1
|
Ma J, Liu Y, Zhang L, Yao L, Ding Y, Qin H, Wang Z, Zheng X, Yang X, Tian H, Zeng L, Chen L, Liu R, Gao J, Wu Q, Qu G, Jiang G. Size-dependent internalization of gold nanoparticles in individual Tetrahymena thermophila characterized by single-cell mass cytometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126030. [PMID: 40064228 DOI: 10.1016/j.envpol.2025.126030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Aquatic organisms are inevitably exposed to metallic nanoparticles (NPs) in natural environments, leading to potential harm, ecological disruption, and environmental pollution concerns. Importantly, the size of NPs plays a critical role in influencing their uptake by these organisms. Utilizing mass cytometry, we investigated the internalization characteristics of different-sized gold NPs (AuNPs) in an unicellular ciliate Tetrahymena thermophila, under a low exposure concentration of 1 ngmL-1. This investigation, conducted at both the population and single-cell levels, revealed that the size of AuNPs significantly affected their uptake by T. thermophila cells. The average mass of intracellular AuNPs peaked at 0.5 h and subsequently decreased, attributed to the efflux of AuNPs or cell proliferation. Larger AuNPs resulted in a lower average intracellular AuNPs mass and a smaller proportion of T. thermophila cells accumulating AuNPs (Au-positive (AuP) T. thermophila). However, when exposed to larger AuNPs, the AuPT. thermophila cells had a higher AuNPs mass and volumetric concentration factors compared to their exposure to smaller AuNPs. After exposure, while most AuPT. thermophila cells had intracellular Au content below 2.41 × 10-15 g cell-1, the small groups of T. thermophila cells that accumulated higher mass of AuNPs may be the ones more susceptible to the effects of AuNPs exposure. Additionally, we developed a three-dimensional fitting surface model to depict the relationship among exposure time, AuNP size, and intracellular AuNPs mass in individual T. thermophila cells. This study enhances our understanding of size-specific NPs accumulation in unicellular organisms and provides valuable insights for ecological risk assessment of different sized NPs.
Collapse
Affiliation(s)
- Junjie Ma
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaquan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Zhang
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yun Ding
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Hua Qin
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ziniu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehan Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinyue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Li Zeng
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Liqun Chen
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- College of Sciences, Northeastern University, Shenyang, 110004, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Li Y, Wang X, Liang D, Zhao X, Dong Z, Bai Y, Wang WX, Peijnenburg WJGM, Wang Y, Fan W. Modelling the size distribution and bioaccumulation of gold nanoparticles under mixture exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 280:107286. [PMID: 39954587 DOI: 10.1016/j.aquatox.2025.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
To assess the bioaccumulation and toxicity of nanoparticles (NPs), analyzing and modelling the relationship between the size distribution of NPs in organisms and the exposure particle size distribution represents an important challenge. Previous studies mostly focused on the NPs with single size. However, the size distribution of NPs is wide and variable in the natural environment. There is a lack of research on the NPs with mixed sizes. This study investigated the size distribution of three gold (Au) NPs with different sizes and their mixtures within a ciliate Tetrahymena thermophila under the same number concentration of particles. Results revealed that smaller particles tended to aggregate and bioaccumulate more in cells. Using expectation-maximization algorithm, a particle size distribution model of NPs in cells was established. This model effectively simulated the size distribution of NPs with mixed sizes in cells, demonstrating high accuracy with a mean absolute error of < 0.001, a root mean squared error of < 0.001, and a correlation coefficient exceeding 0.98. Experimental results further verified that the model reliably predicted the size distribution of NPs with mixed sizes in cells, and smaller particles accounted for a larger proportion of the size distribution and bioaccumulation. These results demonstrated the importance of particle size and size distribution of NPs in their environmental effects. Models developed here can provide guidance for future evaluation of the environmental risks of NPs mixtures.
Collapse
Affiliation(s)
- Yao Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiangrui Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Dingyuan Liang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhaomin Dong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720 BA Bilthoven, the Netherlands
| | - Ying Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| | - Wenhong Fan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
3
|
Yan N, Wang Y, Wong TY, Wu Z, Wang X, Xie M, Parodi A, Wang WX, Shi J. Spatiotemporal Mapping of the Evolution of Silver Nanoparticles in Living Cells. ACS NANO 2024; 18:35013-35028. [PMID: 39655906 DOI: 10.1021/acsnano.4c13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Bioaccumulated silver nanoparticles (AgNPs) can undergo transformation and release toxic Ag+, which can be further reduced and form secondary AgNPs (Ag0NPs). However, the intricate interconversions among AgNPs, Ag+, and Ag0NPs remain speculative. Herein, we developed a bioimaging method by coupling the aggregation-induced emission method with the label-free confocal scattering and hyperspectral imaging techniques to quantitatively visualize the biodistribution and biotransformation of AgNPs, Ag0NPs, and Ag+ in living cells. We demonstrated that AgNPs were first dissolved in the medium, and the released Ag+ was converted into Ag0NPs with the presence of algal extracellular polymeric substances and light. Under these conditions, AgNPs alone accounted for 12.4% of the total AgNP toxicity, a percentage comparable to that of Ag0NPs (15.6%). However, Ag+ remained the primary contributor to overall AgNP toxicity. Additionally, we found that about 9.00% of the accumulated AgNPs within the algal cells were transformed after 24 h exposure. Of these transformed AgNPs, 4.70% remained as Ag+ forms (located in the apical region, nucleus, and pyrenoid), while 4.30% persisted as Ag0NP forms (located in the cytosol) that were only detectable after a 4 h exposure. We further showed that AgNP exposure upregulated algal glutathione production with a 38.3-fold increase in glutathione reductase activity, which potentially resulted in Ag0NP formation at the active site. Overall, this study differentiated the toxicity of AgNPs, Ag+, and Ag0NPs and directly visualized the ongoing transformation and translocation of AgNPs, Ag+, and Ag0NPs within living cells, which are critical in unveiling the toxicity mechanisms of AgNPs.
Collapse
Affiliation(s)
- Neng Yan
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yan Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Zhiwei Wu
- China Hangzhou Puyu Technology Co., Ltd., Hangzhou 311404, China
| | - Xiuxiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Minwei Xie
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Yang Y, Zhu L, Chen X, Sun Y, Yang R, Zhang N, Zhang Y. Manipulating Silver Nanoparticles with Biomolecular Corona Secreted from Vertebrates to Improve the Loading Capacity and Biocompatibility. ACS NANO 2024; 18:28782-28792. [PMID: 39374417 DOI: 10.1021/acsnano.4c08122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used as nanoagents in biomedical fields, while it is still challenging to improve their loading capacity and biocompatibility in microcarrier delivering systems. Herein, the physicochemical properties of AgNPs were manipulated by forming biomolecular corona derived from bovine serum albumin (AC), and three organisms at various trophic levels: Chlorella sp. (BC1), Daphnia magna (BC2), and zebrafish (BC3). Proteins were identified by chemical composition analysis as the dominant components adsorbed on the surface of AgNPs. Proteomics indicated that AgNPs preferred to bind with low molecular weight (<50 kDa) and hydrophobic proteins with more positively charged residues. Consequently, AC and BC3 displayed stronger adsorption affinity on the surface of AgNPs than BC1 and BC2. Modifications by AC and BC3 effectively alleviated the oxidative stress and cell cycle arrest of AgNPs due to their superior antioxidative ability. However, BC3 with lower hydrophobicity enabled AgNPs to be more biocompatible than AC at subcellular level. Moreover, AC could significantly improve the loading capacity of AgNPs by Chlorella through enhancing caveolin-mediated endocytosis. Notably, owing to the adsorption of abundant Ca2+-binding proteins, BC3-AgNPs could also be internalized by microalgae via Ca2+-dependent clathrin-mediated endocytosis, which makes it a promising approach to deliver AgNPs. The results of this study would provide insights into the development of an efficient strategy to deliver AgNPs based on the microalgae carrier without altering its original properties and functionality.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yumeng Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Nan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinqing Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Xu S, Tao XY, Dang Z, Wang Y, Guan Y, Wu Z, Liu G, Tian Y, Tian LJ. Near-Native Imaging of Label-Free Silver Nanoparticles-Triggered 3D Subcellular Ultrastructural Reorganization in Microalgae. ACS NANO 2024; 18:2030-2046. [PMID: 38198284 DOI: 10.1021/acsnano.3c08514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Understanding the spatial orientation of nanoparticles and the corresponding subcellular architecture events favors uncovering fundamental toxic mechanisms and predicting response pathways of organisms toward environmental stressors. Herein, we map the spatial location of label-free citrate-coated Ag nanoparticles (Cit-AgNPs) and the corresponding subcellular reorganization in microalgae by a noninvasive 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). Cryo-SXT near-natively displays the 3D maps of Cit-AgNPs presenting in rarely identified sites, namely, extracellular polymeric substances (EPS) and the cytoplasm. By comparative 3D morphological assay, we observe that Cit-AgNPs disrupt the cellular ultrastructural homeostasis, triggering a severe malformation of cytoplasmic organelles with energy-producing and stress-regulating functions. AgNPs exposure causes evident disruption of the chloroplast membrane, significant attenuation of the pyrenoid matrix and starch sheath, extreme swelling of starch granules and lipid droplets, and shrinkage of the nucleolus. In accompaniment, the number and volume occupancy of starch granules are significantly increased. Meanwhile, the spatial topology of starch granules extends from the chloroplast to the cytoplasm with a dispersed distribution. Linking the dynamics of the internal structure and the alteration of physiological properties, we derive a comprehensive cytotoxic and response pathway of microalgae exposed to AgNPs. This work provides a perspective for assessing the toxicity at subcellular scales to achieve label-free nanoparticle-caused ultrastructure remodeling of phytoplankton.
Collapse
Affiliation(s)
- Shuai Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Xia-Yu Tao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Dang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - YuTing Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Gang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - YangChao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Li-Jiao Tian
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Yue L, Tao M, Xu L, Wang C, Xu Y, Liu Y, Cao X, White JC, Wang Z. Size-dependent photocatalytic inactivation of Microcystis aeruginosa and degradation of microcystin by a copper metal organic framework. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132799. [PMID: 37865071 DOI: 10.1016/j.jhazmat.2023.132799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Water eutrophication has led to increasingly serious algal blooms (HABs) that pose significant threats to aquatic environmental and human health. Differently sized copper metal organic frameworks (Cu-MOFs), including Cu-MOF-1 (30 nm), Cu-MOF-2, (40 nm), Cu-MOF-3 (50 nm), and Cu-MOF-4 (1 µm×100 nm), were synthesized. Their performance in inactivating Microcystis aeruginosa and degrading microcystin was assessed at the concentration of 0-60 mg/L under visible light irradiation for 6 h. The photocatalytic antialgal activity of Cu-MOF-4 was 10.5%, 14.2%, and 31.2% higher than that of Cu-MOF-3, Cu-MOF-2, and Cu-MOF-1; the efficacy in photocatalytic degradation of microcystin induced by Cu-MOFs also exhibited significant size-dependent efficiency, where Cu-MOF-4 was 2.6-, 1.8-, and 2.0-fold of Cu-MOF-3, Cu-MOF-2, and Cu-MOF-1, respectively. Cu-MOF-4 had greater performance than other Cu-MOFs could attributed to: 1) Cu-MOF-4 is easier to interact with algal cells due to its lower surface negative charge and higher hydrophobicity, resulting in more photocatalyst-algae heteroaggregates formation; 2) Cu-MOF-4 had greater electron-hole pairs separation ability, thus exhibiting higher reactive oxygen species (ROS) production; 3) Cu-MOF-4 had greater hydrostability than other Cu-MOFs, leading to more sustained ROS generation. Additionally, the reusability of Cu-MOF-4 was also greater than other Cu-MOFs.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuao Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
7
|
Yang P, Huang H, Xie X. Removal of antibiotic resistant bacteria in wastewater by aggregation-induced emission photosensitizer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:121738. [PMID: 37121304 DOI: 10.1016/j.envpol.2023.121738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
The spread of antibiotic resistant bacteria from wastewater to the environment will pose serious threats to human health. It is a potential solution to prepare photosensitizers with broad-spectrum antibacterial activity for use in the photo-oxidation process to supplement the wastewater treatment system. Here, an aggregation-induced emission photosensitizer with D-π-A structure (TBTPy) has been reasonably designed and successfully developed. TBTPy can generate singlet oxygen with extraordinarily high efficiency under white-light irradiation owing to the small singlet-triplet energy gap. TBTPy has a rapid and efficient photo-oxidative killing effect on bacteria and fungi (such as MRSA, S. aureus, E. coli and C. albicans). TBTPy kills bacteria by binding to bacterial surface and releasing singlet oxygen to destroy cell membrane, leading to leakage of bacterial genetic material. This successful case can provide practical guidance for the subsequent development of AIE photosensitizers.
Collapse
Affiliation(s)
- Ping Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China
| | - XiaoBao Xie
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China.
| |
Collapse
|
8
|
Ding T, Huang X, Wei L, Li J. Size-dependent effect of microplastics on toxicity and fate of diclofenac in two algae. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131071. [PMID: 36889078 DOI: 10.1016/j.jhazmat.2023.131071] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are frequently detected in natural waters and usually acted as vectors for other pollutants, leading to possible threats to aquatic organisms. This study investigated the impact of polystyrene MPs (PS MPs) with different diameters on two algae Phaeodactylum tricornutum and Euglena sp., and the combined toxicity of PS MPs and diclofenac (DCF) in two algae was also studied. Significant inhibition of P. tricornutum was observed after 1 d exposure of 0.03 µm MPs at 1 mg L-1, whereas the decreased growth rate of Euglena sp. was recovered after 2 d exposure. However, their toxicity decreased in the presence of MPs with larger diameters. The oxidative stress contributed a major for the size-dependent toxicity of PS MPs in P. tricornutum, while in Euglena sp. the toxicity was mainly caused by a combination of oxidative damage and hetero-aggregation. Also, PS MPs alleviated the toxicity of DCF in P. tricornutum and the DCF toxicity continually decreased as their diameter increased, whereas the DCF at environmentally concentration could weaken the toxicity of MPs in Euglena sp. Moreover, the Euglena sp. revealed a higher removal for DCF, especially in the presence of MPs, but the higher accumulation and bioaccumulation factors (BCFs) indicated a possible ecological risk in natural waters. The present study explored discrepancy on the size-dependent toxicity and removal of MPs associated with DCF in two algae, providing valuable data for risk assessment and pollution control of MPs associated with DCF.
Collapse
Affiliation(s)
- Tengda Ding
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaotong Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Liyan Wei
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
9
|
Zhou G, Xu L, Wang H, Sun A, Wang Y, Li X, Jiang R. Different responses of Chlorella vulgaris to silver nanoparticles and silver ions under modulation of nitric oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64536-64546. [PMID: 37071354 DOI: 10.1007/s11356-023-26846-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Silver nanoparticles (Ag-NPs) are widely used in daily life because of their antibacterial properties. A fraction of Ag-NPs are released into the ecosystem during their production and utilization. The toxicity of Ag-NPs has been reported. However, it is still disputed whether the toxicity is mainly due to the released silver ions (Ag+). In addition, few studies have reported the response of algae to metal nanoparticles under modulation of nitric oxide (NO). In this study, Chlorella vulgaris (C. vulgaris) was used as a model organism to study the toxic effects of Ag-NPs and Ag+ released from Ag-NPs on algae under the modulation of NO. The results showed that the biomass inhibition rate of Ag-NPs (44.84%) to C. vulgaris was higher than that of Ag+ (7.84%). Compared with Ag+, Ag-NPs induced more severe damage to photosynthetic pigments, photosynthetic system II (PSII) performance, and lipid peroxidation. More serious damage to cell permeability led to higher internalization of Ag under Ag-NPs stress. Application of exogenous NO reduced the inhibition ratio of photosynthetic pigments and chlorophyll autofluorescence. Further, NO reduced the MDA levels by scavenging reactive oxygen species induced by Ag-NPs. NO modulated the secretion of extracellular polymers and hampered the internalization of Ag. All these results showed that NO alleviates the toxicity of Ag-NPs to C. vulgaris. However, NO did not improve the toxic effects of Ag+. Our results provide new insights into the toxicity mechanism of Ag-NPs to algae modulated by the signal molecule NO.
Collapse
Affiliation(s)
- Gaoxiang Zhou
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Limei Xu
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Haoyu Wang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Aoxue Sun
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
10
|
Shen L, Li QQ, Kang YH, Xiang QQ, Luo X, Chen LQ. Metabolomics reveals size-dependent persistence and reversibility of silver nanoparticles toxicity in freshwater algae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106471. [PMID: 36907725 DOI: 10.1016/j.aquatox.2023.106471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Although the toxicity of silver nanoparticles (AgNPs) has been widely reported, the persistence and reversibility of AgNPs toxicity are poorly understood. In the present work, AgNPs with particle sizes of 5 nm, 20 nm, and 70 nm (AgNPs5, AgNPs20, and AgNPs70) were selected to investigate the nanotoxicity and recovery effects of Chlorella vulgaris in the exposure (72 h) and recovery (72 h) stages using non-targeted metabolomics techniques. The exposure of AgNPs exerted size-dependent effects on several aspects of C. vulgaris physiology, including growth inhibition, chlorophyll content, intracellular silver accumulation, and differential expression of metabolites, and most of these adverse effects were reversible. Metabolomics revealed that AgNPs with small sizes (AgNPs5 and AgNPs20) mainly inhibited glycerophospholipid and purine metabolism, and the effects were reversible. In contrast, AgNPs with large sizes (AgNPs70) reduced amino acid metabolism and protein synthesis by inhibiting aminoacyl-tRNA biosynthesis, and the effects were irreversible, demonstrating the persistence of nanotoxicity of AgNPs. The size-dependent persistence and reversibility of AgNPs toxicity provides new insights to further understand the mechanisms of toxicity of nanomaterials.
Collapse
Affiliation(s)
- Lin Shen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China
| | - Qin Qin Li
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China
| | - Yu Hang Kang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China
| | - Qian Qian Xiang
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Luo
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China.
| | - Li Qiang Chen
- Institute of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
11
|
Zhang L, Wang WX. Silver nanoparticle toxicity to the larvae of oyster Crassostrea angulata: Contribution of in vivo dissolution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159965. [PMID: 36343823 DOI: 10.1016/j.scitotenv.2022.159965] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Understanding the toxic mechanism of silver nanoparticles (AgNPs) is crucial for it risk assessment in marine environment, but the role of Ag+ release in the AgNP toxicity to marine biota is not yet well addressed. This study investigated the toxicity of AgNPs to the veliger larvae of oyster Crassostrea angulata, with a specific focus on the possibility of the involvement of in vivo dissolution of AgNPs in the toxicity via an aggregation-induced emission luminogen (AIEgen)-based imaging technique. AgNO3 exhibited significantly greater toxicity than AgNPs based on the total Ag, as indicated by lower 50 % growth inhibition concentration (EC50). The average concentration of soluble Ag in seawater at the EC50 of AgNPs was far lower than the EC50 of AgNO3, indicating that the AgNP toxicity could not be fully explained by the dissolved Ag in the medium. Despite the comparable soluble Ag concentration in seawater for both treatments, more Ag was accumulated in the larvae exposed to AgNPs, suggesting their ability to directly ingest particulate Ag, which was further confirmed by the presence of AgNPs aggregates in the esophagus and stomach. With the application of AIEgen-based imaging technique, in vivo dissolution of AgNPs in oyster larvae was thoroughly verified by an increase in Ag(I) content in the larvae exposed to AgNPs after depuration. The results collectively implied that apart from the Ag released in the medium, the Ag dissolved from the ingested AgNPs may also greatly contribute to the toxicity of AgNPs toward the oyster larvae. The findings of this work shed new light on the bioavailability and toxicity of AgNPs in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Wang X, Hung TF, Chen FR, Wang WX. In Situ Tracking of Crystal-Surface-Dependent Cu 2O Nanoparticle Dissolution in an Aqueous Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1006-1016. [PMID: 36598407 DOI: 10.1021/acs.est.2c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-oxide-based nanoparticles (MONPs) such as Cu2O NPs have attracted growing attention, but the potential discharges of MONPs have raised considerable concern of their environmental fate including their dissolution behavior. The impacts of morphology on MONP dissolution are largely uncertain due to the lack of in situ tracking techniques. In this study, we combined a series of in situ technologies including liquid-cell transmission electron microscopy and fluorescence probes to reveal the in situ dissolution process of Cu2O NPs in freshwater. Our results suggest that cubic Cu2O NPs exhibit a higher dissolution quantity compared with spherical NPs of the same surface area. The difference was mainly related to the crystal surface, while other factors such as particle size or aggregation status showed minor effects. Importantly, we demonstrated the simultaneous growth of new small NPs and the dissolution of pristine Cu2O NPs during the dissolution of Cu2O NPs. Cubic Cu2O NPs became much less soluble under O2-limited conditions, suggesting that O2 concentration largely affected the dependence of dissolution on the NP morphology. Our findings highlight the potential application of in situ techniques to track the environmental fates of MONPs, which would provide important information for assessing the ecological risks of engineered NPs.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| | - Tak-Fu Hung
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Fu-Rong Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen518057, China
| |
Collapse
|
13
|
Gao Y, Yang P, Zhu J. Particle size-dependent effects of silver nanoparticles on swim bladder damage in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114363. [PMID: 36508826 DOI: 10.1016/j.ecoenv.2022.114363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Particle size-dependent biological effects of silver nanoparticles (AgNPs) are of great interest; however, the mechanism of action of silver ions (Ag+) released from AgNPs concerning AgNP particle size remains unclear. Thus, we evaluated the influence of particle size (20, 40, 60, and 80 nm) on the acute 96-h bioaccumulation and toxicity (swim bladder damage) of AgNPs in zebrafish (Danio rerio) larvae, with a focus on the mechanism of action of Ag+ released from differently sized AgNPs. The 40- and 60-nm AgNPs were more toxic than the 20- and 80-nm versions in terms of inflammation and oxidative damage to the swim bladder, as indicated by inhibition of type 2 iodothyroxine deiodinase enzyme activity, mitochondrial injury, and reduced 30-50% adenosine triphosphate content. Furthermore, up-regulation and down-regulation of swim bladder development-related gene expression was not observed for pbx1a and anxa5, but up-regulation expression of shha and ihha was observed with no statistical significance. That 20-nm AgNPs were less toxic was attributed to their rapid elimination from larvae in comparison with the elimination of 40-, 60-, and 80-nm AgNPs; thus, less Ag+ was released in 20-nm AgNP-exposed larvae. Failed inflation of swim bladders was affected by released Ag+ rather than AgNPs themselves. Overall, we reveal the toxicity contribution of Ag+ underlying the observed size-dependent effects of AgNPs and provide a scientific basis for comprehensively assessing the ecological risk and biosafety of AgNPs.
Collapse
Affiliation(s)
- Yongfei Gao
- College of Ecology, Taiyuan University of Technology, Taiyuan 030024, PR China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province (Zhejiang Shuren University), Hangzhou 310015, PR China.
| | - Pengyuan Yang
- College of Grain, Jilin Business and Technology College, Jilin 130507, PR China
| | - Jingxue Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
14
|
New Insights for Exploring the Risks of Bioaccumulation, Molecular Mechanisms, and Cellular Toxicities of AgNPs in Aquatic Ecosystem. WATER 2022. [DOI: 10.3390/w14142192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Silver nanoparticles (AgNPs) are commonly used in numerous consumer products, including textiles, cosmetics, and health care items. The widespread usage of AgNPs results in their unavoidable discharge into the ecosystem, which pollutes the aquatic, groundwater, sediments, and marine environments. These nanoparticles (NPs) activate the production of free radicals reactive species in aquatic organisms that interrupt the functions of DNA, cause mitochondrial dysfunction, and increase lipid peroxidation, which terminates the development and reproduction both in vivo and in vitro. The life present in the aquatic ecosystem is becoming threatened due to the release and exploitation of AgNPs. Managing the aquatic ecosystem from the AgNP effects in the near future is highly recommended. In this review, we discussed the background of AgNPs, their discharge, and uptake by aquatic organisms, the mechanism of toxicity, different pathways of cytotoxicity, and bioaccumulation, particularly in aquatic organisms. We have also discussed the antimicrobial activities of AgNPs along with acute and chronic toxicity in aquatic groups of organisms.
Collapse
|
15
|
Liang D, Wang X, Fan W. Potential application of Au core labeling for tracking Ag nanoparticles in the aquatic and biological system. WATER RESEARCH 2022; 215:118280. [PMID: 35305490 DOI: 10.1016/j.watres.2022.118280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The entering of silver nanoparticles (Ag NPs) in natural environments constantly increases due to their widespread production and application. While the environmental behavior, impacts, and fate of Ag NPs were critically assessed, the main challenge represents continuous tracking and quantification of Ag NPs in environmental and biological matrices. A group of labeled Ag NPs with gold cores (Au@Ag NPs) was developed for distinguishing between pristine Ag NPs and their other forms, and we comprehensively compared their physicochemical properties, environmental behavior, and biological effects with unlabeled Ag NPs. The electron transfer process from the Au core to the Ag shell gradually decreased with the increase of Ag shell thickness, then the inhibition of Ag+ release induced by the Au core was gradually alleviated, but the generation of superoxide radicals was intensified sharply. Then, the effect of the Au core on the dissolution capacity and free radicals' generation significantly altered the biological toxicity of Ag NPs, and the influence degree was related to the test organism's species. Nevertheless, the Au core retained the surface properties of Ag NPs, leading to the uptake of Au@Ag NPs, entirely consistent with the behavior of unlabeled Ag NPs. These findings confirmed that Au core labeling provides new opportunities for tracking Ag NPs in environmental and biological systems, and the exposure conditions and test organisms should be carefully assessed before employing the Au core labeling technology.
Collapse
Affiliation(s)
- Dingyuan Liang
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Xiangrui Wang
- Life science, The Hong Kong University of Science and Technology, Hong Kong 100025, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China.
| |
Collapse
|
16
|
Rajan R, Huo P, Chandran K, Manickam Dakshinamoorthi B, Yun SI, Liu B. A review on the toxicity of silver nanoparticles against different biosystems. CHEMOSPHERE 2022; 292:133397. [PMID: 34954197 DOI: 10.1016/j.chemosphere.2021.133397] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Despite significant progress made in the past two decades, silver nanoparticles (AgNPs) have not yet made it to the clinical trials. In addition, they showed both positive and negative effects in their toxicity from unicellular organism to well-developed multi-organ system, for example, rat. Although it is generally accepted that capped (bio)molecules have synergistic bioactivities and diminish the toxicity of metallic Ag core, convincing evidence is completely lacking. Therefore, in this review, we first highlight the recent in vivo toxicity studies of chemically manufactured AgNPs, biologically synthesized AgNPs and reference AgNPs of European Commission. Then, their toxic effects are compared with each other and the overlooked factors leading to the potential conflict of obtained toxicity results are discussed. Finally, suggestions are given to better design and conduct the future toxicity studies and to fast-track the successful clinical translation of AgNPs as well.
Collapse
Affiliation(s)
- Ramachandran Rajan
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - PeiPei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China
| | - Krishnaraj Chandran
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | | | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, Shandong, 255000, PR China.
| |
Collapse
|
17
|
Jiang B, Shen Y, Lu X, Du Y, Jin N, Li G, Zhang D, Xing Y. Toxicity assessment and microbial response to soil antibiotic exposure: differences between individual and mixed antibiotics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:460-473. [PMID: 35166274 DOI: 10.1039/d1em00405k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Increasing amounts of antibiotics are introduced into soils, raising great concerns on their ecotoxicological impacts on the soil environment. This work investigated the individual and joint toxicity of three antibiotics, tetracycline (TC), sulfonamide (SD) and erythromycin (EM) via a whole-cell bioreporter assay. TC, SD and EM in aqueous solution demonstrated cytotoxicity, whilst soil exposure showed genotoxicity, indicating that soil particles possibly affected the bioavailability of antibiotics. Toxicity of soils exposed to TC, SD and EM changed over time, demonstrating cytotoxic effects within 14-d exposure and genotoxic effects after 30 days. Joint toxicity of TC, SD and EM in soils instead showed cytotoxicity, suggesting a synergetic effect. High-throughput sequencing suggested that the soil microbial response to individual antibiotics and their mixtures showed a different pattern. Soil microbial community composition was more sensitive to TC, in which the abundance of Pseudomonas, Pirellula, Subdivision3_genera_incertae_sedis and Gemmata varied significantly. Microbial community functions were significantly shifted by EM amendments, including signal transduction mechanisms, cytoskeleton, cell wall/membrane/envelope biogenesis, transcription, chromatin structure and dynamics, and carbohydrate transport and metabolism. This work contributes to a better understanding of the ecological effects and potential risks of individual and joint antibiotics on the soil environment.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Xin Lu
- Petrochina North China Gas Marketing Company, Beijing, 100029, PR China
| | - Yufan Du
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, PR China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, PR China
- National Environmental and Energy Science and Technology International Cooperation Base, University of Science & Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
18
|
Xiao B, Yang R, Chen P, Yang J, Sun B, Wang K, Zhang T, Zhu L. Insights into the lower trophic transfer of silver ions than silver containing nanoparticles along an aquatic food chain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150228. [PMID: 34798747 DOI: 10.1016/j.scitotenv.2021.150228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Silver nanoparticles (AgNPs) released into the environment are subject to environmental transformation processes before accumulating in aquatic organisms and transferring along the food chain. Lack of understanding on how environmental transformation affects trophic transfer of AgNPs hinders accurate prediction of the environmental risks of these widely present nanomaterials. Here we discover that pristine AgNPs as well as their sulfidation products (Ag2S-NPs) and dissolution products (Ag+) tend to be accumulated in Daphnia magna and subsequently transferred to zebrafish. In D. magna, Ag+ exhibits the highest bioaccumulation potential whereas Ag2S-NPs show the lowest bioaccumulation. Surprisingly, the biomagnification factor of Ag+ along the D. magna-zebrafish food chain appears to be significantly lower relative to AgNPs and Ag2S-NPs, likely due to the limited release of Ag from D. magna to zebrafish during digestion. Moreover, AgNPs and their transformation products mainly accumulate in the internal organs, particularly intestine, of zebrafish. Adsorption of AgNPs on the surface of the intestinal cell membrane mitigates depuration of AgNPs and, at least in part, leads to the larger biomagnification factor of AgNPs, relative to their transformation products. This research highlights the necessity of considering environmental transformation processes of nanomaterials in assessing their bioavailability and risk.
Collapse
Affiliation(s)
- Bowen Xiao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China; School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Rongyan Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Jing Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Kunkun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
19
|
Liu N, Qu G, Wen R, Liu X, Wang Y, Gao J, Yin Y, Shi J, Zhou Q, He B, Hu L, Jiang G. Occurrence of Silver-containing Particles in Rat Brains upon Intranasal Exposure of Silver Nanoparticles. Metallomics 2022; 14:6496052. [PMID: 34982823 DOI: 10.1093/mtomcs/mfab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022]
Abstract
The widespread application of silver nanomaterials raises health concerns due to the adverse effects that can be associated with silver nanoparticles (AgNPs) exposure. AgNPs can be introduced into human bodies via inhalation, either intentionally (intranasal administration of AgNPs) or unintentionally (environmental pollution, accidental release, or occupational exposure). Recent studies have shown that intranasal exposure of experimental animals to AgNPs can lead to the accumulation of silver (Ag) in brain tissues. However, there is little information available concerning what forms of Ag (particulate and ionic) exist in brain tissues. This study aimed to investigate whether particulate Ag exists in rat brains following intranasal exposure of AgNPs at 1 mg/kg/day using multiple analytical techniques. The results demonstrated that Ag-containing particles were presented in AgNPs-exposed rat brains, accounting for 20.2%- 68.1% of the total Ag. The mass concentrations of Ag-containing particles in brain tissues increased with exposure time but only decreased by 37.5% after elimination for 4 weeks upon exposure cessation. The size of Ag-containing particles identified in rat brains was larger than the original AgNPs. The Ag-containing particles identified in the rat brain were composed of multiple elements, including Ag, sulfur (S), selenium (Se) with atomic percentages of 45.8%, 37.5%, 16.7% respectively. The finding highlighted the occurrence and accumulation of transformed AgNPs containing S and Se in rat brains after intranasal exposure to AgNPs, implying potential risks for brain health.
Collapse
Affiliation(s)
- Nian Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruoxi Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
21
|
Wang X, Wang WX. Cu-based nanoparticle toxicity to zebrafish cells regulated by cellular discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118296. [PMID: 34627961 DOI: 10.1016/j.envpol.2021.118296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 05/21/2023]
Abstract
Cellular transport of metal nanoparticles (NPs) is critical in determining their potential toxicity, but the transformation of metal ions released from the internalized NPs is largely unknown. Cu-based NPs are the only metallic-based NPs that are reported to induce higher toxicity compared with their corresponding ions, likely due to their unique cellular turnover. In the present study, we developed a novel gold core to differentiate the particulate and ionic Cu in the Cu2O microparticles (MPs), and the kinetics of bioaccumulation, exocytosis, and cytotoxicity of Au@Cu2O MPs to zebrafish embryonic cells were subsequently studied. We demonstrated that the internalized MPs were rapidly dissolved to Cu ions, which then undergo lysosome-mediated exocytosis. The uptake rate of smaller MPs (130 nm) was lower than that of larger ones (200 nm), but smaller MPs were dissolved much quickly in cells and therefore activated the exocytosis more quickly. The rapid release of Cu ions resulted in an immediate toxic action of Cu2O MPs, while the cell deaths mainly occurred by necrosis. During this process, the buffering ability of glutathione greatly alleviated the Cu toxicity. Therefore, although the turnover of intracellular Cu at a sublethal exposure level was hundred times faster than the basal values, labile Cu(I) concentration increased by only 2 times at most. Overall, this work provided new insights into the toxicity of copper NPs, suggesting that tolerance to Cu-based NPs depended on their ability to discharge the released Cu ions.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
22
|
Parandhaman T, Choudhary P, Ramalingam B, Schmidt M, Janardhanam S, Das SK. Antibacterial and Antibiofouling Activities of Antimicrobial Peptide-Functionalized Graphene-Silver Nanocomposites for the Inhibition and Disruption of Staphylococcus aureus Biofilms. ACS Biomater Sci Eng 2021; 7:5899-5917. [PMID: 34787388 DOI: 10.1021/acsbiomaterials.1c01253] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Owing to the emergence of antibiotic-resistant strains, bacterial infection and biofilm formation are growing concerns in healthcare management. Herein, we report an eco-benign strategy for the synthesis and functionalization of graphene-silver (rGOAg) nanocomposites with an antimicrobial peptide (AMP) for the treatment of Staphylococcus aureus infection. The synthesis of rGOAg nanocomposites was carried out by simple microwave reduction, and the as-synthesized rGOAg was covalently functionalized with an AMP. As a natural AMP, poly-l-lysine (PLL) functionalization of rGOAg enhanced the antibacterial efficacy and target specificity against the S. aureus biofilm. The robust bactericidal efficiency and biofilm disruption by AMP-functionalized rGOAg (designated as GAAP) occurred through the "contact-kill-release" mode of action, where the electrostatic interaction with bacterial cells together with intracellular ROS generation induced physical disruption to the cell membrane. The internalization of GAAP into the cytoplasm through the damaged cell membrane caused an outburst of intracellular proteins and DNA. Crystal violet staining along with fluorescence and confocal microscopic images showed an effective inhibition and disruption of the S. aureus biofilm upon treatment with GAAP. PLL functionalization also prevented the dissolution of Ag+ ions and thereby minimized the in vitro toxicity of GAAP to the 3 T6 fibroblast and human red blood cells. The ex vivo rat skin disinfection model further demonstrated the potency of GAAP in eliminating the biofilm formation and disruption of the S. aureus biofilm. The obtained results demonstrated a general approach for designing a functional nanocomposite material to disrupt the mature biofilm and provided a promising strategy for treating bacterial infection.
Collapse
Affiliation(s)
- Thanusu Parandhaman
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Michael Schmidt
- Electron Microscopy Facility, Tyndall National Institute, University College Cork (UCC), Lee Maltings Complex, Dyke Parade, Cork T12 R5CP, Ireland
| | - Sridevi Janardhanam
- Centre for Analytical, Testing, Evaluation and Reporting Services, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India
| | - Sujoy K Das
- Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Li Y, Wang WX. Uptake, intracellular dissolution, and cytotoxicity of silver nanowires in cell models. CHEMOSPHERE 2021; 281:130762. [PMID: 34020191 DOI: 10.1016/j.chemosphere.2021.130762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
The uptake, intracellular dissolution, and cytotoxicity of silver nanowires (AgNWs) in two cell models (human keratinocytes - HaCaT cells and murine macrophages) were systemically investigated for the first time. Cellular uptake of AgNWs occurred mainly via pathways of clathrin-dependent endocytosis, caveolae-dependent endocytosis, and phagocytosis. AgNWs could be internalized by two types of cells with numerous lysosomal vesicles detected in close vicinity to AgNWs. Meanwhile, AgNWs exposure caused lysosomal permeabilization and release of cathepsisn B into cytoplasm. Furthermore, for the first time, this study found that AgNWs exposure inhibited the transmembrane ATP binding cassette (ABC) efflux transporter activity, which could make AgNWs as chemosensitizers to increase the toxicity of other xenobiotic pollutants. Toxicity assays evaluating reactive oxygen species production and mitochondrial activity indicated that cytotoxicity differed for different cell types and particles. The intracellular presence of AgNWs with different diameters induced similar toxic events but to different extents. AgNWs were absorbed by macrophages more efficiently than HaCaT cells, while AgNWs exhibited only marginal cytotoxicity towards macrophages compared to HaCaT cells. Using an Ag+ fluorescence probe, it was found that a fraction of AgNWs was dissolved inside the lysosomes. A higher amount of released Ag+ was detected in HaCaT cells than in macrophages, which might partially contribute to their higher cytotoxicity in HaCaT cells. The toxicity of AgNWs in HaCaT cells and macrophages is due to the high-aspect nature of the nanowires rather than the extracellular release of Ag+. This study may be useful for risk assessments of AgNWs in their practical applications in the biomedical field.
Collapse
Affiliation(s)
- Yiling Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
24
|
Gao Y, Wu W, Qiao K, Feng J, Zhu L, Zhu X. Bioavailability and toxicity of silver nanoparticles: Determination based on toxicokinetic-toxicodynamic processes. WATER RESEARCH 2021; 204:117603. [PMID: 34536684 DOI: 10.1016/j.watres.2021.117603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Determining the bioavailability and toxicity mechanism of silver nanoparticles (AgNPs) is challenging as Ag+ is continuously released by external or internal AgNP dissolution in the actual exposure system (regardless of the laboratory or the natural environment). Here a novel pulsed-gradient Ag+ (AgNO3) exposure was conducted with zebrafish (Danio rerio) larvae to simulate dissolved gradient concentrations of Ag+ from polyvinylpyrrolidone (PVP)-coated AgNPs. The accumulation and toxicity of the pulsed-gradient Ag+ (AgNO3) and, in the meantime, the released Ag+ from PVP-AgNPs were predicted using a toxicokinetic-toxicodynamic (TK-TD) model with obtained Ag+ parameters. In order to further understand the possible mechanism of PVP-AgNP releasing Ag+ in the body, subcellular fractions (S9) of zebrafish were also used to incubate with AgNPs in vitro to mimic the realistic in vivo scenarios. In the TK process, in vivo analysis showed that AgNPs released around twice as many Ag+ into the body than were detected with a single Ag+ pulse-exposure system; this was supported by evidence that subcellular S9 fractions might cause the PVP-AgNPs to lose the capping agent and favor Ag+ release. In the TD process, toxicity (survival rate) was predicted by the total bodily Ag(I) concentration, suggesting that AgNP toxicity in larvae was mainly due to gradually released Ag+ rather than AgNPs themselves. This study helps clarify the role of Ag+ in AgNP toxicity and offers a novel framework by which to investigate the toxicity of metal nanoparticles and corresponding metal ions in biological systems.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| | - Weiran Wu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Kexin Qiao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| |
Collapse
|
25
|
Braun NJ, Galaska RM, Jewett ME, Krupa KA. Implementation of a Dynamic Co-Culture Model Abated Silver Nanoparticle Interactions and Nanotoxicological Outcomes In Vitro. NANOMATERIALS 2021; 11:nano11071807. [PMID: 34361193 PMCID: PMC8308404 DOI: 10.3390/nano11071807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022]
Abstract
The incorporation of engineered nanoparticles (NPs) into everyday consumer goods, products, and applications has given rise to the field of nanotoxicology, which evaluates the safety of NPs within biological environments. The unique physicochemical properties of NPs have made this an insurmountable challenge, as their reactivity and variable behavior have given rise to discrepancies between standard cell-based in vitro and animal in vivo models. In this study, enhanced in vitro models were generated that retained the advantages of traditional cell cultures, but incorporated the modifications of (1) inclusion of an activated immune element and (2) the presence of physiologically-relevant dynamic flow. Following verification that the human alveolar epithelial and macrophage (A549/U937) co-culture could be successfully sustained under both static and dynamic conditions, these cultures, in addition to a standard A549 static model, were challenged with 10 nm citrate coated silver NPs (AgNPs). This work identified a reshaping of the AgNP-cellular interface and differential biological responses following exposure. The presence of dynamic flow modified cellular morphology and reduced AgNP deposition by approximately 20% over the static exposure environments. Cellular toxicity and stress endpoints, including reactive oxygen species, heat shock protein 70, and secretion of pro-inflammatory cytokines, were found to vary as a function of both cellular composition and flow conditions; with activated macrophages and fluid flow both mitigating the severity of AgNP-dependent bioeffects. This work highlights the possibility of enhanced in vitro systems to assess the safety of engineered NPs and demonstrates their effectiveness in elucidating novel NP-cellular interactions and toxicological profiles.
Collapse
Affiliation(s)
- Nicholas J. Braun
- Molecular Bioeffects Branch, Human Effectiveness Directorate, Wright Patterson Air Force Base, Dayton, OH 45433, USA;
| | - Rachel M. Galaska
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
| | - Maggie E. Jewett
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
| | - Kristen A. Krupa
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH 45469-0256, USA; (R.M.G.); (M.E.J.)
- Correspondence: ; Tel.: +1-937-229-2627
| |
Collapse
|
26
|
Singh A, Hou WC, Lin TF. Combined impact of silver nanoparticles and chlorine on the cell integrity and toxin release of Microcystis aeruginosa. CHEMOSPHERE 2021; 272:129825. [PMID: 35534960 DOI: 10.1016/j.chemosphere.2021.129825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) have shown to be toxic to freshwater cyanobacterial species, and sodium hypochlorite (NaOCl) is a common oxidant for the treatment of cyanobacterial cells. AgNPs have a high possibility of co-existing with the cyanobacterial cells in the aqueous environments leading to its exposure to NaOCl during water treatment; however, their combined effects on the cyanobacterial cells are largely undocumented. This work compares the individual and combined effect of AgNP and NaOCl on the integrity and toxin (microcystins) release of Microcystis aeruginosa at varying levels. The results show that the AgNP (0.2-0.6 mg/L) alone has negligible effects on the cell lysis, while NaOCl alone shows concentration-dependent (0.2 < 0.4 < 0.6 mg/L) rupturing of cells. In contrast, the AgNP + NaOCl (0.2-0.6 mg/L) samples show increasing loss in cell integrity at higher AgNP (0.4 and 0.6 mg/L) levels than the NaOCl only samples. NaOCl exposure results in increasing dissolution of AgNPs with time, releasing silver ions (Ag+), affecting its size and morphology. The cell-associated total Ag declines over time with an increase in NaOCl levels, maybe due to increasing cell-lysis or NaOCl induced oxidative dissolution of AgNPs. The cell-associated total Ag and released Ag+ possibly weaken the cellular membrane, thus assisting NaOCl in faster cell-lysis. The combined exposure of AgNP and NaOCl also results in a higher release of toxin from the cells. This work collectively reveals that the AgNPs combined with NaOCl can enhance the cell lysis and release of toxins.
Collapse
Affiliation(s)
- Abhishek Singh
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC
| | - Tsair-Fuh Lin
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan, ROC.
| |
Collapse
|
27
|
Yan N, Wang WX. Novel Imaging of Silver Nanoparticle Uptake by a Unicellular Alga and Trophic Transfer to Daphnia magna. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5143-5151. [PMID: 33726495 DOI: 10.1021/acs.est.0c08588] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Widely applied silver nanoparticles (AgNPs) can have potentially detrimental impacts on aquatic organisms. Unicellular algae as primary producers can interact with AgNPs and initiate their transfer along food chains. Herein, we demonstrate that AgNPs were internalized in a freshwater phytoplankton species Chlamydomonas reinhardtii, but the entrance pathways varied with their surface coatings. Citrate-coated AgNPs (Cit-AgNPs) were internalized mainly through the apical zone of the cell near the flagella, whereas the aggregation-induced emission fluorogen (AIEgen)-coated AgNPs (AIE-AgNPs) were internalized through endocytosis. The internalized AgNPs were dissolved intracellularly and the released Ag+ was distributed heterogeneously in the cytoplasm, in contrast to the directly accumulated Ag+ which displayed a diffuse cytoplasmic distribution pattern. We then further visualized and quantified the trophic transfer of AgNPs from the alga C. reinhardtii to the zooplanktonic species Daphnia magna. Both trophically transferred Ag+ and AgNPs were concentrated in the gut regions of D. magna as a result of the direct ingestion of food particles. After ingestion, about 95% of the trophically transferred Ag+ was eliminated. Retention of AIE-AgNPs by daphnids was relatively higher than that of Cit-AgNPs due to their lower dissolution of Ag+. The present study provides direct evidence for the internalization of AgNPs in unicellular algae and demonstrates that the biological transport of trophically transferred of AgNPs is related to the different surface coatings of NPs.
Collapse
Affiliation(s)
- Neng Yan
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
28
|
Deniaud A. Imaging inorganic nanomaterial fate down to the organelle level. Metallomics 2021; 13:6134098. [PMID: 33576806 DOI: 10.1093/mtomcs/mfab006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 11/14/2022]
Abstract
Nanotoxicology remains an important and emerging field since only recent years have seen the improvement of biological models and exposure setups toward real-life scenarios. The appropriate analysis of nanomaterial fate in these conditions also required methodological developments in imaging to become sensitive enough and element specific. In the last 2-4 years, impressive breakthroughs have been achieved using electron microscopy, nanoscale secondary ion mass spectrometry, X-ray fluorescence microscopy, or fluorescent sensors. In this review, basics of the approaches and application examples in the study of nanomaterial fate in biological systems will be described to highlight recent successes in the field.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, F-38000 Grenoble, France
| |
Collapse
|
29
|
Transport of environmental natural organic matter coated silver nanoparticle across cell membrane based on membrane etching treatment and inhibitors. Sci Rep 2021; 11:507. [PMID: 33436771 PMCID: PMC7803783 DOI: 10.1038/s41598-020-79901-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Environmental natural organic matters (NOMs) have great effects on the physicochemical properties of engineering nanoparticles, which may impact the transport of nanoparticles across plasma membrane and the cytotoxicity. Therefore, the kinetics, uptake pathway and mass of transporting into A549 cell membrane of silver nanoparticles (AgNPs) coated with citric acid (CA), tartaric acid (TA) and fulvic acid (FA) were investigated, respectively. CA, FA and TA enhanced the colloidal stability of AgNPs in culture medium and have greatly changed the surface plasmon resonance spectrum of AgNPs due to the absorption of CA, FA and TA on surface of AgNPs. Internalizing model showed that velocity of CA-, TA- and FA-nAg transporting into A549 cell were 5.82-, 1.69- and 0.29-fold higher than those of the control group, respectively. Intracellular mass of Ag was dependent on mass of AgNPs delivered to cell from suspension, which obeyed Logistic model and was affected by NOMs that CA- and TA-nAg showed a large promotion on intracellular mass of Ag. The lipid raft/caveolae-mediated endocytosis (LME) of A549 cell uptake of AgNPs were susceptible to CA, TA and FA that uptake of CA-, TA- and FA-nAg showed lower degree of dependent on LME than that of the control (uncoated AgNPs). Actin-involved uptake pathway and macropinocytosis would have less contribution to uptake of FA-nAg. Overall, transmembrane transport of NOMs-coated AgNPs differs greatly from that of the pristine AgNPs.
Collapse
|
30
|
Wu J, Yu Q, Bosker T, Vijver MG, Peijnenburg WJGM. Quantifying the relative contribution of particulate versus dissolved silver to toxicity and uptake kinetics of silver nanowires in lettuce: impact of size and coating. Nanotoxicology 2020; 14:1399-1414. [PMID: 33074765 DOI: 10.1080/17435390.2020.1831639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Functionalized high-aspect-ratio silver nanowires (AgNWs) have been recognized as one of the most promising alternatives for fabricating products, with their use ranging from electronic devices to biomedical fields. Given concerns on the safety of AgNWs, there is an urgent need to investigate the relation between intrinsic properties of AgNWs and their toxicity. In this study, lettuce was exposed for either 6 or 18 d to different AgNWs to determine how the size/aspect ratio and coating of AgNWs affect the contributions of the dissolved and particulate Ag to the overall phytotoxicity and uptake kinetics. We found that the uncoated AgNW (39 nm diameter × 8.4 µm length) dissolved fastest of all AgNWs investigated. The phytotoxicity, uptake rate constants, and bioaccumulation factors of the PVP-coated AgNW (43 nm diameter × 1.8 µm length) and the uncoated AgNW (39 nm diameter × 8.4 µm length) were similar, and both were higher than that of the PVP-coated AgNW with the larger diameter(65 nm diameter × 4.4 µm length). These results showed that the diameter of the AgNWs predominantly affected toxicity and Ag accumulation in plants. Particulate Ag was found to be the predominant driver/descriptor of overall toxicity and Ag accumulation in the plants rather than dissolved Ag for all AgNWs tested. The relative contribution of dissolved versus particulate Ag to the overall effects was influenced by the exposure concentration and the extent of dissolution of AgNWs. This work highlights inherent particulate-dependent effects of AgNWs in plants and suggests that toxicokinetics should explicitly be considered for more nanomaterials and organisms, consequently providing more realistic input information for their environmental risk assessment.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Qi Yu
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- Leiden University College, Leiden University, Leiden, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, The Netherlands
| |
Collapse
|
31
|
Li WQ, Qing T, Li CC, Li F, Ge F, Fei JJ, Peijnenburg WJGM. Integration of subcellular partitioning and chemical forms to understand silver nanoparticles toxicity to lettuce (Lactuca sativa L.) under different exposure pathways. CHEMOSPHERE 2020; 258:127349. [PMID: 32540544 DOI: 10.1016/j.chemosphere.2020.127349] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The current understanding of the biological impacts of silver nanoparticles (AgNPs) is restricted to the direct interactions of the particles with biota. Very little is known about their intracellular fate and subsequent toxic consequences. In this research we investigated the uptake, internal fate (i,e., Ag subcellular partitioning and chemical forms), and phytotoxicity of AgNPs in lettuce following foliar versus root exposure. At the same AgNP exposure concentrations, root exposure led to more deleterious effects than foliar exposure as evidenced by a larger extent of reduced plant biomass, elevated oxidative damage, as well as a higher amount of ultrastructural injuries, despite foliar exposure leading to 2.6-7.6 times more Ag bioaccumulation. Both Ag subcellular partitioning and chemical forms present within the plant appeared to elucidate this difference in toxicity. Following foliar exposure, high Ag in biologically detoxified metals pool (29.2-53.0% by foliar exposure vs. 12.8-45.4% by root exposure) and low Ag proportion in inorganic form (6.1-11.9% vs. 14.1-19.8%) potentially associated with AgNPs tolerance. Silver-containing NPs (24.8-38.6 nm, 1.5-2.3 times larger than the initial size) were detected in lettuce plants exposed to NPs and to dissolved Ag+, suggesting possible transformation and/or aggregation of AgNPs in the plants. Our observations show that the exposure pathway significantly affects the uptake and internal fate of AgNPs, and thus the associated phytotoxicity. The results are an important contribution to improve risk assessment of NPs, and will be critical to ensure food security.
Collapse
Affiliation(s)
- Wei-Qi Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Ting Qing
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Cheng-Cheng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Feng Li
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Fei Ge
- Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, PR China
| | - Jun-Jie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300, RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven, the Netherlands
| |
Collapse
|
32
|
Zhang L, Jiang H, Wang WX. Subcellular Imaging of Localization and Transformation of Silver Nanoparticles in the Oyster Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11434-11442. [PMID: 32786557 DOI: 10.1021/acs.est.0c03342] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To accurately assess the behavior and toxicity of silver nanoparticles (AgNPs), it is essential to understand their subcellular distribution and biotransformation. We combined both nanoscale secondary ion mass spectrometry (NanoSIMS) and electron microscopy to investigate the subcellular localization of Ag and in situ chemical distribution in the oyster larvae Crassostrea angulata after exposure to isotopically enriched 109AgNPs. Oyster larvae directly ingested particulate Ag, and in vivo dissolution of AgNPs occurred. The results collectively showed that AgNPs were much less bioavailable than Ag+, and the intracellular Ag was mainly originated from the soluble Ag, especially those dissolved from the ingested AgNPs. AgNPs absorbed on the cell membranes continued to release Ag ions, forming inorganic Ag-S complexes extracellularly, while Ag-organosulfur complexes were predominantly formed intracellularly. The internalized Ag could bind to the sulfur-rich molecules (S-donors) in the cytosol and/or be sequestered in the lysosomes of velum, esophagus, and stomach cells, as well as in the digestive vacuoles of digestive cells, which could act as a detoxification pathway for the oyster larvae. Ag was also occasionally incorporated into the phosphate granules, rough endoplasmic reticulum, and mitochondria. Our work provided definite evidence for the partial sulfidation of AgNPs after interaction with oyster larvae and shed new light on the bioavailability and fate of nanoparticles in marine environment.
Collapse
Affiliation(s)
- Luqing Zhang
- Marine Environmental Laboratory, Shenzhen Research Institute, HKUST, Shenzhen 518057, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, Washington 6009, Australia
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hongkong, Kowloon, Hong Kong
| |
Collapse
|
33
|
Eskandari L, Andalib F, Fakhri A, Jabarabadi MK, Pham B, Gupta VK. Facile colorimetric detection of Hg (II), photocatalytic and antibacterial efficiency based on silver-manganese disulfide/polyvinyl alcohol-chitosan nanocomposites. Int J Biol Macromol 2020; 164:4138-4145. [PMID: 32896563 DOI: 10.1016/j.ijbiomac.2020.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/23/2023]
Abstract
The application of nano materials for removal and detection of hazardous metal detection with nanoparticles is important for researcher. In this paper, the silver-manganese disulfide/chitosan-polyvinyl alcohol (Ag-MnS2/CSPVA) nanocomposites was prepared for the detection of toxic heavy metal. The synthesized nano materials was experimented through the various analysis methods to structural and morphological evaluation. The surface charge of the Ag-MnS2/CSPVA was -25.0 ± 0.1 mV. The various metal ions have not effect on detection of mercury (II). The result shows the excellent linearity was found the mercury concentrations changing with limit of detection of 9.0 nM (nano molar level). The condition of detection was conducted at pH 5 and room temperature. Moreover, the photocatalytic properties of the Ag-MnS2/CSPVA nanocomposites was analyzed for degradation of malachite green under visible light irradiation. The complete malachite green degradation reached up to 97.29% after 30 min of photocatalytic reaction. The antibacterial efficiency was studied versus both Escherichia coli and Staphylococcus aureus bacteria. The outcome depicts that the Ag-MnS2/CSPVA nanocomposites has an excellent property in antibacterial activity.
Collapse
Affiliation(s)
- Leila Eskandari
- Department of Chemical Engineering, Urmia university of Technology, Urmia, Iran
| | - Fatemeh Andalib
- Department of Veterinary Medicine, Medicinal Plant Center of Barij, Km. 5 Mashhad-Ardehal, 87135-1187 Kashan, Iran
| | - Ali Fakhri
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran; Department of Chemistry, Nano Smart Science Institute (NSSI), Tehran, Iran.
| | | | - B Pham
- Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Vinod Kumar Gupta
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
34
|
Wu J, Wang G, Vijver MG, Bosker T, Peijnenburg WJGM. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114117. [PMID: 32062092 DOI: 10.1016/j.envpol.2020.114117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 05/25/2023]
Abstract
Whether toxicity of silver nanoparticles (AgNPs) to organisms originates from the nanoparticles themselves or from the dissolved Ag-ions is still debated, with the majority of studies claiming that extracellular release of Ag-ions is the main cause of toxicity. The objective of this study was to determine the contributions of both particles and dissolved ions to toxic responses, and to better understand the underlying mechanisms of toxicity. In addition, the pathways of AgNPs exposure to plants might play an important role and therefore are explicitly studied as well. We systematically assessed the phytotoxicity, internalization, biodistribution, and antioxidant responses in lettuce (Lactuca sativa) following root or foliar exposure to AgNPs and ionic Ag at various concentrations. For each endpoint the relative contribution of the particle-specific versus the ionic form was quantified. The results reveal particle-specific toxicity and uptake of AgNPs in lettuce as the relative contribution of particulate Ag accounted for more than 65% to the overall toxicity and the Ag accumulation in whole plant tissues. In addition, particle toxicity is shown to originate from the accumulation of Ag in plants by blocking nutrient transport, while ion toxicity is likely due to the induction of excess ROS production. Root exposure induced higher toxicity than foliar exposure at comparable exposure levels. Ag was found to be taken up and subsequently translocated from the exposed parts of plants to other portions regardless of the exposure pathway. These findings suggest particle related toxicity, and demonstrate that the accumulation and translocation of silver nanoparticles need to be considered in assessment of environmental risks and of food safety following consumption of plants exposed to AgNPs by humans.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands.
| | - Guiyin Wang
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; College of Environmental Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands
| | - Thijs Bosker
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; Leiden University College, Leiden University, P.O. Box 13228, 2501 EE, The Hague, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, P. O. Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
35
|
Xiao B, Wang X, Yang J, Wang K, Zhang Y, Sun B, Zhang T, Zhu L. Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110454. [PMID: 32171962 DOI: 10.1016/j.ecoenv.2020.110454] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The wide application of silver nanoparticles (AgNPs) has inevitably led to their release into the natural aquatic environment. Natural organic matter (NOM) is ubiquitous and would influence the fate and effects of these nanoparticles in such aquatic environments. Here we demonstrate that NOM plays an important role in the bioaccumulation kinetics and tissue distribution of AgNPs in zebrafish. In the presence of humic acid and fulvic acid, the uptake rates of AgNPs decreased while the depuration rates of AgNPs increased. As a result, the bioconcentration factor (BCF) of AgNPs in the entire body of the zebrafish was reduced. AgNPs were mainly taken up by the zebrafish via oral ingestion and were greatly accumulated in the liver, intestine and gill. In the intestine, NOM effectively inhibited the AgNPs from penetrating the cell membranes into internal tissues and also suppressed the disintegration and dissolution of AgNPs in gastrointestinal fluid, thereby decreasing the absorption of Ag by zebrafish. This research underlines the significance of incorporating the effects of NOM into predictive models for accurately assessing the toxicity and ecological risks of nanoparticles in natural aquatic environments.
Collapse
Affiliation(s)
- Bowen Xiao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Xiaolei Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Jing Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Kunkun Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Yinqing Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Binbin Sun
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China.
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin, 300350, China.
| |
Collapse
|
36
|
Zhang W, Ning B, Sun C, Song K, Xu X, Fang T, Yao L. Dynamic nano-Ag colloids cytotoxicity to and accumulation by Escherichia coli: Effects of Fe 3+, ionic strength and humic acid. J Environ Sci (China) 2020; 89:180-193. [PMID: 31892390 DOI: 10.1016/j.jes.2019.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.
Collapse
Affiliation(s)
- Weicheng Zhang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, China
| | - Bingyu Ning
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Caiyun Sun
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Ke Song
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China; Henan Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
37
|
Shao Z, Wang WX. Biodynamics of Silver Nanoparticles in an Estuarine Oyster Revealed by 110mAgNP Tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:965-974. [PMID: 31870149 DOI: 10.1021/acs.est.9b04241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The prevalence of silver nanoparticles (AgNPs) requires a comprehensive understanding of their biological impacts especially in marine and estuarine environments. Nevertheless, the background Ag concentration in organisms may impede the accuracy of Ag detection if the net accumulated Ag is low over a short exposure period. Here, a radio-synthesizing method was employed to trace the behavior of AgNPs with two sizes (15 and 60 nm) and two coatings (humic acid and citrate) in an estuarine oyster Crassostrea hongkongensis. This method was sensitive to detect the bioaccumulation and depuration of AgNPs in the oysters over a short period of exposure, which was necessary given the significant changes of particle aggregation in saline water environments. Through radioactive AgNP tracing and biokinetic modeling, we for the first time demonstrated the differential uptake mechanisms of different-sized AgNPs in oysters. Specifically, the ingestion of particles dominated the uptake of 60 nm AgNPs, whereas dermal uptake and ingestion contributed equally to 15 nm AgNPs. Surface coating (humic acid vs citrate) did not significantly affect the uptake of AgNPs by the oysters. The depuration of AgNPs from the oysters was relatively faster than that for the Ag ion. The digestive gland was the key detoxification organ of AgNPs with the greatest loss of Ag by the end of depuration. The findings of this study provide fundamental knowledge for nano-specific risk assessment in marine and estuarine environments.
Collapse
Affiliation(s)
- Zishuang Shao
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon 999077 , Hong Kong
- HKUST Shenzhen Research Institute , Shenzhen 518057 , China
| | - Wen-Xiong Wang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) , The Hong Kong University of Science and Technology , Clearwater Bay, Kowloon 999077 , Hong Kong
- HKUST Shenzhen Research Institute , Shenzhen 518057 , China
| |
Collapse
|
38
|
Tong Y, Feng A, Hou X, Zhou Q, Hu X. Nanoholes Regulate the Phytotoxicity of Single-Layer Molybdenum Disulfide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13938-13948. [PMID: 31671268 DOI: 10.1021/acs.est.9b04198] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-layer molybdenum disulfide (SLMoS2) are applied as a hot 2D nanosheet in various fields involving water treatments. Both intentional design and environmental or biological processes induce many nanoholes in SLMoS2. However, the effects of nanoholes on the environmental stability and ecotoxicity of SLMoS2 remain largely unknown. The present work discovered that visible-light irradiation induced nanoholes (diameters, approximately 20 nm) in the plane of SLMoS2, with irregular edges and increased interplanar crystal spacing. The ratios of Mo to S in pristine and transformed SLMoS2 were 0.53 and 0.33, respectively. After 96 h exposure at concentrations from 0.1 to 1 mg/L, the above nanoholes promoted algal division, induced a stress-response hormesis, decreased the generation of •OH, and mitigated the cell shrinkage and wall rupture of Chlorella vulgaris induced by SLMoS2. In terms of stress response, the nanohole-bearing SLMoS2 induced fewer vacuoles and polyphosphate bodies of Chlorella vulgaris than the pristine form. Metabolomic analysis revealed that nanoholes perturbed the metabolisms of energy, carbohydrates, and fatty acids. This work proposes that nanoholes cause obvious effects on the environmental fate and ecotoxicity of SLMoS2 and that the environmental risks of engineered nanomaterials should be reevaluated using nanohole-bearing rather than pristine forms for testing.
Collapse
Affiliation(s)
- Yuchen Tong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Anqi Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , P. R. China
| |
Collapse
|
39
|
Yu SJ, Lai YJ, Dong LJ, Liu JF. Intracellular Dissolution of Silver Nanoparticles: Evidence from Double Stable Isotope Tracing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10218-10226. [PMID: 31380632 DOI: 10.1021/acs.est.9b03251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To track transformations of silver nanoparticles (AgNPs) in vivo, HepG2 and A549 cells were cocultured with two enriched stable Ag isotopes (107AgNPs and 109AgNO3) at nontoxic doses. After enzymatic digestion, 107AgNPs, ionic 107Ag+ and 109Ag+ in exposed cells could be separated and quantified by liquid chromatography combined with ICP-MS. We found that ratios of 107Ag+ to total 107Ag and proportions of 107Ag+/ 109Ag+ in cells increased gradually after exposure, proving that the Trojan-horse mechanism occurred, i.e., AgNPs released high contents of Ag+ after internalization. While the presence of 109Ag+ (5 and 100 μg/L) has little influence on the uptake of 107AgNPs (0.1 and 2 mg/L), the presence of 107AgNPs at a high dose (2 mg/L) dramatically increases the ingestion of 109Ag+, even though 107AgNPs at a low dose (100 μg/L) showed negligible effects on the internalization of 109Ag+. Cellular homeostasis may be perturbed under sublethal exposure of 107AgNPs, and thus enhanced uptake of 109Ag+. Our findings suggest that the widely adopted control experiments in toxicology studies, culturing organisms with AgNO3 at the same concentration of Ag+ in the AgNP exposure medium, may underestimate uptake of Ag+ and thus cannot exclude suspected toxic effects of Ag+ at high AgNP exposure doses.
Collapse
Affiliation(s)
- Su-Juan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Yu-Jian Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Li-Jie Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , P.O. Box 2871 , Beijing 100085 , China
| |
Collapse
|
40
|
The Advances in Biomedical Applications of Carbon Nanotubes. C — JOURNAL OF CARBON RESEARCH 2019. [DOI: 10.3390/c5020029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Unique chemical, physical, and biological features of carbon nanotubes make them an ideal candidate for myriad applications in industry and biomedicine. Carbon nanotubes have excellent electrical and thermal conductivity, high biocompatibility, flexibility, resistance to corrosion, nano-size, and a high surface area, which can be tailored and functionalized on demand. This review discusses the progress and main fields of bio-medical applications of carbon nanotubes based on recently-published reports. It encompasses the synthesis of carbon nanotubes and their application for bio-sensing, cancer treatment, hyperthermia induction, antibacterial therapy, and tissue engineering. Other areas of carbon nanotube applications were out of the scope of this review. Special attention has been paid to the problem of the toxicity of carbon nanotubes.
Collapse
|