1
|
Wang L, Liu S, Mehdi S, Liu Y, Zhang H, Shen R, Wen H, Jiang J, Sun K, Li B. Lignocellulose-Derived Energy Materials and Chemicals: A Review on Synthesis Pathways and Machine Learning Applications. SMALL METHODS 2025:e2500372. [PMID: 40264353 DOI: 10.1002/smtd.202500372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Lignocellulose biomass, Earth's most abundant renewable resource, is crucial for sustainable production of high-value chemicals and bioengineered materials, especially for energy storage. Efficient pretreatment is vital to boost lignocellulose conversion to bioenergy and biomaterials, cut costs, and broaden its energy-sector applications. Machine learning (ML) has become a key tool in this field, optimizing pretreatment processes, improving decision-making, and driving innovation in lignocellulose valorization for energy storage. This review explores main pretreatment strategies - physical, chemical, physicochemical, biological, and integrated methods - evaluating their pros and cons for energy storage. It also stresses ML's role in refining these processes, supported by case studies showing its effectiveness. The review examines challenges and opportunities of integrating ML into lignocellulose pretreatment for energy storage, underlining pretreatment's importance in unlocking lignocellulose's full potential. By blending process knowledge with advanced computational techniques, this work aims to spur progress toward a sustainable, circular bioeconomy, particularly in energy storage solutions.
Collapse
Affiliation(s)
- Luyao Wang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| |
Collapse
|
2
|
Ruiz HA, Sganzerla WG, Larnaudie V, Veersma RJ, van Erven G, Ríos-González LJ, Rodríguez-Jasso RM, Rosero-Chasoy G, Ferrari MD, Kabel MA, Forster-Carneiro T, Lareo C. Advances in process design, techno-economic assessment and environmental aspects for hydrothermal pretreatment in the fractionation of biomass under biorefinery concept. BIORESOURCE TECHNOLOGY 2023; 369:128469. [PMID: 36509309 DOI: 10.1016/j.biortech.2022.128469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The development and sustainability of second-generation biorefineries are essential for the production of high added value compounds and biofuels and their application at the industrial level. Pretreatment is one of the most critical stages in biomass processing. In this specific case, hydrothermal pretreatments (liquid hot water [LHW] and steam explosion [SE]) are considered the most promising process for the fractionation, hydrolysis and structural modifications of biomass. This review focuses on architecture of the plant cell wall and composition, fundamentals of hydrothermal pretreatment, process design integration, the techno-economic parameters of the solubilization of lignocellulosic biomass (LCB) focused on the operational costs for large-scale process implementation and the global manufacturing cost. In addition, profitability indicators are evaluated between the value-added products generated during hydrothermal pretreatment, advocating a biorefinery implementation in a circular economy framework. In addition, this review includes an analysis of environmental aspects of sustainability involved in hydrothermal pretreatments.
Collapse
Affiliation(s)
- Héctor A Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico.
| | | | - Valeria Larnaudie
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Romy J Veersma
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Gijs van Erven
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Leopoldo J Ríos-González
- Department of Biotechnology, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Rosa M Rodríguez-Jasso
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Gilver Rosero-Chasoy
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Mario Daniel Ferrari
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Tânia Forster-Carneiro
- School of Food Engineering (FEA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de La República, J. Herrera y Reissig 565, CP 11300 Montevideo, Uruguay
| |
Collapse
|
3
|
Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, Show PL, Sun F. Advances in organosolv modified components occurring during the organosolv pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 368:128356. [PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
Collapse
Affiliation(s)
- Chihe Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Maobing Tu
- Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Malaysia
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology of MOE, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Quiroz-Arita C, Murphy JA, Plummer MA, Wendt LM, Smith WA. Microbial Heat and Organic Matter Loss in an Aerobic Corn Stover Storage Reactor: A Model Validation and Prediction Approach Using Lumped-Parameter Dynamical Formulation. Front Bioeng Biotechnol 2020; 8:777. [PMID: 32754583 PMCID: PMC7365952 DOI: 10.3389/fbioe.2020.00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Corn stover dry matter loss effects variability for biofuel conversion facility and technology sustainability. This research seeks to understand the dynamic mechanisms of the thermal system, organic matter loss, and microbial heat generation in corn stover storage operations through system dynamics, a mathematical modeling approach, and response analysis to improve the system performance. This study considers epistemic uncertainties including cardinal temperatures of microbial respiratory activity, specific degradation rate, heat evolution per unit substrate degraded, and thermal conductivity in corn stover storage reactors. These uncertainties were managed through calibration, a process of improving the agreement between the computational and benchmark experimental results by adjusting the parameters of the model. Model calibration successfully predicted the temperature of the system as quantified by the mean absolute error, 0.6°C, relative to the experimental work. The model and experimental dry matter loss after 30 days of storage were 5.1% and 4.9 ± 0.28%. The model was further validated using additional experimental results to ensure that the model accurately represented the system. Model validation obtained a temperature mean absolute relative error of 0.9 ± 0.3°C and dry matter loss relative error of 3.1 ± 1.5%. This study presents a robust prediction of corn stover storage temperature and demonstrates that an understanding of carbon sources, microbial communities, and lag-phase evolution in bi-phasic growth are essential for the prediction of organic matter preservation in corn stover storage systems under environment's variation.
Collapse
Affiliation(s)
| | | | | | - Lynn M Wendt
- Idaho National Laboratory, Idaho Falls, ID, United States
| | | |
Collapse
|
5
|
Life-Cycle Assessment (LCA) of Different Pretreatment and Product Separation Technologies for Butanol Bioprocessing from Oil Palm Frond. ENERGIES 2019. [DOI: 10.3390/en13010155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Environmental impact assessment is a crucial aspect of biofuels production to ensure that the process generates emissions within the designated limits. In typical cellulosic biofuel production process, the pretreatment and downstream processing stages were reported to require a high amount of chemicals and energy, thus generating high emissions. Cellulosic butanol production while using low moisture anhydrous ammonia (LMAA) pretreatment was expected to have a low chemical, water, and energy footprint, especially when the process was combined with more efficient downstream processing technologies. In this study, the quantification of environmental impact potentials from cellulosic butanol production plants was conducted with modeled different pretreatment and product separation approaches. The results have shown that LMAA pretreatment possessed a potential for commercialization by having low energy requirements when compared to the other modeled pretreatments. With high safety measures that reduce the possibility of anhydrous ammonia leaking to the air, LMAA pretreatment resulted in GWP of 5.72 kg CO2 eq./L butanol, ecotoxicity potential of 2.84 × 10−6 CTU eco/L butanol, and eutrophication potential of 0.011 kg N eq./L butanol. The lowest energy requirement in biobutanol production (19.43 MJ/L), as well as better life-cycle energy metrics performances (NEV of 24.69 MJ/L and NER of 2.27) and environmental impacts potentials (GWP of 3.92 kg N eq./L butanol and ecotoxicity potential of 2.14 × 10−4 CTU eco/L butanol), were recorded when the LMAA pretreatment was combined with the membrane pervaporation process in the product separation stage.
Collapse
|
6
|
Zhao T, Tashiro Y, Sonomoto K. Smart fermentation engineering for butanol production: designed biomass and consolidated bioprocessing systems. Appl Microbiol Biotechnol 2019; 103:9359-9371. [PMID: 31720773 DOI: 10.1007/s00253-019-10198-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
There is a renewed interest in acetone-butanol-ethanol (ABE) fermentation from renewable substrates for the sustainable and environment-friendly production of biofuel and platform chemicals. However, the ABE fermentation is associated with several challenges due to the presence of heterogeneous components in the renewable substrates and the intrinsic characteristics of ABE fermentation process. Hence, there is a need to select optimal substrates and modify their characteristics suitable for the ABE fermentation process or microbial strain. This "designed biomass" can be used to establish the consolidated bioprocessing systems. As there are very few reports on designed biomass, the main objectives of this review are to summarize the main challenges associated with ABE fermentation from renewable substrates and to introduce feasible strategies for designing the substrates through pretreatment and hydrolysis technologies as well as through the establishment of consolidated bioprocessing systems. This review offers new insights on improving the efficiency of ABE fermentation from designed renewable substrates.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Science, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, China
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Matthews NE, Stamford L, Shapira P. Aligning sustainability assessment with responsible research and innovation: Towards a framework for Constructive Sustainability Assessment. SUSTAINABLE PRODUCTION AND CONSUMPTION 2019; 20:58-73. [PMID: 32051840 PMCID: PMC6999670 DOI: 10.1016/j.spc.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 05/04/2023]
Abstract
Emerging technologies are increasingly promoted on the promise of tackling the grand challenge of sustainability. A range of assessment and governance approaches seek to evaluate these claims, but these tend to be applied disparately and lack widespread operationalisation. They also face specific challenges, such as high levels of uncertainty, when it comes to emerging technologies. Building and reflecting on both theory and practice, this article develops a framework for Constructive Sustainability Assessment (CSA) that enables the application of sustainability assessments to emerging technologies as part of a broader deliberative approach. In order to achieve this, we discuss and critique current approaches to analytical sustainability assessment and review deliberative social science governance frameworks. We then develop the conceptual basis of CSA - blending life-cycle thinking with principles of responsible research and innovation. This results in four design principles - transdisciplinarity, opening-up, exploring uncertainty and anticipation - that can be followed when applying sustainability assessments to emerging technologies. Finally, we discuss the practical implementation of the framework through a three-step process to (a) formulate the sustainability assessment in collaboration with stakeholders, (b) evaluate potential sustainability implications using methods such as anticipatory life-cycle assessment and (c) interpret and explore the results as part of a deliberative process. Through this, CSA facilitates a much-needed transdisciplinary response to enable the governance of emerging technologies towards sustainability. The framework will be of interest to scientists, engineers, and policy-makers working with emerging technologies that have sustainability as an explicit or implicit motivator.
Collapse
Affiliation(s)
- Nicholas E. Matthews
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Booth Street West, Manchester, M15 6PB, UK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3AL, UK
- Corresponding author at: Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Booth Street West, Manchester, M15 6PB, UK.
| | - Laurence Stamford
- School of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3AL, UK
| | - Philip Shapira
- Manchester Institute of Innovation Research, Alliance Manchester Business School, The University of Manchester, Booth Street West, Manchester, M15 6PB, UK
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA 30332-0345, USA
| |
Collapse
|
8
|
Zhao T, Yasuda K, Tashiro Y, Darmayanti RF, Sakai K, Sonomoto K. Semi-hydrolysate of paper pulp without pretreatment enables a consolidated fermentation system with in situ product recovery for the production of butanol. BIORESOURCE TECHNOLOGY 2019; 278:57-65. [PMID: 30677699 DOI: 10.1016/j.biortech.2019.01.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 05/12/2023]
Abstract
Utilization of lignocellulosic biomasses for biobutanol fermentation usually requires costly processes of pretreatment and enzymatic hydrolysis. In this study, paper pulp (93.2% glucan) was used as a starting biomass material to produce biobutanol. We conducted enzymatic semi-hydrolysis of paper pulp without pretreatment and with low enzyme loading, which produced high concentrations of cellobiose (13.9 g L-1) and glucose (21.3 g L-1). In addition, efficient fermentation of the semi-hydrolysate was achieved similar to that with the use of commercial sugars without inhibitors. Finally, we designed a novel non-isothermal simultaneous saccharification and fermentation with in situ butanol recovery, which was composed of a repeated semi-hydrolysis process and successive butanol-extractive fermentation process under the respective optimal conditions. The consolidated system improved butanol production, butanol yields, and butanol productivities and enabled repeated use of medium when compared with other integrated hydrolysis and fermentation processes.
Collapse
Affiliation(s)
- Tao Zhao
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kento Yasuda
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yukihiro Tashiro
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Rizki Fitria Darmayanti
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Chemical Engineering, Faculty of Engineering, University of Jember, Jalan Kalimantan, Kampus Tegal Boto, 68121 Jember, Indonesia
| | - Kenji Sakai
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Laboratory of Microbial Environmental Protection, Tropical Microbiology Unit, Center for International Education and Research of Agriculture, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|