1
|
Duan Y, Sedlak DL. Electrochemical Hydrogen Peroxide Generation and Activation Using a Dual-Cathode Flow-Through Treatment System: Enhanced Selectivity for Contaminant Removal by Electrostatic Repulsion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14042-14051. [PMID: 39042582 PMCID: PMC11308524 DOI: 10.1021/acs.est.4c05481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
To oxidize trace concentrations of organic contaminants under conditions relevant to surface- and groundwater, air-diffusion cathodes were coupled to stainless-steel cathodes that convert atmospheric O2 into hydrogen peroxide (H2O2), which then was activated to produce hydroxyl radicals (·OH). By separating H2O2 generation from its activation and employing a flow-through electrode consisting of stainless-steel fibers, the two processes could be operated efficiently in a manner that overcame mass-transfer limitations for O2, H2O2, and trace organic contaminants. The flexibility resulting from separate control of the two processes made it possible to avoid both the accumulation of excess H2O2 and the energy losses that take place after H2O2 has been depleted. The decrease in treatment efficacy occurring in the presence of natural organic matter was substantially lower than that typically observed in homogeneous advanced oxidation processes. Experiments conducted with ionized and neutral compounds indicated that electrostatic repulsion prevented negatively charged ·OH scavengers from interfering with the oxidation of neutral contaminants. Energy consumption by the dual-cathode system was lower than values reported for other technologies intended for small-scale drinking water treatment systems. The coordinated operation of these two cathodes has the potential to provide a practical, inexpensive way for point-of-use drinking water treatment.
Collapse
Affiliation(s)
- Yanghua Duan
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| | - David L. Sedlak
- Department of Civil &
Environmental Engineering, University of
California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Liu X, Bi G, Fang Y, Wei C, Song J, Wang YX, Zheng X, Sun Q, Wang Y, Wang G, Mu Y. Regulating Surface Dipole Moments of TiO 2 for the pH-Universal Cathodic Fenton-Like Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9436-9445. [PMID: 38691809 DOI: 10.1021/acs.est.4c02577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.
Collapse
Affiliation(s)
- Xiaocheng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Guangyu Bi
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanyan Fang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Cong Wei
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Junsheng Song
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Gongming Wang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Vinayagam V, Palani KN, Ganesh S, Rajesh S, Akula VV, Avoodaiappan R, Kushwaha OS, Pugazhendhi A. Recent developments on advanced oxidation processes for degradation of pollutants from wastewater with focus on antibiotics and organic dyes. ENVIRONMENTAL RESEARCH 2024; 240:117500. [PMID: 37914013 DOI: 10.1016/j.envres.2023.117500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
The existence of various pollutants in water environment contributes to global pollution and poses significant threats to humans, wildlife, and other living beings. The emergence of an effective, realistic, cost-effective, and environmentally acceptable technique to treat wastewater generated from different sectors is critical for reducing pollutant accumulation in the environment. The electrochemical advanced oxidation method is a productive technology for treating hazardous effluents because of its potential benefits such as lack of secondary pollutant and high oxidation efficiency. Recent researches on advanced oxidation processes (AOPs) in the period of 2018-2022 are highlighted in this paper. This review emphasizes on recent advances in electro-oxidation (EO), ozone oxidation, sonolysis, radiation, electro-Fenton (EF), photolysis and photocatalysis targeted at treating pharmaceuticals, dyes and pesticides polluted effluents. In the first half of the review, the concept of the AOPs are discussed briefly. Later, the influence of increasing current density, pH, electrode, electrolyte and initial concentration of effluents on degradation are discussed. Lastly, previously reported designs of electrochemical reactors, as well as data on intermediates generated and energy consumption during the electro oxidation and Fenton processes are discussed. According to the literature study, the electro-oxidation technique is more appropriate for organic compounds, whilst the electro-Fenton technique appear to be more appropriate for more complex molecules.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | | | - Sudha Ganesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Siddharth Rajesh
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Ramapriyan Avoodaiappan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
4
|
Taqieddin A, Sarrouf S, Ehsan MF, Alshawabkeh AN. New Insights on Designing the Next-Generation Materials for Electrochemical Synthesis of Reactive Oxidative Species Towards Efficient and Scalable Water Treatment: A Review and Perspectives. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:111384. [PMID: 38186676 PMCID: PMC10769459 DOI: 10.1016/j.jece.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
5
|
Zhang Q, Wang X, Liang R, Xie J, Zhou M. A pilot scale of electrochemical integrated treatment technology and equipment driven by solar energy for decentralized domestic sewage treatment. CHEMOSPHERE 2023; 340:139991. [PMID: 37640212 DOI: 10.1016/j.chemosphere.2023.139991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Based on the natural air diffusion electrode (NADE) cathode, a solar-driven electrochemical integrated sewage treatment technology and equipment in a pilot scale was developed to treat dispersed rural wastewater. The non-aeration NADE had efficient and stable H2O2 production performance, maintaining the H2O2 output between 1474 and 1535 mg h-1 within 50 h with the current efficiency of 77.4%-80.6%. This electrochemical integrated wastewater treatment system was coupled with technologies such as dual-cathode electro-Fenton, peroxi-coagulation and photoelectro-Fenton, which effectively improved the conversion and utilization efficiency of H2O2. It integrated Fenton-like oxidation, electro-oxidation and UV/H2O2, as well as Fe(OH)3-dominated flocculation, which could effectively remove various pollutants in wastewater. The integrated sewage treatment equipment (500 L d-1) realized the effective treatment of a rural decentralized domestic sewage, achieving simultaneous removal of chemical oxygen demand (COD), NH3-N, total phosphorus (TP) and bacteria. Driven by solar energy, its application feasibility, superiority and stability have been proved, providing theoretical and technical support for the efficient and low-consumption treatment of dispersed organic wastewater.
Collapse
Affiliation(s)
- Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Jiangsu Huanghai Ecological Environment Detection Co., Ltd., Yancheng, 224008, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ruiheng Liang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinxin Xie
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Li M, Bai L, Jiang S, Sillanpää M, Huang Y, Liu Y. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131352. [PMID: 37027919 DOI: 10.1016/j.jhazmat.2023.131352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The selective electrochemical reduction of oxygen (O2) via 3e- pathway for the production of hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton process. Here, we developed a nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) with high O2 reduction selectivity for the generation of HO•via 3e- pathway. Exposed graphitized N on the CNT shell, and Ni nanoparticles encapsulated within the tip of the N-CNT, played a key role in the generation of H2O2 intermediate (*HOOH) via a 2e- oxygen reduction reaction. Meanwhile, those encapsulated Ni nanoparticles at the tip of the N-CNT facilitated the sequential HO• generation by directly decomposing the electrogenerated *H2O2 in a 1e- reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency were observed when compared with conventional batch system (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated a complete removal of BPA within 30 min (k = 0.12 min-1) with a limited energy consumption of 0.068 kW·h·g-1 TOC.
Collapse
Affiliation(s)
- Mohua Li
- College of Life Science, Taizhou University, Taizhou 318000, China; College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liang Bai
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou 318000, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
7
|
Jing J, Wang X, Zhou M. Electro-enhanced activation of peroxymonosulfate by a novel perovskite-Ti 4O 7 composite anode with ultra-high efficiency and low energy consumption: The generation and dominant role of singlet oxygen. WATER RESEARCH 2023; 232:119682. [PMID: 36746031 DOI: 10.1016/j.watres.2023.119682] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Traditional free radicals-dominated electrochemical advanced oxidation processes (EAOPs) and sulfate radical-based advanced oxidation processes (SR-AOPs) are limited by pH dependence and weak reusability, respectively. To overcome these shortcomings, electro-enhanced activation of peroxymonosulfate (PMS) on a novel perovskite-Ti4O7 composite anode (E-PTi-PMS system) was proposed. It achieved an ultra-efficient removal rate (k = 0.467 min-1) of carbamazepine (CBZ), approximately 36 and 8 times of the E-PTi and PTi-PMS systems. Singlet oxygen (1O2) played a dominant role in the E-PTi-PMS system and transformed from SO4•-, O2•-, •OH and oxygen vacancy (Vo••). The electric field expedited the decomposition and utilization of PMS, promoting the generation of radicals and expanding the formation pathway of 1O2. The E-PTi-PMS system presented superiorities over wide pH (3-10) and less dosage of PMS (1 mM), expanding the pH adaptability and reducing the cost of EAOPs. Simultaneously, the excellent reusability (30 cycles) solved the bottleneck of recycling catalysts in SR-AOPs via an ultra-low energy (0.025 kWh/m3-log). This work provides a promising alternative towards high-efficiency and low-cost treatment of polluted waters.
Collapse
Affiliation(s)
- Jiana Jing
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuechun Wang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Shokri A, Nasernejad B, Sanavi Fard M. Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment. WATER, AIR, AND SOIL POLLUTION 2023; 234:153. [PMID: 36844633 PMCID: PMC9942065 DOI: 10.1007/s11270-023-06139-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/26/2023] [Indexed: 06/10/2023]
Abstract
The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H2O2 activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. Graphical Abstract
Collapse
Affiliation(s)
- Aref Shokri
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
- Jundi-Shapur Research Institute, Jundishapur University of Technology, Dezful, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, 15875-4413 Iran
| | - Mahdi Sanavi Fard
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| |
Collapse
|
9
|
Qin X, Cao P, Quan X, Zhao K, Chen S, Yu H, Su Y. Highly Efficient Hydroxyl Radicals Production Boosted by the Atomically Dispersed Fe and Co Sites for Heterogeneous Electro-Fenton Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2907-2917. [PMID: 36749299 DOI: 10.1021/acs.est.2c06981] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The heterogeneous electro-Fenton (hetero-e-Fenton)-coupled electrocatalytic oxygen reduction reaction (ORR) is regarded as a promising strategy for ·OH production by simultaneously driving two-electron ORR toward H2O2 and stepped activating the as-generated H2O2 to ·OH. However, the high-efficiency electrogeneration of ·OH remains challengeable, as it is difficult to synchronously obtain efficient catalysis of both reaction steps above on one catalytic site. In this work, we propose a dual-atomic-site catalyst (CoFe DAC) to cooperatively catalyze ·OH electrogeneration, where the atomically dispersed Co sites are assigned to enhance O2 reduction to H2O2 intermediates and Fe sites are responsible for activation of the as-generated H2O2 to ·OH. The CoFe DAC delivers a higher ·OH production rate of 2.4 mmol L-1 min-1 gcat-1 than the single-site catalyst Co-NC (0.8 mmol L-1 min-1 gcat-1) and Fe-NC (1.0 mmol L-1 min-1 gcat-1). Significantly, the CoFe DAC hetero-e-Fenton process is demonstrated to be more energy-efficient for actual coking wastewater treatment with an energy consumption of 19.0 kWh kg-1 COD-1 than other electrochemical technologies that reported values of 29.7∼68.0 kW h kg-1 COD-1. This study shows the attractive advantages of efficiency and sustainability for ·OH electrogeneration, which should have fresh inspiration for the development of new-generation wastewater treatment technology.
Collapse
Affiliation(s)
- Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Peike Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Kun Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
10
|
Recent advances in application of heterogeneous electro-Fenton catalysts for degrading organic contaminants in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39431-39450. [PMID: 36763272 DOI: 10.1007/s11356-023-25726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Over the last decades, advanced oxidation processes (AOPs) have been widely used in surface and ground water pollution control. The heterogeneous electro-Fenton (EF) process has gained much attention due to its properties of high catalytic performance, no generation of iron sludge, and good recyclability of catalyst. As of October 2022, the cited papers and publications of EF are around 1.3 × 10-5 and 3.4 × 10-3 in web of science. Among the AOP techniques, the contaminant removal efficiencies by EF process are above 90% in most studies. Current reviews mainly focused on the mechanism of EF and few reviews comprehensively summarized heterogeneous catalysts and their applications in wastewater treatment. Thus, this review focuses on the current studies covering the period 2012-2022, and applications of heterogeneous catalysts in EF process. Two kinds of typical heterogeneous EF systems (the addition of solid catalysts and the functionalized cathode catalysts) and their applications for organic contaminants degradation in water are reviewed. In detail, solid catalysts, including iron minerals, iron oxide-based composites, and iron-free catalysts, are systematically described. Different functionalized cathode materials, containing Fe-based cathodes, carbonaceous-based cathodes, and heteroatom-doped cathodes, are also reviewed. Finally, emphasis and outlook are made on the future prospects and challenges of heterogeneous EF catalyst for wastewater treatments.
Collapse
|
11
|
Singh D, Gurjar BR. Recent innovation and impacts of nano-based technologies for wastewater treatment on humans: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:357. [PMID: 36732372 DOI: 10.1007/s10661-022-10790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/26/2022] [Indexed: 06/18/2023]
Abstract
Sustainable wastewater management requires environment-friendly, efficient, and cost-effective methods of water treatment. The ever-growing list of emerging contaminants in municipal wastewater requires advanced, efficient, and cost-effective techniques for its treatment to combat the increasing water demand. The nano-based technologies hold great potential in improving water treatment efficiency and augmenting the water supply. However, the environmental effects of these technologies are still questionable among the public and scientific community. The present review discusses risks to human health due to the use of nano-based technology for the removal of emerging contaminants in water. The discussion will be about the impacts of these technologies on humans. Recommendations about safe and environmentally friendly options for nano-based technology for water treatment have been included. Safest options of nano-based technologies for water treatment and steps to minimize the risk associated with them have also been incorporated in this article. Since all biological systems are different, separate risk analyses should be performed at the environmentally relevant concentration for different durations. There is little/no information on the quantitative impact on humans and requires more understanding. The quantitative measurement of the cellular uptake of nanoparticles is usually difficult. We hope this article will serve its purpose for water researchers, medical researchers, environmentalists, policymakers, and the government.
Collapse
Affiliation(s)
- Divya Singh
- Department of Civil Engineering, IIT Roorkee, Roorkee, India.
| | | |
Collapse
|
12
|
Carbon nanofibre microfiltration membranes tailored by oxygen plasma for electrocatalytic wastewater treatment in cross-flow reactors. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
13
|
Xi G, Chen S, Zhang X, Xing Y, He Z. Mechanism analysis of efficient degradation of carbamazepine by chalcopyrite-activated persulfate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13197-13209. [PMID: 36125685 DOI: 10.1007/s11356-022-23023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
In this study, natural chalcopyrite (NCP) was used to activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) oxidatively. Before and after the NCP reaction, the physical and chemical properties were characterized by SEM-EDS, XRD, XPS, XRF, and VSM. The effects of the amount of NCP and PMS, the initial pH value, and the reaction temperature on the catalytic performance of NCP were systematically studied. The research results show that the degradation efficiency of the NCP/PMS system for CBZ can reach 82.34% under the optimal reaction conditions, and the degradation process follows a pseudo-second-order kinetic model. The results of the radical quenching experiment and EPR analysis show that the active species in the system are OH·, SO4-·, and 1O2, of which SO4-· is the main active species. In addition, this study shows that the NCP/PMS system can degrade CBZ with high efficiency of 90.73% only with the assistance of 0.15 g/L Fe0. This study determined the optimal reaction conditions for natural chalcopyrite to activate PMS to degrade CBZ and clarified the activation mechanism, which broadened the application of natural ores in the field of water treatment.
Collapse
Affiliation(s)
- GaoYang Xi
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Shuxun Chen
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xuhang Zhang
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yu Xing
- School of Water Conservancy, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Zhengguang He
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
14
|
Le TT, Hoang VC, Zhang W, Kim JM, Kim J, Moon GH, Kim SH. Mesoporous sulfur-modified metal oxide cathodes for efficient electro-Fenton systems. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
15
|
Nalbandian MJ, Kim S, Gonzalez-Ribot HE, Myung NV, Cwiertny DM. Recent advances and remaining barriers to the development of electrospun nanofiber and nanofiber composites for point-of-use and point-of-entry water treatment systems. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100204. [PMID: 37025391 PMCID: PMC10074328 DOI: 10.1016/j.hazadv.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we focus on electrospun nanofibers as a promising material alternative for the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water treatment systems. We focus our review on prior work with various formulations of electrospun materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated carbon, ion exchange resins) commonly used in commercially available, certified POU/POE devices for contaminants including organic pollutants, metals (e.g., lead) and persistent oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and development opportunities of the relevant literature based on an evaluation framework that considers (i) performance comparison to commercial analogs; (ii) appropriate pollutant targets for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE applications; (iv) consideration of water quality effects; and (v) evaluation of material strength and longevity. We also identify several emerging issues in decentralized water treatment where nanofiber-based POU/POE devices could help meet existing needs including their use for treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research has demonstrated promising material performance toward relevant targets for POU/POE applications, using appropriate aquatic matrices and considering material stability. To fully realize their promise as an emerging treatment technology, our analysis of the available literature reveals the need for more work that benchmarks nanofiber performance against established commercial analogs, as well as fabrication and performance validation at scales and under conditions simulating POU/POE water treatment.
Collapse
Affiliation(s)
- Michael J. Nalbandian
- Department of Civil Engineering and Construction Management, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Humberto E. Gonzalez-Ribot
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| |
Collapse
|
16
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
17
|
Liu F, Ding J, Zhao G, Zhao Q, Wang K, Wang G, Gao Q. Catalytic pyrolysis of lotus leaves for producing nitrogen self-doping layered graphitic biochar: Performance and mechanism for peroxydisulfate activation. CHEMOSPHERE 2022; 302:134868. [PMID: 35533937 DOI: 10.1016/j.chemosphere.2022.134868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
In this study, nitrogen self-doping layered graphitic biochar (Na-BC900) was prepared by catalytic pyrolysis of lotus leaves at 900 °C, in the presence of NaCl catalyst, for peroxydisulfate (PDS) activation and sulfamethoxazole (SMX) degradation. NaCl as catalyst played a crucial part in the preparation of Na-BC900 and could be reused. The SMX degradation rate in Na-BC900/PDS system was 12 times higher than that in un-modified biochar (BC900)/PDS system. The excellent performance of Na-BC900 for PDS activation was attributed to its large specific surface areas (SSAs), the enhanced graphitization structure and the high graphitic N content. The quenching and electrochemical experiments, electron paramagnetic resonance (EPR) studies inferred that the radicals included SO4•-, •OH, O2•- and the non-radical processes were driven by 1O2 and biochar mediated electron migration. Both radical and non-radical mechanisms contributed to the removal of SMX. Additionally, this catalytic pyrolysis strategy was clarified to be scalable, which can be applied to produce multiple biomass-based biochar catalysts for restoration of polluted water bodies.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guanshu Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guangzhi Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingwei Gao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
18
|
Tang W, Ma N, Fei C, Wang Y. Regulation of Hydroxyl Radicals Generated by Fe−N−C in Heterogeneous Electro‐Fenton Reaction for Degradation of Organic Pollutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wujian Tang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Nannan Ma
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Chuanqi Fei
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| | - Yinling Wang
- Anhui Key Laboratory of Chemo-Biosensing College of Chemistry and Materials Science Anhui Normal University 189 Huajin South Road Wuhu 241000 PR China
| |
Collapse
|
19
|
An X, Hou Z, Yu Y, Wang J, Lan H, Liu H, Qu J. Red mud supported on reduced graphene oxide as photo-Fenton catalysts for organic contaminant degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Xiao Z, Cui T, Wang Z, Dang Y, Zheng M, Lin Y, Song Z, Wang Y, Liu C, Xu B, Ikhlaq A, Kumirska J, Siedlecka EM, Qi F. Energy-efficient removal of carbamazepine in solution by electrocoagulation-electrofenton using a novel P-rGO cathode. J Environ Sci (China) 2022; 115:88-102. [PMID: 34969480 DOI: 10.1016/j.jes.2021.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/14/2023]
Abstract
In this study, carbamazepine (CBZ) decay in solution has been studied by coupling electrocoagulation with electro-Fenton (EC-EF) with a novel P-rGO/carbon felt (CF) cathode, aiming to accelerate the in-situ generation of •OH, instead of adding Fe2+ and H2O2. Firstly, the fabricated P-rGO and its derived cathode were characterized by XRD, SEM, AFM, XPS and electrochemical test (EIS, CV and LSV). Secondly, it was confirmed that the performance in removal efficiency and electric energy consumption (EEC) by EC-EF (kobs=0.124 min-1, EEC=43.98 kWh/kg CBZ) was better than EF (kobs=0.069 min-1, EEC=61.04 kWh/kg CBZ). Then, P-rGO/CF (kobs=0.248 min-1, EEC=29.47 kWh/kg CBZ, CE=61.04%) showed the best performance in EC-EF, among all studied heteroatom-doped graphene/CF. This superior performance may be associated with its largest layer spacing and richest C=C, which can promote the electron transfer rate and conductivity of the cathode. Thus, more H2O2 and •OH could be produced to degrade CBZ, and almost 100% CBZ was removed with kobs being 0.337 min-1 and the EEC was only 24.18 kWh/kg CBZ, under the optimal conditions (P-rGO loading was 6.0 mg/cm2, the current density was 10.0 mA/cm2, the gap between electrode was 2.0 cm). Additionally, no matter the influent is acidic, neutral or alkaline, no additional pH adjustment is required for the effluent of EC-EF. At last, an inconsecutive empirical kinetic model was firstly established to predict the effect of operating parameters on CBZ removal.
Collapse
Affiliation(s)
- Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meijie Zheng
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yixinfei Lin
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| | - Jolanta Kumirska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ewa Maria Siedlecka
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, School of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Chen X, Teng W, Fan J, Chen Y, Ma Q, Xue Y, Zhang C, Zhang WX. Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127896. [PMID: 34862103 DOI: 10.1016/j.jhazmat.2021.127896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous electro-Fenton (hetero-EF) process is an emerging alternative for effective oxidation of recalcitrant micropollutants, but it is hampered by limited hydroxyl radical (•OH) generation and low stability on the iron-based cathodes. Herein, we demonstrate an enhanced hetero-EF performance via modulation of iron electronic structure in an ordered mesoporous carbon (OMC). By tuning the cobalt incorporation, the highly-dispersed iron-cobalt (FeCo) nanoalloys in mesochannels (Fe0.5Co0.5@OMC) show a 3-fold increase in •OH yield compared with Fe@OMC, achieving degradation efficiency with 92% of sulfamethazine (SMT) and 99% of rhodamine B (RhB), and the corresponding total organic carbon (TOC) removal with 66% of SMT and 85% of RhB within 2 h in neutral pH, respectively. Experimental results and density functional theory (DFT) calculations demonstrate that iron incorporated with cobalt reduces energy barrier for facile generation of H2O2 and •OH from O2 through direct electron transfer, along with decreased overpotential. Meanwhile, cobalt doping promotes H2O2 decomposition by accelerated Fe(II)/Fe(III) cycle and Co(II)/Co(III) redox. Furthermore, spatially confined and half-embedded structure endows the nanocatalyst (8 nm) excellent durability within a wide pH value range and good stability in cycle tests. A plausible reaction mechanism and degradation pathway for SMT are proposed. Moreover, the superiority of Fe0.5Co0.5@OMC cathode is maintained in simulated wastewater, suggesting an enormous potential in practical wastewater treatment.
Collapse
Affiliation(s)
- Xiaoqian Chen
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Wei Teng
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Jianwei Fan
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yanyan Chen
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Qian Ma
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Yinghao Xue
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Chuning Zhang
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
22
|
Hajiahmadi M, Zarei M, Khataee A. An effective natural mineral-catalyzed heterogeneous electro-Fenton method for degradation of an antineoplastic drug: Modeling by a neural network. CHEMOSPHERE 2022; 291:132810. [PMID: 34767845 DOI: 10.1016/j.chemosphere.2021.132810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
In this study, the heterogeneous electro-Fenton method was used to remove Paclitaxel as an antineoplastic medicine. The cathode based on three-dimensional graphene (3DG) was applied as a gas diffusion electrode. The potential of five eco-friendly and recyclable iron minerals derived from nature (Magnetite, Siderite, Hematite, Limonite, and Pyrite) was investigated. Among the applied iron minerals, Pyrite showed the best, and Magnetite and Siderite showed good catalytic activity at pH 3.0. The current intensity of 300 mA, pHi 7.0, Paclitaxel concentration of 3 mg L-1, amount of Pyrite 4.5 g L-1, and time of 120 min was the optimum condition of the process with the removal efficiency of 99.13% in the presence of Pyrite. Repeating the experiments eight times revealed the reusability of the prepared 3DG as a cathode. Also, using radical scavengers indicated the principal role of the hydroxyl radicals (OH) in the treatment process. Analysis of total organic carbon reached 77.64% mineralization of 3 mg L-1 Paclitaxel at 360 min. Finally, ten by-products of small molecules were identified by gas chromatography-mass spectrometry device.
Collapse
Affiliation(s)
- Mahsa Hajiahmadi
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080 Chelyabinsk, Russian Federation.
| |
Collapse
|
23
|
Li Y, Lin R, Lv F, Zhao X, Yong T, Zuo X. Tannic acid-Fe complex derivative-modified electrode with pH regulating function for environmental remediation by electro-Fenton process. ENVIRONMENTAL RESEARCH 2022; 204:111994. [PMID: 34487696 DOI: 10.1016/j.envres.2021.111994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
A heterogeneous electro-Fenton (hetero-EF) system can effectively broaden the applicable pH range, although the decreased electrogeneration efficiency of H2O2 at elevated pH (especially neutral conditions) is unfavorable for the efficient removal of organic pollutants. Herein, a tannic acid-Fe complex derivative-modified carbon felt (TFD@CF) cathode was prepared for hetero-EF treatment of organic pollutants over a wide pH range. Interestingly, the as-prepared hetero-EF cathode could act as a pH regulator that acidified the solution over a wide pH range. As expected, the TFD@CF cathode exhibited excellent hetero-EF activity for the removal of diverse organic pollutants (such as methyl orange, methylene blue, sulfamerazine, bisphenol A and 2,4-dichlorophenoxyacetic acid) at neutral and even alkaline pH (removal efficiency >90 %). A total of 2.98 kWh kg-1 COD-1 with 83.2 % COD removal could be achieved by the TFD@CF cathode for the treatment of actual textile dyeing secondary wastewater. Electrochemical characterizations proved that the TFD@CF cathode had excellent electrochemical properties with improved electron transfer ability and a well-pronounced Fe(III) electroreductive response. Meanwhile, more acidic groups were newly generated during the electrochemical reaction (an increase of 30.1 %), thus dissociating more H+ into solution. The identification of reactive oxygen species suggested that OH and 1O2 could be responsible for the removal of organic pollutants in the TFD@CF EF system. These interesting findings may provide new insights into the design of multifunctional hetero-EF cathodes for the removal of refractory organic pollutants.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Ruoyun Lin
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Fangjie Lv
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Xiaoyu Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Xiaojun Zuo
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| |
Collapse
|
24
|
Phenylamine/Amide Grafted in Silica as Sensing Nanocomposites for the Removal of Carbamazepine: A DFT Approach. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to remove carbamazepine from aqueous solutions, using functional silica phenylamine (SiBN), which is characterized and showed excellent chemical and thermal stability. Adsorbents based on silica were developed due to their unusually large surface area, homogenous pore structure, and well-modified surface properties, as silica sparked tremendous interest. It was determined to develop a novel silica adsorbent including phenylamine and amide (SiBCON). The adsorbents obtained were analyzed by various spectroscopy devices, including SEM, FT-IR and TGA analysis. The maximum removal rates for carbamazepine were 98.37% and 98.22% for SiBN and SiBCON, respectively, when optimized at room temperature, pH 9.0, initial concentration of 10 mg·L−1 and contact time of 15 min. Theoretical tools are widely used in the prediction of the power of interactions between chemical systems. The computed data showed that new amine modified silica is quite effective in terms of the removal of carbamazepine from aqueous solution. Calculation binding energies and DFT data showed that there is a powerful interaction between amine-modified silica and carbamazepine.
Collapse
|
25
|
Recent advances and trends of heterogeneous electro-Fenton process for wastewater treatment-review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Kim DJ, Zhu Q, Rigby K, Wu X, Kim JH, Kim JH. A Protocol for Electrocatalyst Stability Evaluation: H 2O 2 Electrosynthesis for Industrial Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1365-1375. [PMID: 34958567 DOI: 10.1021/acs.est.1c06850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrocatalysis has been proposed as a versatile technology for wastewater treatment and reuse. While enormous attention has been centered on material synthesis and design, the practicality of such catalyst materials remains clouded by a lack of both stability assessment protocols and understanding of deactivation mechanisms. In this study, we develop a protocol to identify the wastewater constituents most detrimental to electrocatalyst performance in a timely manner and elucidate the underlying phenomena behind these losses. Synthesized catalysts are electrochemically investigated in various electrolytes based on real industrial effluent characteristics and methodically subjected to a sequence of chronopotentiometric stability tests, in which each stage presents harsher operating conditions. To showcase, oxidized carbon black is chosen as a model catalyst for the electrosynthesis of H2O2, a precursor for advanced oxidation processes. Results illustrate severe losses in catalyst activity and/or selectivity upon the introduction of metal pollutants, namely magnesium and zinc. The insights garnered from this protocol serve to translate lab-scale electrocatalyst developments into practical technologies for industrial water treatment purposes.
Collapse
Affiliation(s)
- David J Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Qianhong Zhu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kali Rigby
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Xuanhao Wu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Jin Hyun Kim
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
27
|
Hu T, Tang L, Feng H, Zhang J, Li X, Zuo Y, Lu Z, Tang W. Metal-organic frameworks (MOFs) and their derivatives as emerging catalysts for electro-Fenton process in water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Enhancement of the electro-Fenton degradation of organic contaminant by accelerating Fe3+/Fe2+ cycle using hydroxylamine. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Liu X, Yang Y, Duan F, Wen J, Wei X, Huang Y, Jia B, Ke G, He H, Zhou Y. Development of an alkaline electro-Fenton process based on the synthesis of H 2O 2 in bicarbonate electrolytes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An alkaline electro-Fenton process be proposed based on H2O2 synthesis in a bicarbonate electrolyte and H2O2 activation into ˙OH. This alkaline electro-Fenton process can achieve the degradation of organic pollutants in alkaline aqueous solution.
Collapse
Affiliation(s)
- Xiaotian Liu
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yuran Yang
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Feng Duan
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jinyu Wen
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xijun Wei
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yujie Huang
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bi Jia
- Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Gaili Ke
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Huichao He
- State Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Institute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yong Zhou
- Ecomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China
| |
Collapse
|
30
|
Zeng Y, Zhang S, Yin L, Dai Y. Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Heterogeneous Electro-Fenton-like Designs for the Disposal of 2-Phenylphenol from Water. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112412103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The hunt for efficient and environmentally friendly degradation processes has positioned the heterogeneous advanced oxidation processes as an alternative more interesting and economical rather than homogenous processes. Hence, the current study lies in investigating the efficiency of different heterogeneous catalysts using transition metals in order to prevent the generation of iron sludge and to extend the catalogue of possible catalysts to be used in advanced oxidation processes. In this study, nickel and zinc were tested and the ability for radical-generation degradation capacity of both ions as homogeneous was evaluated in the electro-Fenton-like degradation of 2-phenylphenol. In both cases, the degradation profiles followed a first-order kinetic model with the highest degradation rate for nickel (1 mM) with 2-phenylphenol removal level of 90.12% and a total organic reduction near 70% in 2 h. To synthesise the heterogeneous nickel catalyst, this transition metal was fixed on perlite by hydrothermal treatment and in a biochar or carbon nanofibers by adsorption. From the removal results using the three synthesized catalysts, it is concluded that the best catalysts were obtained by inclusion of nickel on biochar or nanofibers achieving in both with removal around 80% before 1 h. Thus, to synthetize a nickel electrocatalyst, nickel doped nanofibers were included on carbon felt. To do this, the amount of carbon black, nickel nanofibers and polytetrafluoroethylene to add on the carbon felt was optimized by Taguchi design. The obtained results revealed that under the optimised conditions, a near-complete removal was achieved after 2 h with high stability of the nickel electrocatalyst that open the applicability of this heterogeneous system to operate in flow systems.
Collapse
|
32
|
Review: Clay-Modified Electrodes in Heterogeneous Electro-Fenton Process for Degradation of Organic Compounds: The Potential of Structural Fe(III) as Catalytic Sites. MATERIALS 2021; 14:ma14247742. [PMID: 34947335 PMCID: PMC8703352 DOI: 10.3390/ma14247742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
Advanced oxidation processes are considered as a promising technology for the removal of persistent organic pollutants from industrial wastewaters. In particular, the heterogeneous electro-Fenton (HEF) process has several advantages such as allowing the working pH to be circumneutral or alkaline, recovering and reusing the catalyst and avoiding the release of iron in the environment as a secondary pollutant. Among different iron-containing catalysts, studies using clay-modified electrodes in HEF process are the focus in this review. Fe(III)/Fe(II) within the lattice of clay minerals can possibly serve as catalytic sites in HEF process. The description of the preparation and application of clay-modified electrodes in the degradation of model pollutants in HEF process is detailed in the review. The absence of mediators responsible for transferring electrons to structural Fe(III) and regenerating catalytic Fe(II) was considered as a milestone in the field. A comprehensive review of studies investigating the use of electron transfer mediators as well as the mechanism behind electron transfer from and to the clay mineral structure was assembled in order to uncover other milestones to be addressed in this study area.
Collapse
|
33
|
Wang X, Cao P, Zhao K, Chen S, Yu H, Quan X. Flow-through heterogeneous electro-Fenton system based on the absorbent cotton derived bulk electrode for refractory organic pollutants treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Tang H, Shang Q, Tang Y, Liu H, Zhang D, Du Y, Liu C. Filter-membrane treatment of flowing antibiotic-containing wastewater through peroxydisulfate-coupled photocatalysis to reduce resistance gene and microbial inhibition during biological treatment. WATER RESEARCH 2021; 207:117819. [PMID: 34741897 DOI: 10.1016/j.watres.2021.117819] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The direct biological treatment of antibiotics containing wastewater brings about a potential risk of antibiotic resistance genes (ARGs) spread. Although advanced oxidation technologies based on photocatalysis generally appear effective at degrading antibiotics in wastewater, the fate of ARGs in succeeding biological treatment system is still unknown. Herein, a filter-membrane-like carbon cloth-immobilized Fe2O3/g-C3N4 photocatalyst is fabricated through immersion-calcination method. Peroxydisulfate-coupled photocatalysis system is developed to degrade tetracycline (TC, an emerging refractory antibiotic pollutant). The system can produce energetic active species (·OH, SO4·-, h+, O2·- and 1O2), exhibiting a superior performance towards TC degradation in static and continuous flow processes under visible-light irradiation. The pretreatment can eliminate the antibacterial activity of antibiotics wastewater, and the chemical oxygen demand removal is greatly enhanced in subsequent anaerobic or aerobic process. The microbial diversity and richness in activated sludge for pretreated water sample are significantly higher than those for the water sample without pretreatment. Meanwhile, the pretreatment can decrease the relative abundance of potential hosts of ARGs and reduce the emergence as well as dissemination risk of ARGs. This study uncovers the effect of pretreatment of antibiotics containing wastewater using advanced oxidation technologies on the treatment efficacy and antibiotic resistome fate in biological treatment system.
Collapse
Affiliation(s)
- Haifang Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yanhong Tang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Huiling Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Danyu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Yi Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China
| | - Chengbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
35
|
Zhao K, Quan X, Su Y, Qin X, Chen S, Yu H. Enhanced Chlorinated Pollutant Degradation by the Synergistic Effect between Dechlorination and Hydroxyl Radical Oxidation on a Bimetallic Single-Atom Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14194-14203. [PMID: 34618424 DOI: 10.1021/acs.est.1c04943] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chlorinated organic pollutants are highly toxic and widespread in the environment, which cause ecological risk and threaten the human health. Chlorinated pollutants are difficult to degrade and mineralize by the conventional advanced oxidation process as the C-Cl bond is resistant to reactive oxygen species oxidation. Herein, we designed a bifunctional Fe/Cu bimetallic single-atom catalyst anchored on N-doped porous carbon (FeCuSA-NPC) for the electro-Fenton process, in which chlorinated pollutants are dechlorinated on single-atom Cu and subsequently oxidized by the ·OH radical produced from O2 conversion on single-atom Fe. Benefitting from the synergistic effect between dechlorination on single-atom Cu and ·OH oxidation on single-atom Fe, the chlorinated organic pollutants can be efficiently degraded and mineralized. The mass activity for chlorinated organic pollutant degradation by FeCuSA-NPC is 545.1-1374 min-1 gmetal-1, excessing the highest value of the reported electrocatalyst. Moreover, FeCuSA-NPC is demonstrated to be pH-universal, long-term stable, and environment friendly. This work provides a new insight into the rational design of a bifunctional electrocatalyst for efficient removal of chlorinated organic pollutants.
Collapse
Affiliation(s)
- Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
36
|
Selective electrochemical H2O2 generation on the graphene aerogel for efficient electro-Fenton degradation of ciprofloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118884] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213993] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Cui T, Xiao Z, Wang Z, Liu C, Song Z, Wang Y, Zhang Y, Li R, Xu B, Qi F, Ikhlaq A. FeS 2/carbon felt as an efficient electro-Fenton cathode for carbamazepine degradation and detoxification: In-depth discussion of reaction contribution and empirical kinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117023. [PMID: 33823313 DOI: 10.1016/j.envpol.2021.117023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Carbamazepine (CBZ) decay by electro-Fenton (EF) oxidation using a novel FeS2/carbon felt (CF) cathode, instead of a soluble iron salt, was studied with the aim to accelerate the reaction between H2O2 and ferrous ions, which helps to produce more hydroxyl radicals (•OH) and eliminate iron sludge. First, fabricated FeS2 and its derived cathode were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. Anodes were then screened, with DSA (Ti/IrO2-RuO2) showing the best performance under EF oxidation regarding CBZ degradation and electrochemical characterization. Several operating parameters of this EF process, such as FeS2 loading, current density, gap between electrodes (GBE), initial [CBZ], and electrolyte type, were also investigated. Accordingly, a nonconsecutive empirical kinetic model was established to predict changes in CBZ concentration under the given operational parameters. The contribution of different oxidation types to the EF process was calculated using kinetic analysis and quenching experiments to verify the role of the FeS2-modified cathode. The reaction contributions of anodic oxidation (AO), H2O2 electrolysis (EP), and EF oxidation to CBZ removal were 12.81%, 7.41%, and 79.77%, respectively. The •OH exposure of EP and EF oxidation was calculated, confirming that •OH exposure was approximately 22.45-fold higher using FeS2-modified CF. Finally, the 19 intermediates formed by CBZ degradation were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Accordingly, four CBZ degradation pathways were proposed. ECOSAR software was used to assess the ecotoxicity of intermediates toward fish, daphnia, and green algae, showing that this novel EF oxidation process showed good toxicity reduction performance. A prolonged EF retention time was proposed to be necessary to obtain clean and safe water, even if the targeted compound was removed at an earlier time.
Collapse
Affiliation(s)
- Tingyu Cui
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhihui Xiao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Jiangsu Key Lab of Industrial Pollution Control and Resource Reuse, School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Zilong Song
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yiping Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Ruoyu Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Bingbing Xu
- State Key Lab of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, 54890, Lahore, Punjab, Pakistan
| |
Collapse
|
39
|
Yu M, Dong H, Liu K, Zheng Y, Hoffmann MR, Liu W. Porous carbon monoliths for electrochemical removal of aqueous herbicides by "one-stop" catalysis of oxygen reduction and H 2O 2 activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125592. [PMID: 34030423 DOI: 10.1016/j.jhazmat.2021.125592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The overuse of herbicides has posed a threat to human health and the aquatic environment via DNA mutations and antibiotic gene resistance. Carbon-based cathodic electrochemical advanced oxidation has evolved as a promising technology for herbicide degradation by generating hydroxyl radicals (•OH). However, conventional electro-Fenton process relies on interaction of multiple species that adds to the system complexity and cost and narrows the working pH range. Herein, a series of porous carbon monoliths (PCMs) were developed as a "one-stop" platform for catalysis of the 2-electron ORR coupled with further catalytic reductive cleavage of H2O2 to produce •OH. A PCM prepared using 1,6-hexamethylene diamine (denoted as PCM-HDA) produced H2O2 at a level that was 374% higher than that obtained using commercially available carbon black at circum-neutral pH. Meanwhile, the generated H2O2 was catalytically decomposed to produce •OH. Based on these results, the PCM-HDA electrode achieved an 80 ± 2% degradation of napropamide in 60 min over the pH range of 4-10 at a mildly reducing potential, with a 69 ± 2% TOC reduction at circum-neutral condition in 2 h. This simplified system overcomes the system complexity and pH limitation of the conventional electron-Fenton processes.
Collapse
Affiliation(s)
- Menglin Yu
- College of Environmental and Resource Science Zhejiang University, Hangzhou 310058, China; Linde + Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Heng Dong
- Linde + Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Kai Liu
- Linde + Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Yingdie Zheng
- College of Environmental and Resource Science Zhejiang University, Hangzhou 310058, China
| | - Michael R Hoffmann
- Linde + Robinson Laboratories California Institute of Technology, Pasadena, CA 91125, United States
| | - Weiping Liu
- College of Environmental and Resource Science Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
40
|
Liang J, Xiang Q, Lei W, Zhang Y, Sun J, Zhu H, Wang S. Ferric iron reduction reaction electro-Fenton with gas diffusion device: A novel strategy for improvement of comprehensive efficiency in electro-Fenton. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125195. [PMID: 33951859 DOI: 10.1016/j.jhazmat.2021.125195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Applying the optimal 2-electron oxygen reduction reaction potential in electro-Fenton (2e-ORR-EF) for degradation has become a common strategy because of the highest H2O2 generation rate in such condition. However, in 2e-ORR-EF system, the Fe(III) ions crystallize on the surface of cathode and form a layer of film according to SEM, XPS, XRD and Mössbauer spectrum resulting in poor reaction rate of EF. Hence, we propose FRR-EF, which is operated by applying the optimal potential of ferric iron reduction reaction (FRR) rather than that of 2e-ORR on cathode for EF. Gas diffusion device was also carried out to ensure the H2O2 generation rate. In this novel strategy, only - 0.1 V was applied on cathode. High H2O2 production rate (0.021 ± 0.002 mmol L-1 min-1 cm-2), and slow Fe(II) consumption rate (0.03 min-1) were achieved. The EIS result showed that at this potential, the formation of the Fe film was effectively alleviated, thus prolonging the degradation life of the cathode. This new strategy can balance both 2e-ORR and FRR, thus improving the comprehensive efficiency of EF, which provides essential references to the EF not only in potential operation but also in the design of reaction device.
Collapse
Affiliation(s)
- Jiaxiang Liang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Qi Xiang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Weidong Lei
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Yun Zhang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Jie Sun
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, Hubei Province, College of Resource and Environmental Science, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Hongxiang Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shuangfei Wang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| |
Collapse
|
41
|
Liu Z, Wan J, Ma Y, Wang Y. In situ synthesis of FeOCl@MoS 2 on graphite felt as novel electro-Fenton cathode for efficient degradation of antibiotic ciprofloxacin at mild pH. CHEMOSPHERE 2021; 273:129747. [PMID: 33540330 DOI: 10.1016/j.chemosphere.2021.129747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
The traditional Electro-Fenton (EF) is an efficient technology for wastewater treatment but suffers from the acidic condition requirement and external catalyst addition. To overcome these challenges, a GF@MoS2@FeOCl cathode was fabricated using a facile method. The as-prepared GF@MoS2@FeOCl cathode showed excellent performance for ciprofloxacin (CIP) degradation in EF process with RuO2/Ti electrode as the anode. H2O2 was electro-generated and activated on-site at the cathode at mild pH without adding Fe2+. CIP was 100% removed with 74.4% of mineralization in 90 min at pH 6. The GF@MoS2@FeOCl cathode exhibited good reusability after consecutive runs of degradation. The degradation intermediates were investigated, and the possible mechanism was proposed. This work demonstrated that the prepared GF@MoS2@FeOCl cathode is a promising candidate for contaminants treatment in an EF system.
Collapse
Affiliation(s)
- Zejun Liu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China.
| | - Yongwen Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510640, PR China
| |
Collapse
|
42
|
Liu M, Feng Z, Luan X, Chu W, Zhao H, Zhao G. Accelerated Fe 2+ Regeneration in an Effective Electro-Fenton Process by Boosting Internal Electron Transfer to a Nitrogen-Conjugated Fe(III) Complex. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6042-6051. [PMID: 33616409 DOI: 10.1021/acs.est.0c08018] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The regeneration rate of Fe2+ from Fe3+ dictates the performance of the electro-Fenton (EF) process, represented by the amount of produced hydroxyl radicals (·OH). Current strategies for the acceleration of Fe2+ regeneration normally require additional chemical reagents, to vary the redox potential of Fe2+/Fe3+. Here, we report an attempt at using the intrinsic property of the electrode to our advantage, i.e., nitrogen-doped carbon aerogel (NDCA), as a reducing agent for the regeneration of Fe2+ without using foreign reagents. Moreover, the pyrrolic N in NDCA provides unpaired electrons through the carbon framework to reduce Fe3+, while the graphitic and pyridinic N coordinate with Fe3+ to form a C-O-Fe-N2 bond, facilitating electron transfer from both the external circuit and pyrrolic N to Fe3+. Our Fe2+/NDCA-EF system exhibits a 5.8 ± 0.3 times higher performance, in terms of the amount of generated ·OH, than a traditional Fenton system using the same Fe2+ concentration. In the subsequent reaction, the Fe2+/NDCA-EF system demonstrates 100.0% removal of dimethyl phthalate, 3-chlorophenol, bisphenol A, and sulfamethoxazole with a low specific energy consumption of 0.17-0.36 kW·h·g-1. Furthermore, 90.1 ± 0.6% removal of dissolved organic carbon and 83.3 ± 0.9% removal of NH3-N are achieved in the treatment of domestic sewage. The purpose of this work is to present a novel strategy for the regeneration of Fe2+ in the EF process and also to elucidate the role of different N species of the carbonaceous electrode in contributing to the redox cycle of Fe2+/Fe3+.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Zhiyuan Feng
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Hongying Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| |
Collapse
|
43
|
Xiao F, Wang Z, Fan J, Majima T, Zhao H, Zhao G. Selective Electrocatalytic Reduction of Oxygen to Hydroxyl Radicals via 3‐Electron Pathway with FeCo Alloy Encapsulated Carbon Aerogel for Fast and Complete Removing Pollutants. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fan Xiao
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Zining Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Jiaqi Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Tetsuro Majima
- The institute of Scientific and Industrial Research Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| | - Guohua Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai 200092 China
| |
Collapse
|
44
|
Xiao F, Wang Z, Fan J, Majima T, Zhao H, Zhao G. Selective Electrocatalytic Reduction of Oxygen to Hydroxyl Radicals via 3-Electron Pathway with FeCo Alloy Encapsulated Carbon Aerogel for Fast and Complete Removing Pollutants. Angew Chem Int Ed Engl 2021; 60:10375-10383. [PMID: 33606335 DOI: 10.1002/anie.202101804] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/22/2022]
Abstract
We reported the selective electrochemical reduction of oxygen (O2 ) to hydroxyl radicals (. OH) via 3-electron pathway with FeCo alloy encapsulated by carbon aerogel (FeCoC). The graphite shell with exposed -COOH is conducive to the 2-electron reduction pathway for H2 O2 generation stepped by 1-electron reduction towards to . OH. The electrocatalytic activity can be regulated by tuning the local electronic environment of carbon shell with the electrons coming from the inner FeCo alloy. The new strategy of . OH generation from electrocatalytic reduction O2 overcomes the rate-limiting step over electron transfer initiated by reduction-/oxidation-state cycle in Fenton process. Fast and complete removal of ciprofloxacin was achieved within 5 min in this proposed system, the apparent rate constant (kobs ) was up to 1.44±0.04 min-1 , which is comparable with the state-of-the-art advanced oxidation processes. The degradation rate almost remains the same after 50 successive runs, suggesting the satisfactory stability for practical applications.
Collapse
Affiliation(s)
- Fan Xiao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zining Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaqi Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Tetsuro Majima
- The institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | - Hongying Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Guohua Zhao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
45
|
Hernández-Rodríguez EA, Castillo-Suárez LA, Teutli-Sequeira EA, Martínez-Miranda V, Vázquez Mejía G, Linares-Hernández I, Santoyo-Tepole F, Benavides A. Electro-oxidation and solar electro-oxidation of commercial carbamazepine: effect of the support electrolyte. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1900251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Evelyn Anaid Hernández-Rodríguez
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Luis Antonio Castillo-Suárez
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | | | - Verónica Martínez-Miranda
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Guadalupe Vázquez Mejía
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Ivonne Linares-Hernández
- Wastewater treatment and pollution control department, Instituto Interamericano De Tecnología Y Ciencias Del Agua (IITCA), Universidad Autónoma Del Estado De México, Unidad San Cayetano, Toluca, Estado De México, México
| | - Fortunata Santoyo-Tepole
- Research department, Escuela Nacional De Ciencias Biológicas, Instituto Politécnico Nacional (ENCB-IPN). Prolongación De Carpio Y Plan De Ayala S/n, Miguel Hidalgo, Santo Tomás, Ciudad De México, México
| | - Abraham Benavides
- Department of Public Administration, University of North Texas, Denton, Texas, USA
| |
Collapse
|
46
|
Guo D, Liu Y, Ji H, Wang CC, Chen B, Shen C, Li F, Wang Y, Lu P, Liu W. Silicate-Enhanced Heterogeneous Flow-Through Electro-Fenton System Using Iron Oxides under Nanoconfinement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4045-4053. [PMID: 33625227 DOI: 10.1021/acs.est.1c00349] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a silicate-enhanced flow-through electro-Fenton system with a nanoconfined catalyst was rationally designed and demonstrated for the highly efficient, rapid, and selective degradation of antibiotic tetracycline. The key active component of this system is the Fe2O3 nanoparticle filled carbon nanotube (Fe2O3-in-CNT) filter. Under an electric field, this composite filter enabled in situ H2O2 generation, which was converted to reactive oxygen species accompanied by the redox cycling of Fe3+/Fe2+. The presence of the silicate electrolyte significantly boosted the H2O2 yield by preventing the O-O bond dissociation of the adsorbed OOH*. Compared with the surface coated Fe2O3 on the CNT (Fe2O3-out-CNT) filter, the Fe2O3-in-CNT filter demonstrated 1.65 times higher kL value toward the degradation of the antibiotic tetracycline. Electron paramagnetic resonance and radical quenching tests synergistically verified that the dominant radical species was the 1O2 or HO· in the confined Fe2O3-in-CNT or unconfined Fe2O3-out-CNT system, respectively. The flow-through configuration offered improved tetracycline degradation kinetics, which was 5.1 times higher (at flow rate of 1.5 mL min-1) than that of a conventional batch reactor. Liquid chromatography-mass spectrometry measurements and theoretical calculations suggested reduced toxicity of fragments of tetracycline formed. This study provides a novel strategy by integrating state-of-the-art material science, Fenton chemistry, and microfiltration technology for environmental remediation.
Collapse
Affiliation(s)
- Dongli Guo
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Haodong Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yongxia Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ping Lu
- Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
47
|
Tian X, Wang X, Nie Y, Yang C, Dionysiou DD. Hydroxyl Radical-Involving p-Nitrophenol Oxidation during Its Reduction by Nanoscale Sulfidated Zerovalent Iron under Anaerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2403-2410. [PMID: 33543936 DOI: 10.1021/acs.est.0c07475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sulfidated zerovalent iron (S-ZVI) has been extensively used for reducing pollutants. In this study, the oxidation process in the reductive removal of p-nitrophenol (PNP) by S-ZVI was confirmed under anaerobic conditions. We revealed that a PNP oxidation process involving •OH resulted from the H2O2 activation by surface-bound Fe(II) in S-ZVI, in which H2O2 was generated via a surface-mediated reaction between water and FeS2. Only the PNP reduction process occurred for ZVI. Herein, efficient PNP degradation by S-ZVI resulted from two functions: reduction into p-aminophenol due to enhanced electron transfer and PNP oxidation into p-benzoquinone by •OH radicals from the interaction of surface-bound Fe(II) and in situ generated H2O2, the contributions of the oxidation and reduction processes to PNP degradation over S-ZVI were 10 and 90%, respectively. Sulfur in S-ZVI suppressed the pH increase in the reaction media and produced more surface-bound Fe(II) than ZVI for •OH generation via the heterogeneous Fenton reaction process. Since different degradation pathways could lead to different effects on the water environment, such as toxicity, our findings suggest that the oxidizing process induced by S-ZVI during groundwater decontamination should be considered.
Collapse
Affiliation(s)
- Xike Tian
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xiang Wang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yulun Nie
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chao Yang
- Faculty of Materials and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012, United States
| |
Collapse
|
48
|
Liu Y, Zhao Y, Wang J. Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124191. [PMID: 33069993 DOI: 10.1016/j.jhazmat.2020.124191] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 05/17/2023]
Abstract
Fenton processes based on the reaction between Fe2+ and H2O2 to produce hydroxyl radicals, have been widely studied and applied for the degradation of toxic organic contaminants in wastewater due to its high efficiency, mild condition and simple operation. However, H2O2 is usually added by bulk feeding, which suffers from the potential risks during the storage and transportation of H2O2 as well as its low utilization efficiency. Therefore, Fenton/Fenton-like processes with in-situ production of H2O2 have received increasing attention, in which H2O2 was in-situ produced through O2 activation, then decomposed into hydroxyl radicals by Fenton catalysts. In this review, the in situ production of H2O2 for Fenton oxidation was introduced, the strategies for activation of O2 to generate H2O2 were summarized, including chemical reduction, electro-catalysis and photo-catalysis, the influencing factors and the mechanisms of the in situ production and utilization of H2O2 in various Fenton/Fenton-like processes were analyzed and discussed, and the applications of these processes for the degradation of toxic organic contaminants were summarized. This review will deepen the understanding of the tacit cooperation between the in situ production and utilization of H2O2 in Fenton process, and provide the further insight into this promising process for degradation of emerging contaminants in industrial wastewater.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Yang Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Zou R, Tang K, Angelidaki I, Andersen HR, Zhang Y. An innovative microbial electrochemical ultraviolet photolysis cell (MEUC) for efficient degradation of carbamazepine. WATER RESEARCH 2020; 187:116451. [PMID: 33007673 DOI: 10.1016/j.watres.2020.116451] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Discharge of recalcitrant pharmaceuticals into aquatic environments can lead to serious negative environmental effects. While traditional wastewater treatment plants (WWTPs) are efficient for a wide range of non-toxic pollutants (i.e. ammonia), some wastewater streams contain recalcitrant toxic trace micropollutants such as pharmaceuticals that cannot be removed by the treatment processes that are typically employed in common WWTPs. Herein, an innovative 20 L microbial electrochemical ultraviolet photolysis cell (MEUC) was developed for the first time by the integration of a UV irradiation and a bioelectrochemical system, which exhibited efficient treatment of carbamazepine-a model pharmaceutical compound. Notably, neither the UV irradiation nor the bioelectrochemical system alone could effectively eliminate carbamazepine. The effect of operational parameters including applied voltage, cathodic aeration rate, UV intensity, and hydraulic retention time were evaluated. The obtained results elucidated that the degradation of carbamazepine was consistent with pseudo-first-order reaction kinetics, and required a lower energy input than traditional advanced oxidation processes. Five main transformation products were identified, and probable transformation pathways were established. Furthermore, the eco-toxicity as tested by Vibrio fischeri showed no significant bioluminescence inhibition by the treated carbamazepine effluent. Finally, the MEUC system was further tested with a real wastewater matrix, which again exhibited effective removal of carbamazepine. This paper provides a proof-of-concept verification of the novel MEUC system, which contributes insight for the subsequent vigorous development of the application of such efficient and cost-effective technologies for the treatment of trace pharmaceuticals wastewater.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
50
|
Synthesis and Characterization of B/NaF and Silicon Phthalocyanine-Modified TiO2 and an Evaluation of Their Photocatalytic Removal of Carbamazepine. SEPARATIONS 2020. [DOI: 10.3390/separations7040071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study investigated the synthesis of two different types of photocatalysts, namely, boron/sodium fluoride co-doped titanium dioxide (B/NaF-TiO2), and its analogue, a dye-sensitized form of silicon-based axial methoxy substituted phthalocyanine (B/NaF-TiO2SiPc). Structural and morphological characterizations were performed via X-ray diffraction (XRD); Fourier transform infra-red (FTIR); N2 adsorption–desorption at 77 K by Brunauer–Emmett–Teller (BET) and Barrett, Joyner, and Halenda (BJH) methods; transmission electron microscopy (TEM); X-ray photoelectron spectroscopy (XPS); and UV–visible absorption spectroscopy. The estimated crystallite size of pure TiO2 and pure B/NaF-TiO2 was 24 nm, and that of B/NaF-TiO2SiPc was 29 nm, whereas particle sizes determined by TEM were 25, 28, and 31 nm for pure TiO2, B/NaF-TiO2 and B/NaF-TiO2SiPc respectively. No significant differences between B/NaF-TiO2 and B/NaF-TiO2SiPc were observed for surface area by (BET) analysis (13 m2/g) or total pore volume by the BJH application model (0.05 cm3/g). Energy band gap values obtained for B/NaF-TiO2 and B/NaF-TiO2SiPc were 3.10 and 2.90 eV respectively, lower than pure TiO2 (3.17 eV). The photocatalytic activity of the synthesized materials was tested using carbamazepine (CBZ) as the model substrate. Carbamazepine removal after 4 h of irradiation was almost 100% for B/NaF-TiO2 and 70% for B/NaF-TiO2SiPc; however, the substrate mineralization proceeded slower, suggesting the presence of organic intermediates after the complete disappearance of the pollutant.
Collapse
|