, Yang B, Huang G, Shi W, Hou L, Zha J, Luo Y, Mu J, Dong W, Ying GG, Xie L. The role of the freshwater oligochaete Limnodrilus hoffmeisteri in the distribution of Se in a water/sediment microcosm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1098-1106. [PMID: 31412447 DOI: 10.1016/j.scitotenv.2019.06.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Selenite(IV) and selenate(VI) are the major species of Se in the seleniferous aquatic ecosystem. The redistribution of Se in the water/sediment microcosm by bioturbation remains largely unknown. In this study, the redistribution of Se in the water/sediment microcosm by the benthic oligochaete Limnodrilus hoffmeisteri was assessed. The worms were exposed to 2-40 μg/g dry weight of Se(IV) or Se(VI) in the sediment (diet) for 2 months. The changes in the Se levels in different compartments of the microcosm (sediment, overlying water, and worms) were quantified after 2 weeks and 2 months. The subcellular distribution of Se in the worms were also evaluated. Finally, the volatilization of Se from the two Se sources was estimated. The results showed that Se concentration in the overlying water and Se bioaccumulation in the worms were increased with Se levels in the sediments. Approximately 1.6-9.8% of Se was volatilized in the absence of the worms and was intensified in the presence of the worms (2.1-25.7%). The subcellular distribution witnessed high levels of Se in the cell debris (>60%). Se(IV) and Se(VI) differ in their bioaccumulation, redistribution and the effects on the growth of the worms. Our results suggest that the bioturbation by benthos play an essential role in the redistribution of Se in the water/sediment microcosm.
Collapse
Affiliation(s)
- Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Liang Yan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianliang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guoyong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Jingli Mu
- Institute of Oceanography, Minjiang University, Fuzhou 50108, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Peng FJ, Hu LX, Pan CG, Ying GG, Van den Brink PJ. Insights into the sediment toxicity of personal care products to freshwater oligochaete worms using Fourier transform infrared spectroscopy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:296-302. [PMID: 30716664 DOI: 10.1016/j.ecoenv.2019.01.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 05/23/2023]
Abstract
Personal care products (PCPs) are ubiquitous in the environment due to their wide use in daily life. However, there are insufficient sediment toxicity data of PCPs under ecologically relevant conditions. Here we used Fourier transform infrared spectroscopy (FTIR) to investigate the sediment toxicity of triclosan (TCS) and galaxolide (HHCB) to two freshwater benthic macroinvertebrates, Limnodrilus hoffmeisteri and Branchiura sowerbyi, in microcosms containing a diverse biological community. Exposure to 8 µg TCS/g and 100 µg HHCB/g dry weight (dw) sediment induced significant biochemical alterations in the L. hoffmeisteri tissue. 8 µg TCS/g primarily affected proteins and nucleic acid while 100 µg HHCB/g mainly affected proteins and lipids of L. hoffmeisteri. However, 0.8 µg TCS/g and 30 µg HHCB/g did not cause significant subcellular toxicity to L. hoffmeisteri. In contrast, exposure of B. sowerbyi to 30 µg HHCB/g led to significant biochemical changes, including proteins, polysaccharides and lipids. Therefore, B. sowerbyi was more sensitive to sediment-associated HHCB than L. hoffmeisteri. Such effects were significantly enhanced when the HHCB concentration increased to 100 µg/g dw where death of B. sowerbyi occurred. These results demonstrate the application of FTIR spectroscopy to sediment toxicity testing of chemicals to benthic invertebrates with biochemical alterations as endpoints that are more sensitive than standard toxic endpoints (e.g., survival and growth).
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Li-Xin Hu
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
20
|
Peng FJ, Kiggen F, Pan CG, Bracewell SA, Ying GG, Salvito D, Selck H, Van den Brink PJ. Fate and effects of sediment-associated polycyclic musk HHCB in subtropical freshwater microcosms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:902-910. [PMID: 30597790 DOI: 10.1016/j.ecoenv.2018.11.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/17/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Galaxolide (HHCB) is used as a fragrance ingredient in household and personal care products, and has been ubiquitously detected in the environment. Here we investigated the fate of HHCB in subtropical freshwater microcosms, and evaluated effects of sediment-associated HHCB on a biological community consisting of algae, Daphnia, benthic macroinvertebrates and bacteria. The concentrations of sediment-associated HHCB did not change significantly during a 28 days exposure period, but HHCB accumulated in worms with biota-sediment accumulation-factor (BSAF) values in the range of 0.29-0.66 for Branchiura sowerbyi and 0.94-2.11 for Limnodrilus hoffmeisteri. There was no significant effects of HHCB (30 μg/g dry weight (dw) sediment) on chlorophyll-a content, sediment bacterial community composition, and survival and growth of benthic macroinvertebrates. However, the presence of benthic macroinvertebrates altered the sediment bacterial community structure relative to microcosms without introduced organisms. The findings of this study suggest that a single high-dose of HHCB, over 28 days, at environmentally relevant concentrations would not impose direct toxicological risks to aquatic organisms such as benthic macroinvertebrates.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands.
| | - Fionne Kiggen
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Sally A Bracewell
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Daniel Salvito
- Research Institute for Fragrance Materials, 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - Henriette Selck
- Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, Denmark
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|