1
|
Li W, Che G, Wang C, Zhang Z, Zhang J, Lin Z. Phase transformation of calcium sulfate at mineral-solution interface: An overlooked pathway for selective enrichment of cadmium. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137244. [PMID: 39826462 DOI: 10.1016/j.jhazmat.2025.137244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The reactions at the mineral-solution interface govern whether heavy metals (HMs) ions are retained within minerals or migrate with the solution, thus influencing their cycling and fate. However, the mechanisms driving this differential behavior of HMs at the interface remain poorly understood. In this study, we present a novel paradigm for the selective retention of HMs ions at the mineral-solution interface. By confining the solution on the mineral surface to a defined volume, specifically thinning it down to a thickness of 50 nm, selective retention of Cd ions in the presence of coexisting Cu and Zn ions was achieved. The distribution coefficient of Cd in the mineral reaches as high as 41.44, significantly exceeding that of Cu at 0.13 and Zn at 0.07. Combined with DFT calculations, the results reveal that this selectivity arises from the regulation of the ion desolvation free energy by the solution nanofilm, precisely compensating the energy cost for Cd incorporation as an impurity into the mineral lattice. This work not only enriches the understanding of ion separation behavior at natural mineral-solution interfaces but also offers a new strategy for heavy metal separation and enrichment in industrial applications.
Collapse
Affiliation(s)
- Wenjing Li
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Guiquan Che
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunli Wang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhihao Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jing Zhang
- Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; National Engineering Laboratory for VOCs Pollution Control Materials & Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China; School of Environment and Energy, South China University of Technology, the Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, China
| |
Collapse
|
2
|
Xu K, Ren J, Zhang M, Yin Y, Jing C, Cai Y. Fast On-Site Speciation and High Spatial Resolution Imaging of Labile Arsenic in Freshwater and Sediment Using the DGT-SERS Sensor. Anal Chem 2024; 96:17486-17495. [PMID: 39382162 DOI: 10.1021/acs.analchem.4c01824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Diffusive gradients in thin films (DGT) technique is renowned for in situ passive sampling but not for rapid on-site analysis, whereas surface-enhanced Raman spectroscopy (SERS) excels in ultrasensitive on-site detection but is limited by substrate contamination from complex matrices. Here, a hierarchical nanostructure of silver (Ag) mirror-supported large Ag nanoparticles (∼120 nm) was grown in situ in polyacrylamide hydrogel with a restricted pore size (PAM/Ag mirror/AgNPs) to serve as both the DGT binding phase and the SERS substrate. The substrate exhibited a maximum electric field enhancement factor of 9.9 × 108 and a signal relative standard error of 4.8%. Using the DGT-SERS sensor, As(III) and As(V) in freshwater were simultaneously detected at limits of 0.9 and 0.8 μg L-1, respectively, applicable across a wide range of environmental conditions. The DGT-SERS effectively mitigated the interfacial reduction of As(V) caused by humic acid by excluding it from plasmonic hotspots through size exclusion of the diffusive layer. The Raman analysis of a DGT sample in the field requires only 2 s using a portable spectrometer without DGT device disassembly. More importantly, the DGT-SERS captured the first two-dimensional image of As(III) and As(V) in one DGT at the micron scale resolution, revealing their spatially supplementary distribution patterns at the sediment-water interface. This study paves the way for next-generation speciation imaging DGT and the application of SERS in complex environments.
Collapse
Affiliation(s)
- Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Junjie Ren
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
3
|
Zhai H, Chen Q, Duan Y, Liu B, Wang B. Silica Polymerization Driving Opposite Effects of pH on Aqueous Carbonation Using Crystalline and Amorphous Calcium Silicates. Inorg Chem 2024; 63:4574-4582. [PMID: 38414342 DOI: 10.1021/acs.inorgchem.3c04005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The aqueous carbonation of calcium silicate (CS), a representative alkaline-earth silicate, has been widely explored in studies of carbon dioxide (CO2) mineralization. In this context, we conducted a specific comparison of the carbonation behaviors between the crystalline calcium silicate (CCS) and amorphous calcium silicate (ACS) across a pH range from 9.0 to 12.0. Interestingly, we observed opposite pH dependencies in the carbonation efficiencies (i.e., CaO conversion into CaCO3 in 1 M Na2CO3/NaHCO3 solution under ambient conditions) of CCS and ACS─the carbonation efficiency of CCS decreased with increasing the solution basicity, while that of ACS showed an inverse trend. In-depth insights were gained through in situ Raman characterizations, indicating that these differing trends appeared to originate from the polymerization/depolymerization behaviors of silicates released from minerals. More specifically, higher pH conditions seemed to favor the carbonation of minerals containing polymerized silica networks. These findings may contribute to a better understanding of the fundamental factors influencing the carbonation behaviors of alkaline earth silicates through interfacial coupled dissolution and precipitation processes. Moreover, they offer valuable insights for selecting optimal carbonation conditions for alkaline-earth silicate minerals.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Qiyuan Chen
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Yan Duan
- Spin-X Institute, South China University of Technology, Guangzhou 510641, P. R. China
| | - Bin Liu
- National Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P. R. China
| | - Bu Wang
- Department of Civil and Environmental Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Yu M, Gan Z, Zhang W, Yang C, Zhang Y, Tang A, Dong X, Yang H. Differential Adsorption of Dissolved Organic Matter and Phosphorus on Clay Mineral in Water-Sediment System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2078-2088. [PMID: 38235676 DOI: 10.1021/acs.est.3c09359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.
Collapse
Affiliation(s)
- Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Zongle Gan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Caihong Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Ying Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Aidong Tang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Chi J, Ou Y, Li F, Zhang W, Zhai H, Liu T, Chen Q, Zhou X, Fang L. Cooperative roles of phosphate and dissolved organic matter in inhibiting ferrihydrite transformation and their distinct fates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168376. [PMID: 37952664 DOI: 10.1016/j.scitotenv.2023.168376] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Phosphate and dissolved organic matter (DOM) mediate the crystalline transformation of ferrihydrite catalyzed by Fe(II) in subsurface environments such as soils and groundwater. However, the cooperative mechanisms underlying the mediation of phosphate and DOM in crystalline transformation of ferrihydrite and the feedback effects on their own distribution and speciation remain unresolved. In this study, solid characterization indicates that phosphate and DOM can collectively inhibit the crystalline transformation of ferrihydrite to lepidocrocite and thus goethite, via synergetic effects of inhibiting recrystallization and electron transfer. Phosphate can be retained on the surface or transformed to a nonextractable form within Fe oxyhydroxides; DOM is either released into the solution or preserved in an extractable form, while it is not incorporated or retained in the interior. Element distribution and DOM composition analysis on Fe oxyhydroxides reveals even distribution of phosphate on the newly formed Fe oxyhydroxides, while the distribution of DOM depends on its specific species. Electrochemical and dynamic force spectroscopic results provide molecular-scale thermodynamic evidence explaining the inhibition of electron transfer between Fe(II) and ferrihydrite by phosphate and DOM, thus influecing the crystalline transformation of ferrihydrite and the distribution of phosphate and DOM. This study provides new insights into the coupled biogeological cycle of Fe with phosphate and DOM in aquatic and terrestrial environments.
Collapse
Affiliation(s)
- Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yanan Ou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Tongxu Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
6
|
Yin X, Wu P, Shi S, Zhao Y, Li H, Li F, Liao J, Liu N, Yang Y, Lan T. Sorption behavior and mechanism of U(VI) on Tamusu clay in the presence of U(VI)-CO 3 complexes. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107286. [PMID: 37633243 DOI: 10.1016/j.jenvrad.2023.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
The sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO3 solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (Kd) decreased with the increasing values of pHinitial, [U(VI)]initial, and ionic strength, but increased with the extended time and the rising temperature. The sorption was a pH-dependent, heterogeneous, spontaneous, and endothermic chemical process, which could be better described by Freundlich isothermal model and pseudo-second-order kinetic model. The presence of humic acid (HA) or fulvic acid (FA) significantly inhibited the U(VI) sorption, due to the enhanced electrostatic repulsion between the negatively charged HA/FA adsorbed on the clay surface and the negative U(VI) species, as well as the well dispersed HA/FA aggregates in solution wrapping the U(VI) species. The FTIR and XPS spectra indicated that the HCO3- groups on the surface of Tamusu clay after hydroxylation and the ‒OH groups in HA/FA were involved in the U(VI) sorption. The results reported here provide valuable insights into the further understanding of U(VI) migration in geological media.
Collapse
Affiliation(s)
- Xiaoyu Yin
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Peng Wu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Shilong Shi
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yufan Zhao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Honghui Li
- China Institute for Radiation Protection, Taiyuan, 030006, PR China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Jiali Liao
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China
| | - Yuanyou Yang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| | - Tu Lan
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
7
|
Zhai H, Chen Q, Yilmaz M, Wang B. Enhancing Aqueous Carbonation of Calcium Silicate through Acid and Base Pretreatments with Implications for Efficient Carbon Mineralization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13808-13817. [PMID: 37672711 DOI: 10.1021/acs.est.3c03942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Carbon dioxide (CO2) mineralization based on aqueous carbonation of alkaline earth silicate minerals is a promising route toward large-scale carbon removal. Traditional aqueous carbonation methods largely adopt acidification-based approaches, e.g., using concentrated/pressurized CO2 or acidic media, to accelerate mineral dissolution and carbonation. In this study, we designed and tested three distinctive routes to evaluate the effect of pretreatments under different pH conditions on aqueous carbonation, using amorphous calcium silicate (CS) as an example system. Pretreating CS with high concentrations (100 mM) of HCl (Route I) or NaOH (Route II and III) enhanced their carbonation degrees. However, NaOH pretreatment overall yielded higher carbonation degrees than the HCl pretreatment, with the highest carbonation degree achieved through Route III, where an extra step is taken after the NaOH pretreatment to remove the solution containing dissolved silica prior to carbonation. The HCl and NaOH pretreatments formed different intermediate silica products on the CS surface. Silica precipitated from the HCl pretreatment had a minimal effect on the carbonation degree. The high Ca/Si ratio intermediate phases formed from the NaOH, on the other hand, can be readily carbonated. In contrast to commonly utilized acidification-based approaches, basification offers a more promising route to accelerate aqueous carbonation as it can mitigate the need for costly pH swing and high-concentration/pressurized CO2. The key to aqueous carbonation under basic conditions, as suggested by this study, is the control of aqueous silica species that have a suppressing effect on carbonation. Overall, this study highlights the critical needs for investigations of aqueous mineral carbonation in a broader pH region.
Collapse
Affiliation(s)
- Hang Zhai
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Qiyuan Chen
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mehmet Yilmaz
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- School of Civil, Environmental and Infrastructure Engineering, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Bu Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Fang L, Chi J, Shi Q, Wu Y, Li F. Facet-dependent electron transfer induces distinct arsenic reallocations on hematite. WATER RESEARCH 2023; 242:120180. [PMID: 37320876 DOI: 10.1016/j.watres.2023.120180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The interfacial electron transfer (ET) between electron shuttling compounds and iron (Fe) oxyhydroxides plays a crucial role in the reductive dissolution of Fe minerals and the fate of surface-bound arsenic (As). However, the impact of exposed facets of highly crystalline hematite on reductive dissolution and As immobilization is poorly understood. In this study, we systematically investigated the interfacial processes of the electron shuttling compound cysteine (Cys) on various facets of hematite and the reallocations of surface-bound As(III) or As(V) on the respective surfaces. Our results demonstrate that the ET process between Cys and hematite generates Fe(II) and leads to reductive dissolution, with more Fe(II) generated on {001} facets of exposed hematite nanoplates (HNPs). Reductive dissolution of hematite leads to significantly enhanced As(V) reallocations on hematite. Nevertheless, upon the addition of Cys, a raipd release of As(III) can be halted by its prompt re-adsorption, leaving the extent of As(III) immobilization on hematite unchanged throughout the course of reductive dissolution. This is due to that Fe(II) can form new precipitates with As(V), a process that is facet-dependent and influenced by water chemistry. Electrochemical analysis reveals that HNPs exhibit higher conductivity and ET ability, which is beneficial for reductive dissolution and As reallocations on hematite. These findings highlight the facet-dependent reallocations of As(III) and As(V) facilitated by electron shuttling compounds and have implications for the biogeochemical processes of As in soil and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, United States
| | - Yundang Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Wang J, Liu Y, Luo W, Wang X, Liao R, Yu S, Hong M, Zhao C, Yang B, Liu Y, Liu X, Qiu G. Inhibition of humic acid on copper pollution caused by chalcopyrite biooxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158200. [PMID: 36049690 DOI: 10.1016/j.scitotenv.2022.158200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Humic acid has the advantages of wide source, easy availability and environmental friendliness, which may be a good choice for inhibiting chalcopyrite biooxidation and alleviating copper pollution. However, there are few researches on the inhibitory effect and mechanism of humic acid on the biooxidation of chalcopyrite. In order to fill this knowledge gap, this study proposed and validated a novel method for inhibiting chalcopyrite biooxidation by means of humic acid. The results showed that the biooxidation of chalcopyrite could be effectively inhibited by humic acid, which consequently decreased the release of copper ions. Humic acid with a concentration of 120 ppm had the best inhibitory effect, which reduced the biooxidation efficiency of chalcopyrite from 40.7 ± 0.5 % to 29.3 ± 0.8 %. This in turn suggested that humic acid could effectively suppress the pollution of copper under these conditions. The analysis results of solution parameters, mineral surface morphology, mineral phases and element composition showed that humic acid inhibited the growth of Acidithiobacillus ferrooxidans, promoted the formation of jarosite and intensified the passivation of chalcopyrite, which effectively hindered the biooxidation of chalcopyrite, and would help to alleviate the pollution of copper.
Collapse
Affiliation(s)
- Jun Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Yuling Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Wen Luo
- Department of Dermatology, The First Hospital of Changsha, Changsha, China
| | - Xingxing Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Rui Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Shichao Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Maoxin Hong
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Chunxiao Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Baojun Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China; Key Laboratory of Biohydrometallurgy, Ministry of Education, Changsha, China
| |
Collapse
|
10
|
Liu Y, Qiao J, Sun Y, Guan X. Simultaneous Sequestration of Humic Acid-Complexed Pb(II), Zn(II), Cd(II), and As(V) by Sulfidated Zero-Valent Iron: Performance and Stability of Sequestration Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3127-3137. [PMID: 35174702 DOI: 10.1021/acs.est.1c07731] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heavy metal(loid)s (HMs) such as Pb(II), Zn(II), Cd(II), and As(V) are ubiquitously present in co-contaminated soil and shallow groundwater, where the humic acid (HA)-rich environments can significantly influence their sequestration. In this study, sulfidated zero-valent iron (S-ZVI) was found to be able to simultaneously sequestrate these HA-complexed HMs. Specially, the HA-complexed Pb(II), Zn(II), Cd(II), and As(V) could be completely removed by S-ZVI within 60 min, while only 35-50% of them could be sequestrated within 72 h by unsulfidated ZVI. Interestingly, different from the S-ZVI corrosion behavior, the kinetics of HM sequestration by S-ZVI consisted of an initial slow reaction stage (or a lag phase) and then a fairly rapid reaction process. Characterization results indicated that forming metal sulfides controlled the HM sequestration at the first stage, whereas the enhanced ZVI corrosion and thus-improved adsorption and/or coprecipitation by iron hydroxides governed the second stage. Both metal-oxygen and metal-sulfur bonds in the solid phase could be confirmed by X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Moreover, the transformation of S species from SO42-, SO32-, and S22- to S2- under reducing conditions could allow the sequestrated HMs to remain stable over a long period.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Yuan ZF, Gustave W, Sekar R, Bridge J, Wang JY, Feng WJ, Guo B, Chen Z. Simultaneous measurement of aqueous redox-sensitive elements and their species across the soil-water interface. J Environ Sci (China) 2021; 102:1-10. [PMID: 33637235 DOI: 10.1016/j.jes.2020.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
The redox-sensitive elements, such as iron, manganese, sulfur, phosphorus, and arsenic, shift their speciation every millimeter (mm) across the soil-water interface in the flooded soil environments. Monitoring of element speciation at this high-resolution (HR) within the SWI is still difficult. The key challenge lies in obtaining sufficient porewater samples at specific locations along the soil gradient for downstream analysis. Here with an optimized inductively coupled plasma mass spectrometry (ICP-MS) method and a HR porewater sampler, we demonstrate mm-scale element profiles mapping across the SWI in paddy soils. High-concentrations of iron and manganese (> 10 mg/L) were measured by ICP-MS in an extended dynamic range mode to avoid signal overflow. The iron profile along the SWI generated by the ICP-MS method showed no significant difference (p < 0.05) compared to that measured independently using a colorimetric method. Furthermore, four arsenic (arsenite, arsenate, monomethylarsonic and dimethylarsinic acid), two phosphorus (phosphite and phosphate) and two sulfur (sulfide and sulfate) species were separated in 10 min by ion chromatography -ICP-MS with the NH4HCO3 mobile phase. We verified the technique using paddy soils collected from the field, and present the mm-scale profiles of iron, manganese, and arsenic, phosphorus, sulfur species (relative standard deviation < 8%). The technique developed in this study will significantly promote the measurement throughput in limited samples (e.g. 100 μL) collected by HR samplers, which would greatly facilitate redox-sensitive elements biogeochemical cycling in saturated soils.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China; Department of Environmental Science, University of Liverpool, Liverpool L69 7ZX, UK; Department of Plant Science, Tarim University, Xinjiang 843300, China
| | - Williamson Gustave
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China; Department of Environmental Science, University of Liverpool, Liverpool L69 7ZX, UK; Chemistry, Environmental & Life Sciences, University of The Bahamas, Nassau, Bahamas
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Jonathan Bridge
- Department of Natural and Built Environment, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Jia-Yue Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Wei-Jia Feng
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Zhejiang 310021, China.
| | - Zheng Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Jiangsu 215123, China.
| |
Collapse
|
12
|
Yang J, Chen Y, Tong J, Su Y, Gao X, He J, Shi K, Hou X, Wu W. Investigation on the efficient separation and recovery of Se(IV) and Se(VI) from wastewater using Fe–OOH–bent. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2020-0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Decontamination of the toxic selenium compound, selenite (Se(IV)) and selenate (Se(VI)), from wastewater is imperative for environmental protection. Efficient approaches to remove Se(IV) and Se(VI) are in urgent needs. In this work, an accessible adsorbent Fe–OOH–bent was prepared and applied for the removal of Se(IV) and Se(VI) from wastewater. The batch experimental results demonstrate that Fe–OOH–bent exhibits high adsorption capacities of 5.01 × 10−4 and 2.28 × 10−4 mol/g for Se(IV) and Se(VI) respectively, which are higher than most of the reported bentonite based materials, especially in the case of Se(VI). Moreover, the Fe–OOH–bent displayed superior selectivity towards Se(IV) and Se(VI) even in the presence of excess competitive anions (Cl−, HCO3
−, NO3
−, SO4
2− and PO4
3−) and HA with concentrations of 1000 times higher than Se(IV) and Se(VI). By evaluating the adsorption ratio of Se(IV) and Se(VI), the reusability of Fe–OOH–bent was great through five adsorption-desorption cycles. For practical application, the column experiments were performed with simulated wastewater samples. The breakthrough and eluting curves of Se(IV) and Se(VI) were investigated through the columns packed with Fe–OOH–bent, and the results show that Se(IV) and Se(VI) can be successfully separated and recovered using 0.1 mol/L Na2SO4 (pH = 9.0) and 0.1 mol/L Na3PO4 (pH = 9.0), respectively. Our work provides a new approach for fractional separation as well as the recovery of Se(IV) and Se(VI) from wastewater.
Collapse
Affiliation(s)
- Junqiang Yang
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Yawen Chen
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Juan Tong
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Yin Su
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Xiaoqing Gao
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Environmental Monitoring Center of Gansu Province , 730000 , Lanzhou , P. R. China
| | - Jiangang He
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Keliang Shi
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| | - Xiaolin Hou
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Center for Nuclear Technologies , Technical University of Denmark , Risø Campus , 4000 Roskilde , Denmark
| | - Wangsuo Wu
- Radiochemistry Lab , School of Nuclear Science and Technology, Lanzhou University , 730000 , Lanzhou , P. R. China
- Key Laboratory of Special Function Materials and Structure Design , Ministry of Education, Lanzhou University , 730000 , Lanzhou , P. R. China
| |
Collapse
|
13
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
14
|
Sorptive and Redox Interactions of Humic Substances and Metal(loid)s in the Presence of Microorganisms. Fungal Biol 2021. [DOI: 10.1007/978-3-030-54422-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhai H, Zhang W, Wang L, Putnis CV. Dynamic force spectroscopy for quantifying single-molecule organo–mineral interactions. CrystEngComm 2021. [DOI: 10.1039/d0ce00949k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Organo–mineral interactions have long been the focus in the fields of biomineralization and geomineralization, since such interactions not only modulate the dynamics of crystal nucleation and growth but may also change crystal phases, morphologies, and structures.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
- Department of Plant and Environmental Sciences
| | - Wenjun Zhang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Lijun Wang
- College of Resources and Environment
- Huazhong Agricultural University
- Wuhan 430070
- China
| | - Christine V. Putnis
- Institut für Mineralogie
- University of Münster
- 48149 Münster
- Germany
- School of Molecular and Life Science
| |
Collapse
|
16
|
Zhai H, Bernstein R, Nir O, Wang L. Molecular insight into the interfacial chemical functionalities regulating heterogeneous calcium-arsenate nucleation. J Colloid Interface Sci 2020; 575:464-471. [PMID: 32402825 DOI: 10.1016/j.jcis.2020.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/13/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Heterogeneous nucleation induced by natural organic matter (NOM) can lower the energy barrier for calcium arsenate (Ca-As) precipitation, which aids in immobilizing arsenate (AsⅤ). However, it remains unclear how certain chemical functionalities of NOM affect Ca-As nucleation at the molecular scale. By analyzing changes in the local supersaturation and/or interfacial energy, the present work investigates the Ca-As heterogeneous nucleation kinetics and mechanisms on functional-group-modified model surfaces. Mica surfaces modified by functional groups of amine (NH2), hydroxyl (OH), or carboxyl (COOH) through self-assembled monolayers were used to investigate how chemical functionalities affect the Ca-As heterogeneous nucleation, in which the distributions of formation kinetics and size (as measured by the change in particle height) of nucleated Ca-As particles were measured by using in situ atomic force microscopy. In a parallel analysis, a quartz-crystal microbalance with dissipation was used to detect the buildup of Ca2+ and/or HAsO42- ions at the solid-fluid interface. PeakForce quantitative nanomechanical mapping and dynamic force spectroscopy using functional-group-modified tips made it possible to calculate the binding energies holding functional groups to Ca-As particles. Nucleated Ca-As particles were characterized by using Raman spectroscopy and high-resolution transmission electron microscopy. The results indicate that the height of amorphous Ca-As particles formed on a modified mica surface may be ranked in descending order as NH2 > OH > bare mica > COOH, as determined by the buildup of Ca2+ and HAsO42- ions at the solid-fluid interface and the decrease of interfacial energy due to the functional groups. These nanoscale observations and molecular-scale determinations improve our understanding of the roles played by chemical functionalities on NOM in immobilizing dissolved As through heterogeneous nucleation in soil and water.
Collapse
Affiliation(s)
- Hang Zhai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Roy Bernstein
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel.
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus 84990, Israel
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
17
|
Wang L, Putnis CV. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy. Acc Chem Res 2020; 53:1196-1205. [PMID: 32441501 DOI: 10.1021/acs.accounts.0c00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemical reactions at the mineral-solution interface control important interfacial processes, such as geochemical element cycling, nutrient recovery from eutrophicated waters, sequestration of toxic contaminants, and geological carbon storage by mineral carbonation. By time-resolved in situ imaging of nanoscale mineral interfacial reactions, it is possible to clarify the mechanisms governing mineral-fluid reactions.In this Account, we present a concise summary of this topic that addresses a current challenge at the frontier of understanding mineral interfaces and their importance to a wide range of mineral re-equilibration processes in the presence of a fluid aqueous phase. We have used real-time nanoscale imaging of liquid-cell atomic force microscopy (AFM) to observe the in situ coupling of the dissolution-precipitation process, whereby the dissolution of a parent mineral phase is coupled at mineral interfaces with the precipitation of another product phase, chemically different from the parent. These nanoscale observations allow for the identification of dissolution and growth rates through systematically investigating various minerals, including calcite (CaCO3), siderite (FeCO3), cerussite (PbCO3), magnesite (MgCO3), dolomite (CaMg(CO3)2), brushite (CaHPO4·2H2O), brucite (Mg(OH)2), portlandite (Ca(OH)2), and goethite (α-FeOOH), in various reacting aqueous fluids containing solution species, such as arsenic, phosphate, organo- or pyrophosphate, CO2, selenium, lead, cadmium, iron, chromium, and antimony. We detected the in situ replacement of these parent mineral phases by product phases, identified through a variety of analytical methods such as Raman spectroscopy, high-resolution transmission electron microscopy, and various X-ray techniques, as well as modeling by geochemical simulation using PHREEQC. As a consequence of the coupled processes, sequestration of toxic elements and hazardous species and inorganic and organic carbon, and limiting or promoting recovery of nutrients can be achieved at nano- and macroscopic scales.We also used in situ AFM to quantitatively measure the retreat rates of molecular steps and directly observe the morphology changes of dissolution etch pits on calcium phosphates in organic acid solutions present in most rhizosphere environments. By molecular modeling using density functional theory (DFT), we explain the origin of dissolution etch pit evolution through specific stereochemistry and molecular recognition and provide an energetic basis by calculating the binding energies of chemical functionalities on organic acids to direction-specific steps on mineral surfaces. In addition, we further quantified precipitation kinetics of calcium phosphates (Ca-P's) on typical mineral surfaces at the nanoscale in environmentally relevant solutions with various organic molecules, by measurements obtained from sequential images obtained by liquid-cell AFM. In situ dynamic force spectroscopy (DFS) was used to determine binding energies of single-molecules with different chemical functionalities found in natural organic matter at mineral-fluid interfaces. Quantifying molecular organo-mineral bonding or binding energies mechanistically explains phosphate precipitation and transformation. From DFS measurements, molecular-scale interactions of mineral-natural organic matter (DNA, proteins, and polysaccharides) associations were determined. With this powerful tool, single-molecule determinations of polysaccharide-amorphous iron oxide or hematite interactions provided the mechanistic origin of the phase- or facet-dependent adsorption. These systematic investigations and findings significantly contribute to a more quantitative prediction of the fate of nutrients and contaminants, chemical element cycling, and potential geological carbon capture and nuclear waste storage in aqueous environments.
Collapse
Affiliation(s)
- Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Christine V. Putnis
- Institut für Mineralogie, University of Münster, 48149 Münster, Germany
- School of Molecular and Life Science, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
18
|
Yuan ZF, Gustave W, Bridge J, Liang Y, Sekar R, Boyle J, Jin CY, Pu TY, Ren YX, Chen Z. Tracing the Dynamic Changes of Element Profiles by Novel Soil Porewater Samplers with Ultralow Disturbance to Soil-Water Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5124-5132. [PMID: 30969102 PMCID: PMC6506802 DOI: 10.1021/acs.est.8b05390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In flooded soils, soil-water interface (SWI) is the key zone controlling biogeochemical dynamics. Chemical species and concentrations vary greatly at micro- to cm-scales. Techniques able to track these changing element profiles both in space and over time with appropriate resolution are rare. Here, we report a patent-pending technique, the Integrated Porewater Injection (IPI) sampler, which is designed for soil porewater sampling with minimum disturbance to saturated soil environment. IPI sampler employs a single hollow fiber membrane tube to passively sample porewater surrounding the tube. When working, it can be integrated into the sample introduction system, thus the sample preparation procedure is dramatically simplified. In this study, IPI samplers were coupled to ICP-MS at data-only mode. The limits of detection of IPI-ICP-MS for Ni, As, Cd, Sb, and Pb were 0.12, 0.67, 0.027, 0.029, and 0.074 μg·L-1, respectively. Furthermore, 25 IPI samplers were assembled into an SWI profiler using 3D printing in a one-dimensional array. The SWI profiler is able to analyze element profiles at high spatial resolution (∼2 mm) every ≥24 h. When deployed in arsenic-contaminated paddy soils, it depicted the distributions and dynamics of multiple elements at anoxic-oxic transition. The results show that the SWI profiler is a powerful and robust technique in monitoring dynamics of element profile in soil porewater at high spatial resolution. The method will greatly facilitate studies of elements behaviors in sediments of wetland, rivers, lakes, and oceans.
Collapse
Affiliation(s)
- Zhao-Feng Yuan
- Department
of Environmental Science, University of
Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Williamson Gustave
- Department
of Environmental Science, University of
Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Jonathan Bridge
- Department
of Natural and Built Environment, Sheffield
Hallam University, Howard Street, 11 Sheffield S1 1WB, United Kingdom
| | - Yi Liang
- State
Key Laboratory of Membrane Materials and Membrane Applications of
Tianjin Motimo Membrane Technology Co., Ltd, 11th Street, TEDA Tianjin 300160, P. R. China
| | - Raju Sekar
- Department
of Biological Sciences, Xi’an Jiaotong-Liverpool
University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P.
R. China
| | - John Boyle
- Department
of Environmental Science, University of
Liverpool, Brownlow Hill, Liverpool L69 7ZX, United Kingdom
| | - Chen-Yu Jin
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Tong-Yao Pu
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yu-Xiang Ren
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Zheng Chen
- Department
of Health and Environmental Sciences, Xi’an
Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
- Tel: +86-512-81880471; fax: +86-512-88161899; e-mail: or
| |
Collapse
|