1
|
Zhao P, Li Z, Chen A, Liu Y, Qu F, Qu D, Liu X. Wave-pulse mixing coupled with powdered activated carbon enhances AnMBR in treating low temperature municipal wastewater and recovering dissolved CH 4. WATER RESEARCH 2025; 282:123667. [PMID: 40311288 DOI: 10.1016/j.watres.2025.123667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 05/03/2025]
Abstract
The anaerobic membrane bioreactor (AnMBR) technology is increasingly applied in the treatment of municipal wastewater. However, its application in cold region still faces many challenges including low anaerobic digestion efficiency and high concentrations of dissolved methane (D-CH4). In this study, powdered activated carbon (PAC) was incorporated into AnMBR operated under wave-pulse mixing mode (P-W-AnMBR) to enhance the operational performance under low temperature condition. As temperature decreased and organic loading rate (OLR) elevated, the COD removal efficiency in the P-W-AnMBR maintained at a high level (93.4 %∼95.8 %) and exhibited favorable stability. The P-W-AnMBR could effectively prevent volatile fatty acid (VFA) accumulation with the lowest VFA concentrations of 22.0 ± 3.9 mg·L-1. Correspondingly, the methane yield in P-W-AnMBR system reached high as 0.22 ± 0.04 L·g-1 which was 1.5 times of that in conventional biogas-recirculation mixing AnMBR (B-AnMBR), while the D-CH4 supersaturation was only ∼1.05, showing a 52.4 % decrease compared to B-AnMBR. According to higher electron transfer system activity and Cyt-C content, electron transfer process was enhanced in P-W-AnMBR, accounting for superior organics conversion to methane. Through a high average KLa as 4.50 h⁻¹, the D-CH4 readily transfer to the gas phase, thereby reducing the concentration of D-CH4 as well as increasing the proportion of gaseous methane. Energy analysis showed generation of methane energy could be augmented in P-W-AnMBR as OLR was elevated at 15 °C, thereby significantly reducing the net energy consumption. The combination of wave-pulse mixing and conductive PAC within AnMBR provides insights into low temperature resource recovery from municipal wastewater.
Collapse
Affiliation(s)
- Peiyi Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ziyue Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Ai Chen
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fangshu Qu
- Guangzhou University, School of Civil and Transportation Engineering, Guangzhou 510006, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Abdelrahman AM, Tabar SA, Cicekalan B, Basa S, Ucas G, Guven H, Ozgun H, Ozturk I, Koyuncu I, van Lier JB, Volcke EIP, Ersahin ME. Mesophilic versus thermophilic digestion of sludge in anaerobic membrane bioreactors. BIORESOURCE TECHNOLOGY 2025; 417:131822. [PMID: 39551395 DOI: 10.1016/j.biortech.2024.131822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
Energy-efficient wastewater treatment plants (WWTPs) utilize systems like high-rate activated sludge (A-stage) system to redirect organics from wastewater are redirected into energy-rich sludge (A-sludge). Anaerobic membrane bioreactors (AnMBRs) offer lower footprint and higher effluent quality compared to conventional digesters. In this study, the biological treatment and the filtration performances of AnMBRs for A-sludge digestion under mesophilic and thermophilic conditions were comparatively evaluated through lab-scale experiments, mass balancing and dynamic modeling. Under thermophilic conditions, a higher COD fraction of the influent sludge was converted into methane gas than under mesophilic conditions (65% versus 57%). The energy balance indicated that the surplus energy recovery under thermophilic conditions was less than the additional energy required for heating the AnMBR, resulting in a more than three-fold higher net energy recovery under mesophilic conditions. Therefore, operating an AnMBR for sludge digestion under mesophilic conditions has a higher potential to improve the energy balance in WWTPs.
Collapse
Affiliation(s)
- Amr Mustafa Abdelrahman
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Saba Aghdam Tabar
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Busra Cicekalan
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Safak Basa
- ISKI, Istanbul Water and Sewerage Administration, Istanbul, Turkey
| | - Gulin Ucas
- ISKI, Istanbul Water and Sewerage Administration, Istanbul, Turkey
| | - Huseyin Guven
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Izzet Ozturk
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Jules B van Lier
- Department of Water Management, Section Sanitary Engineering, Delft University of Technology, Delft, the Netherlands
| | - Eveline I P Volcke
- BioCo Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469 Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| |
Collapse
|
3
|
Lei Z, Zheng J, Liu J, Li Q, Xue J, Yang Y, Kong Z, Li YY, Chen R. Synergic treatment of domestic wastewater and food waste in an anaerobic membrane bioreactor demo plant: Process performance, energy consumption, and greenhouse gas emissions. WATER RESEARCH 2024; 266:122371. [PMID: 39236500 DOI: 10.1016/j.watres.2024.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Ambient operation and large-scale demonstration have limited the implementation and evaluation of anaerobic membrane bioreactors (AnMBRs) for low-strength wastewater treatment. Here, we studied these issues at an AnMBR demo plant that treats domestic wastewater and food waste together at ambient temperatures (7-28 °C). At varied hydraulic retention times (HRTs, 8-42 h), the AnMBR achieved a COD removal efficiency and biogas production of 80.4% ± 3.9% and 66.5 ± 9.4 NL/m3-Influent, respectively. Moreover, a stable high membrane flux of 14.4 L/m2/h was reached. The electric energy consumption for the AnMBR operation was 0.269-0.433 kW·h/m3, and 49.4%-91.3% could be compensated by the electric energy produced from methane production. At an HRT of 10 h, the AnMBR system demonstrated an impressively low net electric energy consumption of merely 0.05 kW·h/m3, resulting in a net greenhouse gas emission of 0.015 CO2-eq/m3, cutting 85% compared to the conventional activated sludge process. Achievements in this study provide key parameters for the ambient operation of AnMBR and demonstrate that AnMBR is an energy-saving and low-carbon solution for low-strength wastewater treatment.
Collapse
Affiliation(s)
- Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology
| | - Jiale Zheng
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Jiale Liu
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| | - Jingjing Xue
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Zhe Kong
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
4
|
Alayande AB, Qi W, Karthikeyan R, Popat SC, Ladner DA, Amy G. Use of reclaimed municipal wastewater in agriculture: Comparison of present practice versus an emerging paradigm of anaerobic membrane bioreactor treatment coupled with hydroponic controlled environment agriculture. WATER RESEARCH 2024; 265:122197. [PMID: 39137457 DOI: 10.1016/j.watres.2024.122197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Advancements in anaerobic membrane bioreactor (AnMBR) technology have opened up exciting possibilities for sustaining precise water quality control in wastewater treatment and reuse. This approach not only presents an opportunity for energy generation and recovery but also produces an effluent that can serve as a valuable nutrient source for crop cultivation in hydroponic controlled environment agriculture (CEA). In this perspective article, we undertake a comparative analysis of two approaches to municipal wastewater utilization in agriculture. The conventional method, rooted in established practices of conventional activated sludge (CAS) wastewater treatment for soil/land-based agriculture, is contrasted with a new paradigm that integrates AnMBR technology with hydroponic (soilless) CEA. This work encompasses various facets, including wastewater treatment efficiency, effluent quality, resource recovery, and sustainability metrics. By juxtaposing the established methodologies with this emerging synergistic model, this work aims to shed light on the transformative potential of the integration of AnMBR and hydroponic-CEA for enhanced agricultural sustainability and resource utilization.
Collapse
Affiliation(s)
- Abayomi Babatunde Alayande
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States.
| | - Weiming Qi
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | | | - Sudeep C Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - David A Ladner
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| | - Gary Amy
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC 29625, United States
| |
Collapse
|
5
|
Zhang Y, Wang Y, Chen Z, Hu C, Qu J. Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor. Nat Commun 2024; 15:9111. [PMID: 39438474 PMCID: PMC11496669 DOI: 10.1038/s41467-024-53341-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
The sustainable development strategy shifts water treatment from pollution removal to resource recovery. Here, an electrochemical resource-recovery anaerobic membrane bioreactor (eRAnMBR) that employed a magnesium plate and conductive membrane as dual anodes is presented and shows excellent performance in carbon, nitrogen, and phosphorus recovery, as well as 95% membrane anti-fouling. The Mg2+ released alters the physicochemical properties of sludge, unblocking the cake layer, and recovers ammonium and phosphate, yielding 60.64% purity and 0.08 g d-1 struvite deposited onto cathode to be separated from sludge. The enhanced direct interspecies electron transfer, along with hydrogen evolution and alkalinity increase due to the electrochemical reactions, significantly increase methane yield and purity (93.97%) of the eRAnMBR. This increased internal energy can cover the additional electricity and electrode consumption. This integrated eRAnMBR reactor boasts the benefits of short process, low maintenance, and low carbon footprint, introducing a concept for the next generation of wastewater treatment.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongbin Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Zhibin Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
6
|
Paissoni E, Jefferson B, Soares A. Hydrolytic enzyme activity in high-rate anaerobic reactors treating municipal wastewater in temperate climates. BIORESOURCE TECHNOLOGY 2024; 406:130975. [PMID: 38879058 DOI: 10.1016/j.biortech.2024.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Particulate matter hydrolysis is the bottleneck in anaerobic treatment of municipal wastewater in temperate climates. Low temperatures theoretically slow enzyme-substrate interactions, hindering utilization kinetics, but this remains poorly understood. β-glucosidase, protease, and lipase activities were evaluated in two pilot-scale upflow anaerobic sludge blanket (UASB) reactors, inoculated with different sludges and later converted to anaerobic membrane bioreactors (AnMBRs). Despite similar methane production and solids hydrolysis rates, significant differences emerged. Specific activity peaked at 37 °C, excluding the predominance of psychrophilic enzymes. Nevertheless, the Michaelis-Menten constant (Km) indicated high enzyme-substrate affinity at the operational temperature of 15-20 °C, notably greater in AnMBRs. It is shown, for the first time, that different seed sludges can equally adapt, as hydrolytic enzymatic affinity to the substrate reached similar values in the two reactors at the operational temperature and identified that membrane ultrafiltration impacted hydrolysis by a favourable enzyme Michaelis-Menten constant.
Collapse
Affiliation(s)
- Eleonora Paissoni
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Bruce Jefferson
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Ana Soares
- Cranfield Water Science Institute, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
7
|
Photiou P, Constantinou D, Papaioakeim P, Agapiou A, Vyrides I. Treatment and recovery of phosphate from submerged anaerobic membrane bioreactor effluent using thermally treated biowaste and powder activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119712. [PMID: 38070427 DOI: 10.1016/j.jenvman.2023.119712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024]
Abstract
This study presents a novel treatment system using a submerged anaerobic membrane bioreactor (SAnMBR) followed by adsorption onto thermally treated biowaste, and ending with a final treatment using powdered activated carbon (PAC). Despite limited phosphate and ammonium ion removal during SAnMBR operation, thermally treated eggshell (EGSL) and seagrass (SG) received SAnMBR effluent and enhanced phosphate recovery, achieving removal rates of 71.8-99.9% and 60.5-78.0%, respectively. The SAnMBR achieved an 85% COD removal, which was slightly reduced further by biowaste treatment. However, significant further reductions in COD to 20.2 ± 5.2 mg/L for EGSL effluent and 57.0 ± 13.3 mg/L for SG effluent were achieved with PAC. Phytotoxicity tests showed the SAnMBR effluent after PAC treatment notably improved seed growth compared to untreated wastewater. In addition, volatile organic compounds (VOCs) were significantly reduced in the system, including common wastewater contaminants such as dimethyl disulfide, dimethyl trisulfide, phenol, p-cresol, nonanal, and decanal. Fractionation analysis of the solid fraction, post-adsorption from both synthetic and domestic wastewater, indicated that for SG, 77.3%-94% of the total phosphorus (TP) was inorganically bound, while for EGSL, it ranged from 94% to 95.3%. This study represents the first attempt at a proof-of-concept for simultaneous treatment of domestic wastewater and phosphorus recovery using this integrated system.
Collapse
Affiliation(s)
- Panagiota Photiou
- Cyprus University of Technology, Department of Chemical Engineering, Anexartisias 57 Str., 3603, Limassol, Cyprus
| | - Despina Constantinou
- Cyprus University of Technology, Department of Chemical Engineering, Anexartisias 57 Str., 3603, Limassol, Cyprus
| | - Photini Papaioakeim
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Ioannis Vyrides
- Cyprus University of Technology, Department of Chemical Engineering, Anexartisias 57 Str., 3603, Limassol, Cyprus.
| |
Collapse
|
8
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
9
|
Qin R, Dai X, Xian Y, Zhou Y, Su C, Chen Z, Lu X, Ai C, Lu Y. Assessing the effect of sulfate on the anaerobic oxidation of methane coupled with Cr(VI) bioreduction by sludge characteristic and metagenomics analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119398. [PMID: 37897905 DOI: 10.1016/j.jenvman.2023.119398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Methane-driven hexavalent chromium (Cr(VI)) reduction in a microbial fuel cell (MFC) has attracted much attention. However, whether the presence of sulfate (SO42-) affects the reduction of Cr(VI) is still lacking in systematic studies. This study involved constructing a MFC-granular sludge (MFC-GS) coupling system with dissolved methane (CH4) was used as the electron donor to investigate the effect of SO42- on Cr(VI) bioreduction, sludge characteristic, and functional metabolic mechanisms. When the SO42- concentration was 10 mg/L, the average removal rate of Cr(VI) in the anaerobic stage decreased to the lowest value (22.25 ± 2.06%). Adding 10 mg/L SO42- obviously inhibited the electrochemical performance of the system. Increasing SO42- concentration weakened the fluorescence peaks of tryptophan and aromatic proteins in the extracellular polymeric substance of sludge. Under the influence of SO42-, Methanothrix_soehngenii decreased from 14.44% to 5.89%. The relative abundance of methane metabolic was down-regulated from 1.47% to 0.98%, while the sulfur metabolic was up-regulated from 0.09% to 0.21% when SO42- was added. These findings provided some reference for the treatment of wastewater containing Cr(VI) and SO42- complex pollutants in the MFC-GS coupling system.
Collapse
Affiliation(s)
- Ronghua Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xiaoyun Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yunchuan Xian
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yijie Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China; College of Environment and Resources, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China.
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chenbing Ai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| |
Collapse
|
10
|
Kim AH, Criddle CS. Anaerobic Wastewater Treatment and Potable Reuse: Energy and Life Cycle Considerations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17225-17236. [PMID: 37917041 DOI: 10.1021/acs.est.3c04517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Anaerobic secondary treatment has the potential to facilitate energy-positive operations at wastewater treatment plants, but post-treatment of the anaerobic effluent is needed to recover dissolved methane and nutrients and remove sulfide. In this study, a life cycle assessment was conducted to compare hypothetical full-scale wastewater treatment trains and direct potable reuse trains that combine the staged anaerobic fluidized membrane bioreactor (SAF-MBR) with appropriate post-treatment. We found that anaerobic wastewater treatment trains typically consumed less energy than conventional aerobic treatment, but overall global warming potentials were not significantly different. Generally, recovery of dissolved methane for energy production resulted in lower life cycle impacts than microbial transformation of methane, and microbial oxidation of sulfide resulted in lower environmental impacts than chemical precipitation. Use of reverse osmosis to produce potable water was also found to be a sustainable method for nutrient removal because direct potable reuse trains with the SAF-MBR consumed less energy and had lower life cycle impacts than activated sludge. Moving forward, dissolved methane recovery, reduced chemical usage, and investments that enable direct potable reuse have been flagged as key research areas for further investigation of anaerobic secondary treatment options.
Collapse
Affiliation(s)
- Andrew H Kim
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
| | - Craig S Criddle
- Department of Civil & Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Codiga Resource Recovery Center, Stanford University, Stanford, California 94305, United States
- Woods Institute for the Environment, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Zhang Y, Gu K, Zhao K, Deng H, Hu C. Enhancement of struvite generation and anti-fouling in an electro-AnMBR with Mg anode-MF membrane module. WATER RESEARCH 2023; 230:119561. [PMID: 36623383 DOI: 10.1016/j.watres.2022.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Severe membrane fouling and the inability to remove/recover nitrogen and phosphorus are bottlenecks of anaerobic membrane bioreactors (AnMBRs) for large-scale application in wastewater treatment. Herein, an electrochemical AnMBR with a Mg anode-membrane module (electro-AnMBR) was built and showed good performance in terms of membrane fouling mitigation and nutrient recovery during sewage treatment. Compared with the traditional AnMBR, membrane fouling in the electro-AnMBR was reduced by up to 30%. The application of an electric field decreased the zeta potential, viscosity, and EPS concentration of the sludge-water liquor in the electro-AnMBR, which could improve the cake layer structure and thus enhance water permeability. Meanwhile, 26% of NH4+ and 48% of PO43- co-precipitated with Mg2+ generating from the sacrificial Mg anode and were recovered as struvite deposited onto cathode in the electro-AnMBR. Hydrogen evolution provided a relatively alkaline pH environment, resulting in struvite electrodeposition on the graphic cathode, which partly separated the formed struvite from the sludge with a purity of 77%. In the electro-AnMBR, the electrochemical reactions provided alkalinity and effectively inhibited anaerobic acidification. The applied voltage of 0.6 V reduced the relative abundance of methanosaeta, but increased that of methanosarcina, which is also beneficial for the membrane anti-fouling.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kanghui Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haiqian Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
12
|
Xiao K, Wang K, Yu S, Yuan Y, Qin Y, An Y, Zhao X, Zhou Z. Membrane fouling behavior in membrane bioreactors for nitrogen-deficient wastewater pretreated by ammonium ion exchange. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Hu Z, Zheng M, Hu S, Hong PY, Zhang X, Prodanovic V, Zhang K, Pikaar I, Ye L, Deletic A, Yuan Z. Electrochemical iron production to enhance anaerobic membrane treatment of wastewater. WATER RESEARCH 2022; 225:119202. [PMID: 36215837 DOI: 10.1016/j.watres.2022.119202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Although iron salts such as iron(III) chloride (FeCl3) have widespread application in wastewater treatment, safety concerns limit their use, due to the corrosive nature of concentrated solutions. This study demonstrates that local, electrochemical generation of iron is a viable alternative to the use of iron salts. Three laboratory systems with anaerobic membrane processes were set up to treat real wastewater; two systems used the production of either in-situ or ex-situ electrochemical iron (as Fe2+ and Fe2+(Fe3+)2O4, respectively), while the other system served as a control. These systems were operated for over one year to assess the impact of electrochemically produced iron on system performance. The results showed that dosing of electrochemical iron significantly reduced sulfide concentration in effluent and hydrogen sulfide content in biogas, and mitigated organics-based membrane fouling, all of which are critical issues inherently related to sustainability of anaerobic wastewater treatment. The electrochemical iron strategy can generate multiple benefits for wastewater management including increased removal efficiencies for total and volatile suspended solids, chemical oxygen demand and phosphorus. The rate of methane production also increased with electrochemically produced iron. Economic analysis revealed the viability of electrochemical iron with total cost reduced by one quarter to a third compared with using FeCl3. These benefits indicate that electrochemical iron dosing can greatly enhance the overall operation and performance of anaerobic membrane processes, and this particularly facilitates wastewater management in a decentralized scenario.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Pei-Ying Hong
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, SA 23955, Saudi Arabia
| | - Xueqing Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Veljko Prodanovic
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kefeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Ana Deletic
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, QLD 4001, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
14
|
Velasco P, Jegatheesan V, Othman M. Effect of long-term operations on the performance of hollow fiber membrane contactor (HFMC) in recovering dissolved methane from anaerobic effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156601. [PMID: 35714744 DOI: 10.1016/j.scitotenv.2022.156601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Various studies provide information about the high potential of using hollow fiber membrane contactors (HFMCs) for the recovery of dissolved methane from anaerobically treated wastewater effluent and the effects of different operating conditions on their performance. However, majority of those studies evaluated HFMCs at bench scale under favorable conditions, i.e. clean water as feed under short-term operations. This study evaluated the performance of porous HFMC and dense HFMC (in terms of dissolved methane removal efficiency and methane desorption flux) subjected to anaerobic feed during long-term operation of one month. The study will provide better understanding of the performance of HFMCs with conditions expected at large-scale wastewater treatment systems. From the results, the decrease in the performance of HFMCs and the increase in the mass transfer resistance per week under varying feed flux were determined. These relationships were utilized in a numerical model to incorporate the effect of long-term operation to evaluate the performance of upscaled HFMCs. The fit of the model with the experimental data with one month of operation was evaluated and the relative errors were 11.9 % and 15.3 % for porous HFMC and dense HFMC, respectively. Moreover, results showed that dense HFMC will provide better performance than porous HFMC if it were to be operated longer than two weeks before cleaning. The net energy for porous HFMC and dense HFMC were optimized to be 0.07 and 0.02 kWh·d-1, respectively. Although these results are specific to the operations and conditions used for the HFMCs in this study, the methodology established for incorporating the effect of long-term operation will be highly relevant in evaluating the performance of HFMCs in large-scale wastewater treatment applications. This will contribute to the improved recovery of dissolved methane to reduce the greenhouse gas emissions in the atmosphere and to provide additional source of clean and sustainable energy.
Collapse
Affiliation(s)
- Perlie Velasco
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna 4031, Philippines.
| | - Veeriah Jegatheesan
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia
| | - Maazuza Othman
- School of Engineering and Water: Effective Technologies and Tools (WETT) Research Centre, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
15
|
Rong C, Wang T, Luo Z, Hu Y, Kong Z, Qin Y, Li YY. Seasonal and annual energy efficiency of mainstream anaerobic membrane bioreactor (AnMBR) in temperate climates: Assessment in onsite pilot plant and estimation in scaled-up plant. BIORESOURCE TECHNOLOGY 2022; 360:127542. [PMID: 35777641 DOI: 10.1016/j.biortech.2022.127542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
The seasonal and annual energy efficiency of mainstream anaerobic membrane bioreactor (AnMBR) was first assessed in an onsite pilot plant (15 m3/d) and then estimated in a scaled-up plant (10,000 m3/d) in temperate climates (15-25 °C). It was found that the annual net electricity demand was 0.100 and 0.090 kWh/m3, and the annual net energy (electricity + heat) demand was -0.158 and -0.309 kWh/m3 under the dissolved methane recovery condition and the non-recovery condition, respectively, demonstrated that the application of mainstream AnMBR in temperate climates is electricity saving and energy positive. The energy efficiency of the AnMBR decreased with temperature drop due to the reduction of methane production, and the increase in biogas sparging to mitigate membrane fouling. Since approximately 26.7%-39.7% of input COD remained in sludge, attention should be paid to recovering this potential energy to improve the overall energy performance of the mainstream AnMBR plants in future.
Collapse
Affiliation(s)
- Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
16
|
Sugiyama T, Ito Y, Hafuka A, Kimura K. Efficient direct membrane filtration (DMF) of municipal wastewater for carbon recovery: Application of a simple pretreatment and selection of an appropriate membrane pore size. WATER RESEARCH 2022; 221:118810. [PMID: 35834972 DOI: 10.1016/j.watres.2022.118810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/09/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Considerable attention has been paid in recent years to the recovery and effective utilization of organic matter in municipal wastewater for the establishment of a circular economy. Direct membrane filtration (DMF) of municipal wastewater using microfiltration (MF) or ultrafiltration (UF) membranes to retain and concentrate the organic matter in municipal wastewater could be a practical option for this purpose. However, severe membrane fouling and high concentrations of organic matter remaining in the DMF permeate are concerns to be addressed. Application of a simple pretreatment using fixed biofilms was investigated to address these issues. In this study, experiments were carried out at an existing municipal wastewater treatment plant. A moving bed biofilm reactor (MBBR) process operated under a very short HRT of 1 h and DO concentration of 0.5 mg/L selectively degraded low-molecular-weight dissolved organic matter in municipal wastewater without degradation of membrane-recoverable suspended and colloidal organic matter. Application of the pretreatment did not reduce the amount of organic carbon recovered by DMF using an MF membrane (approximately 70% of the influent COD being recovered), while it dramatically mitigated the membrane fouling probably due to the alteration of characteristics of dissolved organic matter in wastewater. The pretreatment also reduced the concentration of organic matter in the DMF permeate by 41%: COD concentration in the DMF permeate was as low as 40 mg/L. With the established MBBR pretreatment, performances of MF (0.1 µm) and UF (molecular weight cut-off: 150,000) membranes for DMF were compared in parallel. It was found that the increase of the recoverable amount of organic matter by using UF was marginal (about 5%), whereas fouling in UF was much more severe than that in MF. The severe fouling in UF was caused by inorganic colloids such as FeS that could pass through MF membranes but be retained by UF membranes. Based on the results obtained in this study, it is concluded that MF is more suitable than UF for efficient DMF.
Collapse
Affiliation(s)
- Toru Sugiyama
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Yui Ito
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Akira Hafuka
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, Sapporo 060-8628, Japan.
| |
Collapse
|
17
|
Chyoshi B, Gomes Coelho LH, García J, Subtil EL. Fate and removal of emerging contaminants in anaerobic fluidized membrane bioreactor filled with thermoplastic gel as biofilm support. CHEMOSPHERE 2022; 300:134557. [PMID: 35405192 DOI: 10.1016/j.chemosphere.2022.134557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Anaerobic Fluidized Membrane Bioreactor (AnFMBR) is a membrane-based hybrid technology that can overcome the limitations of conventional anaerobic sewage treatment. Although previous studies have demonstrated excellent performance in the removal of conventional organic pollutants, further research into the removal paths of emerging contaminants (ECs) under various operating conditions is required for proper design and development of the AnFMBR technology. Regarding this, the fate of four ECs in a lab-scale AnFMBR filled with thermoplastic gel for biofilm growth was investigated under various Hydraulic Retention Time (HRT) conditions. When the HRT was 13 h, diclofenac and 17β-estradiol were efficiently removed at 93% and 72% respectively. Even after an HRT reduction to 6.5 h, the system was still able to maintain high ECs removals (74% for diclofenac and 69% for 17β-estradiol). However, irrespective of HRT operational condition, smaller removals of 17a-ethinylestradiol (37-52%) were observed, while only marginal removals of amoxicillin were achieved (5-29%). Biotransformation was attributed as the main route for ECs removal. The results obtained in this study indicate that the membrane-based hybrid AnFMBR can be used to treat the target ECs without influence on anaerobic process. The technology had better removal efficiency for diclofenac and 17β-estradiol. However, the AnFMBR system exhibits high variability in EC removal and low capacity for amoxicillin removal, implying that a combination of other processes is still required to properly avoid the release of these contaminants into the environment.
Collapse
Affiliation(s)
- Bruna Chyoshi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Lucia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| | - Joan García
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona 1-3, Building D1, E-08034, Barcelona, Spain.
| | - Eduardo Lucas Subtil
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Av. dos Estados, 5001, Santo André/SP, 09210-580, Brazil.
| |
Collapse
|
18
|
Rong C, Wang T, Luo Z, Hu Y, Kong Z, Qin Y, Hanaoka T, Ito M, Kobayashi M, Li YY. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater. BIORESOURCE TECHNOLOGY 2022; 354:127167. [PMID: 35436540 DOI: 10.1016/j.biortech.2022.127167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
A 5,000-L anaerobic membrane bioreactor (AnMBR) fed with actual municipal wastewater was employed to study the impact of temperature drops on methanogenic performance and membrane fouling. With temperature dropped from 25 °C to 15 °C, the methane yield decreased from 0.244 to 0.205 NL-CH4/g-CODremoval and the dissolved methane increased from 29% to 43%, resulted in the methanogenic performance reduced by 25%. The membrane rejection offset the deteriorated anaerobic digestion at low temperatures and ensured the stable COD removal efficiency of 84.5%-90.0%. The synergistic effects of the increased microbial products and viscosity and the residual inorganic foulants aggravated the membrane fouling at lower temperatures. As the organic fouling was easily removed by NaClO, the inorganics related to the elements of S, Ca and Fe were the stubborn membrane foulants and required the enhanced acid membrane cleaning. These findings obtained under the quasi-practical condition are expected to promote the practical applications of mainstream AnMBR.
Collapse
Affiliation(s)
- Chao Rong
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
19
|
Bashiri R, Allen B, Shamurad B, Pabst M, Curtis TP, Ofiţeru ID. Looking for lipases and lipolytic organisms in low-temperature anaerobic reactors treating domestic wastewater. WATER RESEARCH 2022; 212:118115. [PMID: 35092910 DOI: 10.1016/j.watres.2022.118115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Poor lipid degradation limits low-temperature anaerobic treatment of domestic wastewater even when psychrophiles are used. We combined metagenomics and metaproteomics to find lipolytic bacteria and their potential, and actual, cold-adapted extracellular lipases in anaerobic membrane bioreactors treating domestic wastewater at 4 and 15 °C. Of the 40 recovered putative lipolytic metagenome-assembled genomes (MAGs), only three (Chlorobium, Desulfobacter, and Mycolicibacterium) were common and abundant (relative abundance ≥ 1%) in all reactors. Notably, some MAGs that represented aerobic autotrophs contained lipases. Therefore, we hypothesised that the lipases we found are not always associated with exogenous lipid degradation and can have other roles such as polyhydroxyalkanoates (PHA) accumulation/degradation and interference with the outer membranes of other bacteria. Metaproteomics did not provide sufficient proteome coverage for relatively lower abundant proteins such as lipases though the expression of fadL genes, long-chain fatty acid transporters, was confirmed for four genera (Dechloromonas, Azoarcus, Aeromonas and Sulfurimonas), none of which were recovered as putative lipolytic MAGs. Metaproteomics also confirmed the presence of 15 relatively abundant (≥ 1%) genera in all reactors, of which at least 6 can potentially accumulate lipid/polyhydroxyalkanoates. For most putative lipolytic MAGs, there was no statistically significant correlation between the read abundance and reactor conditions such as temperature, phase (biofilm and bulk liquid), and feed type (treated by ultraviolet light or not). Results obtained by metagenomics and metaproteomics did not confirm each other and extracellular lipases and lipolytic bacteria were not easily identifiable in the anaerobic membrane reactors used in this study. Further work is required to identify the true lipid degraders in these systems.
Collapse
Affiliation(s)
- Reihaneh Bashiri
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Ben Allen
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Burhan Shamurad
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Thomas P Curtis
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Irina D Ofiţeru
- School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom.
| |
Collapse
|
20
|
Li G, Ji J, Ni J, Wang S, Guo Y, Hu Y, Liu S, Huang SF, Li YY. Application of deep learning for predicting the treatment performance of real municipal wastewater based on one-year operation of two anaerobic membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151920. [PMID: 34838555 DOI: 10.1016/j.scitotenv.2021.151920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/05/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, data-driven deep learning methods were applied in order to model and predict the treatment of real municipal wastewater using anaerobic membrane bioreactors (AnMBRs). Based on the one-year operating data of two AnMBRs, six parameters related to the experimental conditions (temperature of reactor, temperature of environment, temperature of influent, influent pH, influent COD, and flux) and eight parameters for wastewater treatment evaluation (effluent pH, effluent COD, COD removal efficiency, biogas composition (CH4, N2, and CO2), biogas production rate, and oxidation-reduction potential) were selected to establish the data sets. Three deep learning network structures were proposed to analyze and reproduce the relationship between the input parameters and output evaluation parameters. The statistical analysis showed that deep learning closely agrees with the AnMBR experimental results. The prediction accuracy rate of the proposed densely connected convolutional network (DenseNet) can reach up to 97.44%, and the single calculation time can be reduced to within 1 s, suggesting the high performance of AnMBR treatment prediction with deep learning methods.
Collapse
Affiliation(s)
- Gaoyang Li
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Jiayuan Ji
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Jialing Ni
- Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Sirui Wang
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuting Guo
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Siwei Liu
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Sheng-Feng Huang
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
21
|
Aslam A, Khan SJ, Shahzad HMA. Anaerobic membrane bioreactors (AnMBRs) for municipal wastewater treatment- potential benefits, constraints, and future perspectives: An updated review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149612. [PMID: 34438128 DOI: 10.1016/j.scitotenv.2021.149612] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
The application of Anaerobic Membrane Bioreactors (AnMBRs) for municipal wastewater treatment has been made sufficiently sustainable for practical implementations. The potential benefits are significant as AnMBRs effectively remove a broad range of contaminants from wastewater for water reuse, degrade organics in wastewater to yield methane-rich biogas for resultant energy production, and concentrate nutrients for subsequent recovery for fertilizer production. However, there still exist some concerns requiring vigilant considerations to make AnMBRs economically and technically viable. This review paper briefly describes process fundamentals and the basic AnMBR configurations and highlights six major factors which obstruct the way to AnMBRs installations affecting their performance for municipal wastewater treatment: (i) organic strength, (ii) membrane fouling, (iii) salinity build-up, (iv) inhibitory substances, (v) temperature, and (vi) membrane stability. This review also covers the energy utilization and energy potential in AnMBRs aiming energy neutrality or positivity of the systems which entails the requirement to further determine the economics of AnMBRs. The implications and related discussions have also been made on future perspectives of the concurrent challenges being faced in AnMBRs operation.
Collapse
Affiliation(s)
- Alia Aslam
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan.
| | - Hafiz Muhammad Aamir Shahzad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| |
Collapse
|
22
|
Ding A, Quan L, Guo X, Wang H, Wen Y, Liu J, Zhang L, Zhang D, Lu P. Storage strategy for shale gas flowback water based on non-bactericide microorganism control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149187. [PMID: 34340077 DOI: 10.1016/j.scitotenv.2021.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/30/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Shale gas is a promising unconventional natural gas in the world, however the produced flowback water have severe challenges to surrounding water resource. Conventional reuse technology uses bactericide to control corrosive microorganism, which might bring uncontrolled drug resistance and other secondary pollution. In this study, storage strategy of flowback water was designed as a pre-control stage to decline corrosive microorganism. Dissolved oxygen and temperature were chosen as two key parameters based on microbial physiological and biochemical characteristics. Results showed that under the cross effect of temperature and dissolved oxygen, 15 °C and anaerobic condition had the optimal microorganism control effectiveness. Microorganism amount and live/dead cell ratio decreased by 63.7% and 68.74% respectively compared raw water. COD removal efficiency reduced to only 20%, indicating that the microorganism activity was extremely inhibited. However, microorganism in flowback water was more sensitive to dissolved oxygen compared to temperature. Redundancy analysis confirmed that dissolved oxygen contribution was as high as 91.5% while temperature was not significant (p > 0.05), the contribution rate was only 8.5%. Thermococcus, Archaeoglobus, Thermovirga, Thermotoga and Moorella were the dominated thermophilic, anaerobic and sulfate reduction or metal corrosion microorganism in flowback water, so all these identified microorganisms were control targets. Importantly, all the target microorganisms detected in flowback water were declined after different storage strategies. This study provides an effective storage strategy for flowback water to inhibit the microbial amount and activity without biocides addition, which could help promote the green exploitation of shale gas.
Collapse
Affiliation(s)
- Aqiang Ding
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lin Quan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Xu Guo
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Haoqi Wang
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Yiyi Wen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jun Liu
- Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing 400044, China; Department of Environmental Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
23
|
Rong C, Luo Z, Wang T, Guo Y, Kong Z, Wu J, Ji J, Qin Y, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Li YY. Chemical oxygen demand and nitrogen transformation in a large pilot-scale plant with a combined submerged anaerobic membrane bioreactor and one-stage partial nitritation-anammox for treating mainstream wastewater at 25 °C. BIORESOURCE TECHNOLOGY 2021; 341:125840. [PMID: 34469821 DOI: 10.1016/j.biortech.2021.125840] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
A novel municipal wastewater treatment process towards energy neutrality and reduced carbon emissions was established by combining a submerged anaerobic membrane bioreactor (SAnMBR) with a one-stage partial nitritation-anammox (PN/A), and was demonstrated at pilot-scale at 25 °C. The overall COD and BOD5 removal efficiencies were 95.1% and 96.4%, respectively, with 20.3 mg L-1 COD and 5.2 mg L-1 BOD5 remaining in the final effluent. The total nitrogen (TN) removal efficiency was 81.7%, resulting 7.3 mg L-1 TN was discharged from the system. The biogas yield was 0.222 NL g-1 COD removed with a methane content range of 78-81%. Approximately 90% of influent COD was removed in the SAnMBR, and 70% of influent nitrogen was removed in the PN/A. The denitrification which occurred in the PN/A enhanced overall COD and nitrogen removal. The successful operation of this pilot-scale plant indicates the SAnMBR-PN/A process is suitable for treating real municipal wastewater.
Collapse
Affiliation(s)
- Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yan Guo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Jiayuan Ji
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu-You Li
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
24
|
Patel A, Arkatkar A, Singh S, Rabbani A, Solorza Medina JD, Ong ES, Habashy MM, Jadhav DA, Rene ER, Mungray AA, Mungray AK. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. CHEMOSPHERE 2021; 282:130881. [PMID: 34087557 DOI: 10.1016/j.chemosphere.2021.130881] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
An increase in urbanization and industrialization has not only contributed to an improvement in the lifestyle of people, but it has also contributed to a surge in the generation of wastewater. To date, conventional physico-chemical and biological treatment methods are widely used for the treatment of wastewater. However, the efficient operation of these systems require substantial operation and maintenance costs, and the application of novel technologies for the treatment and disposal of sludge/residues. This review paper focuses on the application of different treatment options such as chemical, catalyst-based, thermochemical and biological processes for wastewater or sludge treatment and membrane-based technologies (i.e. pressure-driven and non-pressure driven) for the separation of the recovered products from wastewater and its residues. As evident from the literature, a wide variety of treatment and resource recovery options are possible, both from wastewater and its residues; however, the lack of planning and selecting the most appropriate design (treatment train) to scale up from pilot to the field scale has limited its practical application. The economic feasibility of the selected technologies was critically analyzed and the future research prospects of resource recovery from wastewater have been outlined in this review.
Collapse
Affiliation(s)
- Asfak Patel
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Ambika Arkatkar
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Srishti Singh
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alija Rabbani
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Juan David Solorza Medina
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Ee Shen Ong
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Mahmoud M Habashy
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, Maharashtra, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Alka A Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, S. V. National Institute of Technology Surat, Ichchhanath Surat-Dumas Road, Keval Chowk, Surat, 395007, Gujarat, India.
| |
Collapse
|
25
|
Shin C, Tilmans SH, Chen F, McCarty PL, Criddle CS. Temperate climate energy-positive anaerobic secondary treatment of domestic wastewater at pilot-scale. WATER RESEARCH 2021; 204:117598. [PMID: 34478994 DOI: 10.1016/j.watres.2021.117598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/30/2021] [Accepted: 08/21/2021] [Indexed: 05/21/2023]
Abstract
Conventional aerobic secondary treatment of domestic wastewater is energy intensive. Here we report net energy positive operation of a pilot-scale anaerobic secondary treatment system in a temperate climate, with low levels of volatile solids for disposal (< 0.15 mgVSS/mgCODremoved) and hydraulic residence times as low as 5.3 h. This was accomplished with a second-generation staged anaerobic fluidized membrane bioreactor (SAF-MBR 2.0) consisting of a first-stage anaerobic fluidized bed reactor (AFBR) followed by a second-stage gas-sparged anaerobic membrane bioreactor (AnMBR). In stage 1, fluidized granular activated carbon (GAC) particles harbor methanogenic communities that convert soluble biodegradable COD into methane; in stage 2, submerged membranes produce system effluent (permeate) and retain particulate COD that can be hydrolyzed and/or recycled back to stage 1 for conversion to methane. An energy balance on SAF-MBR 2.0 (excluding energy from anaerobic digestion of primary suspended solids) indicated net energy positive operation (+ 0.11 kWh/m3), with energy recovery from produced methane (0.39 kWh electricity/m3 + 0.64 kWh heat/m3) exceeding energy consumption due to GAC fluidization (0.07 kWh electricity/m3) and gas sparging (0.20 kWh electricity/m3 at an optimal flux of 12.2 L/m2 h). Two factors dominated the operating expenses: energy requirements and recovery cleaning frequency; these factors were in turn affected by flux conditions, membrane fouling rate, and temperature. For optimization of expenses, the frequency of low-cost maintenance cleanings was adjusted to minimize recovery cleanings while maintaining optimal flux with low energy costs. An issue still to be resolved is the occurrence of ultrafine COD in membrane permeate that accounted for much of the total effluent COD.
Collapse
Affiliation(s)
- Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, CA 94305, United States; Codiga Resource Recovery Center (CR2C), 692 Pampas Ln, Stanford, CA 94305, United States.
| | - Sebastien H Tilmans
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, CA 94305, United States; Codiga Resource Recovery Center (CR2C), 692 Pampas Ln, Stanford, CA 94305, United States
| | - Felipe Chen
- Codiga Resource Recovery Center (CR2C), 692 Pampas Ln, Stanford, CA 94305, United States
| | - Perry L McCarty
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States; National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, CA 94305, United States; Codiga Resource Recovery Center (CR2C), 692 Pampas Ln, Stanford, CA 94305, United States
| |
Collapse
|
26
|
Ji J, Ni J, Ohtsu A, Isozumi N, Hu Y, Du R, Chen Y, Qin Y, Kubota K, Li YY. Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: Removal efficiency, biogas, and microbial community. BIORESOURCE TECHNOLOGY 2021; 336:125306. [PMID: 34034012 DOI: 10.1016/j.biortech.2021.125306] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
A submerged anaerobic membrane bioreactor (SAnMBR) was used in the treatment of real municipal wastewater at operation temperatures ranging from 15 °C to 25 °C and hydraulic retention time (HRT) of 6 h. The treatment process was evaluated in terms of organic removal efficiency, biogas production, sludge growth and membrane filtration. During long-term operation, the SAnMBR achieved chemical oxygen demand removal efficiencies of about 90% with a low sludge yield (0.12-0.19 g-VSS/g-CODrem) at 20-25 °C. Approximately 1.82-2.27 kWh/d of electric energy was generated during the wastewater treatment process at 20-25 °C, 0.67 kWh/d was generated at 15 °C. The microbial community analysis results showed that microbial community was dominated by aceticlastic methanogens, coupled by hydrogenotrophic methanogens and a very small quantity of methylotrophic methanogens. It was also shown that the stabilization of the microbial community could be attributed to the carbohydrate-protein degrading bacteria and the carbohydrate degrading bacteria.
Collapse
Affiliation(s)
- Jiayuan Ji
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Jialing Ni
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Department of Chemical Engineering, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Akito Ohtsu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Naoko Isozumi
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yisong Hu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, China
| | - Runda Du
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
27
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
28
|
Operation of Submerged Anaerobic Membrane Bioreactors at 20 °C: Effect of Solids Retention Time on Flux, Mixed Liquor Characteristics and Performance. Processes (Basel) 2021. [DOI: 10.3390/pr9091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Four flat-sheet submerged anaerobic membrane bioreactors ran for 242 days on a simulated domestic wastewater with low Chemical Oxygen Demand (COD) and high suspended solids. Organic loading was maintained around 1.0 g COD L−1 day−1, while solids retention time (SRT) was varied from 20–90 days. This was achieved at a constant membrane flux, maintained by adjusting transmembrane pressure (TMP) in the range 1.8–9.8 kPa. Membrane fouling was assessed based on the required TMP, with mixed liquors characterised using capillary suction time, frozen image centrifugation and quantification of extracellular polymeric substances (EPS). SRT had a significant effect on these parameters: fouling was least at an SRT of 30 days and highest at 60 days, with some reduction as this extended to 90 days. Operation at SRT < 30 days showed no further benefits. Although operation at a short SRT was optimal for membrane performance it led to lower specific methane productivity, higher biomass yields and higher effluent COD. Short SRT may also have accelerated the loss of essential trace elements, leading to reduced performance under these conditions. A COD-based mass balance was conducted, including both biomass and methane dissolved in the effluent.
Collapse
|
29
|
Heronemus E, Gamage KHH, Hettiarachchi GM, Parameswaran P. Efficient recovery of phosphorus and sulfur from Anaerobic Membrane Bioreactor (AnMBR) permeate using chemical addition of iron and evaluation of its nutrient availability for plant uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146850. [PMID: 33865120 DOI: 10.1016/j.scitotenv.2021.146850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic membrane bioreactors (AnMBRs) represent an emerging environmental biotechnology platform with the potential to simultaneously recover water, energy, and nutrients from concentrated wastewaters. The removal and beneficial capture of nutrients from AnMBR permeate has yet to be fully explored, therefore this study sought to foster iron phosphate recovery through a tertiary coagulation process, as well as characterize the recovered nutrient product (RNP) and assess its net phosphorus release, diffusion, and availability for plant uptake. One of the primary goals of this study was to optimize the dose of the coagulant, ferric chloride, and coagulant aid, aluminum chlorohydrate (ACH), for continuous application to the coagulation-flocculation-sedimentation (CFS) unit of an AnMBR pilot plant treating municipal wastewater, through controlled bench-scale jar tests. Anaerobic systems present unique challenges for nutrient capture, including high, dissolved hydrogen sulfide concentrations, along with settleability issues. The addition of the coagulant aid increases settleability, while enhancing phosphorus removal by up to 20%, decreasing iron demand. Water quality analysis indicated that a variety of factors affect nutrient capture, including the COD (chemical oxygen demand) concentration of the permeate and the limiting coagulant dose. COD >200 mg/L was shown to decrease the phosphorus removal efficiency by up to 15%. A combination of inductively coupled plasma optical emission spectrometer (ICP-OES) elemental analysis, inductively coupled plasma mass spectrometer (ICP-MS) elemental analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray absorption near-edge structure (XANES) spectroscopy analysis was used to characterize the P-rich RNP which revealed a 2.58% w/w phosphorus content and the lack of a well-defined crystalline structure. Detailed studies on resin extractable phosphorus to assess the plant uptake potential also demonstrated that iron-based P-rich RNPs may not be an effective fertilizer product, as they can act as a phosphorus sink in some agricultural systems instead of a source.
Collapse
Affiliation(s)
- Evan Heronemus
- Department of Civil Engineering, Kansas State University, 2118 Fiedler Hall, 1701C Platt St., Manhattan, KS 66506, USA.
| | - Kasuni H H Gamage
- Department of Agronomy, Kansas State University, 2107 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Ganga M Hettiarachchi
- Department of Agronomy, Kansas State University, 2107 Throckmorton PSC, 1712 Claflin Road, Manhattan, KS 66506, USA
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, 2118 Fiedler Hall, 1701C Platt St., Manhattan, KS 66506, USA
| |
Collapse
|
30
|
Kimura K, Yamakawa M, Hafuka A. Direct membrane filtration (DMF) for recovery of organic matter in municipal wastewater using small amounts of chemicals and energy. CHEMOSPHERE 2021; 277:130244. [PMID: 34384173 DOI: 10.1016/j.chemosphere.2021.130244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
The recovery and utilization of organic matter in municipal wastewater are essential for the establishment of a sustainable society, such that these factors have drawn significant recent attention. The up-concentration of organic matter via direct membrane filtration (DMF), followed by anaerobic digestion, is advantageous over the treatment of the entire wastewater by an anaerobic process, such as an anaerobic membrane bioreactor (AnMBR). However, the occurrence of severe membrane fouling in the DMF is a problem. In this study, DMF was carried out at an existing wastewater treatment plant to attempt long-term operation. A combination of vibration of membrane modules, short-term aeration, and chemically enhanced backwash (CEB), with multiple chemicals (i.e., the alternative use of citric acid and NaClO), was found to be effective for the mitigation of membrane fouling in DMF. Furthermore, switching the feed from influents to effluents in the primary sedimentation basin significantly mitigated membrane fouling. In this study, in which microfiltration membrane, with a nominal pore size of 0.1 μm, was used, ∼75% of the organic matter in raw wastewater was recovered, with the volumetric concentration of wastewater by 50- or 150-fold. Organic matter recovered by DMF had significantly higher potentials for biogas production than the excess sludge generated from the same wastewater treatment plant. An analysis of the energy balance (i.e., the energy used for DMF and recovered by DMF) suggests that the proposed DMF can produce a net-positive amount of electricity of ∼0.3 kWh from 1 m3 of raw wastewater with a typical strength (chemical oxygen demand of 500 mg/L).
Collapse
Affiliation(s)
- Katsuki Kimura
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan.
| | - Mutsumi Yamakawa
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan
| | - Akira Hafuka
- Division of Environmental Engineering, Hokkaido University, N13W8, Kita-ku, 060-8628, Sapporo, Japan
| |
Collapse
|
31
|
Li X, Lee HS, Wang Z, Lee J. State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. WATER RESEARCH 2021; 200:117269. [PMID: 34091220 DOI: 10.1016/j.watres.2021.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors and vacuum degassers for methane recovery, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
Collapse
Affiliation(s)
- Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|
32
|
Zhu C, Zhu B, Gu X, Li M, Ji R, Zhou Q. Technology and Concept of Wastewater Treatment: Differences Between the Rhine Basin and the Yangtze Basin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:1059-1064. [PMID: 33963875 DOI: 10.1007/s00128-021-03217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Based on field visits and literature research, the situations of several typical wastewater treatment plants (WWTPs) in the Rhine basin and the Yangtze basin were investigated, to compare the technology and concept of wastewater treatment in these two areas. Our results showed that WWTPs in the Rhine performed well in pollutant removal, and have shifted their focus to energy production and nutrient recovery; While in the Yangtze basin, most WWTPs still operate on the sole concept of pollution treatment. Though China's WWTPs attach importance to water reclamation, the related technologies are still under development. In years to come, the construction of New Concept WWTPs is expected by Chinese famous experts, to integrate sustainable wastewater treatment and energy/nutrient recovery. To better plan its future avenue in wastewater treatment, China is suggested to learn from the successful practice of energy production and nutrient recovery of WWTPs in the Rhine.
Collapse
Affiliation(s)
- Chenyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Boyang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China.
| |
Collapse
|
33
|
Chen C, Sun M, Liu Z, Zhang J, Xiao K, Zhang X, Song G, Chang J, Liu G, Wang H, Huang X. Robustness of granular activated carbon-synergized anaerobic membrane bioreactor for pilot-scale application over a wide seasonal temperature change. WATER RESEARCH 2021; 189:116552. [PMID: 33166921 DOI: 10.1016/j.watres.2020.116552] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
A novel granular activated carbon-synergized anaerobic membrane bioreactor (GAC-AnMBR), consisted of four expanded bed anaerobic bioreactors with GAC carriers and a membrane tank, was established in pilot scale (10 m3/d) to treat real municipal wastewater (MWW) at ambient temperature seasonally fluctuating from 35 to 5 °C. It showed sound organic removal over 86% with the permeate COD less than 50 mg/L even at extremely low temperatures below 10 °C. COD mass balance analysis revealed that membrane rejection (with a contribution rate of 10%-20%) guaranteed the stable organic removal, particularly at psychrophilic temperature. The methane yield was over 0.24 L CH4 (STP)/g COD removed at mesophilic temperature and 0.21 L CH4 (STP)/g COD removed at 5-15 °C. Pyrosequencing of microbial communities suggested that lower temperature reduced the abundance of the methane producing bacteria, but the methane production was enhanced by selectively enriched Methanosaeta, syntrophic Syntrophobacter and Smithella and exoelectrogenic Geobacter for direct interspecies electron transfer (DIET) on the additive GAC. Compared with previously reported pilot-scale AnMBRs, the GAC-AnMBR in this study showed better overall performance and higher stability in a wide temperature range of 5-35 °C. The synergistic effect of GAC on AnMBR guaranteed the robustness of GAC-AnMBR against temperature, which highlighted the applicational potential of GAC-AnMBR, especially in cold and temperate climate regions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingzhuang Sun
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Liu
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiao Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Kang Xiao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Xian Zhang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guangqing Song
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jiang Chang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Guoliang Liu
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Hao Wang
- Beijing Engineering Research Center for Wastewater Reuse, Beijing 100124, China; Beijing Drainage Group Co. Ltd., Beijing 100124, China
| | - Xia Huang
- State Key Joint Laboratory of Environment simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Vinardell S, Dosta J, Mata-Alvarez J, Astals S. Unravelling the economics behind mainstream anaerobic membrane bioreactor application under different plant layouts. BIORESOURCE TECHNOLOGY 2021; 319:124170. [PMID: 33011628 DOI: 10.1016/j.biortech.2020.124170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
This research evaluated the economic feasibility of anaerobic membrane bioreactor (AnMBR) as a mainstream technology for municipal sewage treatment. To this end, different wastewater treatment plant (WWTP) layouts were considered, including primary settler, AnMBR, degassing membrane, partial nitritation-Anammox, phosphorus precipitation and sidestream anaerobic digestion. The net treatment cost of an AnMBR-WWTP decreased from 0.42 to 0.35 € m-3 as the sewage COD concentration increased from 100 to 1100 mg COD L-1 due to revenue from electricity production. However, the net treatment cost increased above 0.51 € m-3 when nutrient removal technologies were included. The AnMBR and partial nitritation-Anammox were the costliest processes representing a 57.6 and 30.3% of the treatment cost, respectively. Energy self-sufficiency was achieved for high-strength municipal sewage treatment (1000 mg COD L-1) and a COD:SO42--S ratio above 40. Overall, the results showed that mainstream AnMBR has potential to be an economically competitive option for full-scale implementation.
Collapse
Affiliation(s)
- Sergi Vinardell
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain.
| | - Joan Dosta
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Joan Mata-Alvarez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Sergi Astals
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
35
|
Kong Z, Wu J, Rong C, Wang T, Li L, Luo Z, Ji J, Hanaoka T, Sakemi S, Ito M, Kobayashi S, Kobayashi M, Qin Y, Li YY. Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25 °C. BIORESOURCE TECHNOLOGY 2021; 319:124123. [PMID: 32971330 DOI: 10.1016/j.biortech.2020.124123] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 05/27/2023]
Abstract
The aim of this work was to demonstrate the operation of a large pilot-scale submerged anaerobic membrane bioreactor (5.0 m3) for biogas production from municipal wastewater at ambient temperature of 25 °C. To the best of our knowledge, this is the largest one-stage submerged AnMBR that has ever been reported. This AnMBR realized a hydraulic retention time (HRT) of 6 h and a treatment capacity of 20 m3 d-1, obtaining excellent effluent quality with COD removal efficiency over 90% and BOD5 removal over 95%. The biogas yield of the AnMBR was 0.25-0.27 L g-1 removed COD and 0.09-0.10 L L-1 raw wastewater. The methane content of the biogas was at the range of 75%-81%. The COD and nitrogen mass balance were also identified based on long-term operation. The hollow-fiber membrane module realized a flux of 2.75-17.83 LMH. An online backwash chemical cleaning system helped to lower the transmembrane pressure timely.
Collapse
Affiliation(s)
- Zhe Kong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiang Wu
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianjie Wang
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Lu Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zibin Luo
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jiayuan Ji
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Taira Hanaoka
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Shinichi Sakemi
- Solution Engineering Group, Environmental Engineering Department, Mitsubishi Kakoki Kaisha, Ltd., 1-2 Miyamae-Cho, Kawasaki-Ku, Kawasaki, Kanagawa 210-0012, Japan
| | - Masami Ito
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Shigeki Kobayashi
- Global Water Recycling and Reuse System Association, Japan, 5-1, Soto-Kanda 1-Chome, Chiyoda-Ku, Tokyo 101-0021, Japan
| | - Masumi Kobayashi
- Separation and Aqua Chemicals Department, Mitsubishi Chemical Corporation, Gate City Osaki East Tower, 11-2 Osaki 1-chome, Shinagawa-Ku, Tokyo 141-0032, Japan
| | - Yu Qin
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
36
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
37
|
Harclerode M, Doody A, Brower A, Vila P, Ho J, Evans PJ. Life cycle assessment and economic analysis of anaerobic membrane bioreactor whole-plant configurations for resource recovery from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 269:110720. [PMID: 32425175 DOI: 10.1016/j.jenvman.2020.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The use of the anaerobic membrane bioreactor (AnMBR) process for domestic wastewater treatment presents an opportunity to mitigate environmental, social, and economic impacts currently incurred from energy-intensive conventional aerobic activated sludge processes. Previous studies have performed detailed evaluations on improving AnMBR process subcomponents to maximize energy recovery and dissolved methane recovery. Few studies have broadly evaluated the role of chemical use, membrane fouling management, and dissolved methane removal technologies. A life cycle assessment was conducted to holistically compare multiple AnMBR-based domestic wastewater treatment trains to conventional activated sludge (CAS) treatment. These treatment trains included different scouring methods to mitigate membrane fouling (gas-sparging and granular activated carbon-fluidizing) with consideration of upstream treatment (primary sedimentation vs. screening only), downstream treatment (dissolved methane removal and nutrient removal) and sludge management (anaerobic digestion and lime stabilization). This study determined two process subcomponents (sulfide and phosphorus removal and sludge management) that drove chemical use and residuals generation, and in turn the environmental and cost impacts. Furthermore, integrating primary sedimentation and a vacuum degassing tank for dissolved methane removal maximized net energy recovery. Sustainability impacts were further mitigated by operating at a higher flux and temperature, as well as by substituting biological sulfide removal for chemical coagulation.
Collapse
Affiliation(s)
| | - Alexandra Doody
- CDM Smith, 9430 Research Blvd, Suite 1-200, Austin, TX, 79759, USA
| | - Andrew Brower
- CDM Smith, 11490 Westheimer Rd, Suite 700, Houston, TX, 77077, USA
| | - Paloma Vila
- CDM Smith, 993 Old Eagle School Rd, Suite 408, Wayne, PA, 19087, USA
| | - Jaeho Ho
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA, 98007, USA
| | - Patrick J Evans
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA, 98007, USA
| |
Collapse
|
38
|
Damodara Kannan A, Evans P, Parameswaran P. Long-term microbial community dynamics in a pilot-scale gas sparged anaerobic membrane bioreactor treating municipal wastewater under seasonal variations. BIORESOURCE TECHNOLOGY 2020; 310:123425. [PMID: 32361646 DOI: 10.1016/j.biortech.2020.123425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
This study evaluates the microbial community development in the suspended sludge within a pilot-scale gas sparged Anaerobic membrane bioreactor (AnMBR) under ambient conditions, as well as understand the influence of microbial signatures in the influent municipal wastewater on the bioreactor using amplicon sequence analysis. The predominant bacterial phyla comprised of Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi demonstrated resiliency with ambient temperature operation over a period of 472 days. Acetoclastic Methanosaeta were predominant during most of the AnMBR operation. Beta diversity analysis indicated that the microbial communities present in the influent wastewater did not affect the AnMBR core microbiome. Syntrophic microbial interactions were evidenced by the presence of the members from Synergistales, Anaerolineales, Clostridiales, and Syntrophobacterales. The proliferation of sulfate reducing bacteria (SRB) along with sulfate reduction underscored the competition of SRB in the AnMBR. Operational and environmental variables did not greatly alter the core bacterial population based on canonical correspondence analysis.
Collapse
Affiliation(s)
- Arvind Damodara Kannan
- Department of Civil Engineering, Kansas State University, Fiedler Hall, 1701C Platt Street, Manhattan, KS 66506, USA
| | - Patrick Evans
- CDM Smith, 14432, SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA
| | - Prathap Parameswaran
- Department of Civil Engineering, Kansas State University, Fiedler Hall, 1701C Platt Street, Manhattan, KS 66506, USA.
| |
Collapse
|
39
|
Arden S, Morelli B, Schoen M, Cashman S, Jahne M, Ma X(C, Garland J. Human Health, Economic and Environmental Assessment of Onsite Non-Potable Water Reuse Systems for a Large, Mixed-Use Urban Building. SUSTAINABILITY 2020; 12:5459. [PMID: 32944297 PMCID: PMC7490829 DOI: 10.3390/su12135459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Onsite non-potable reuse (NPR) is being increasingly considered as a viable option to address water scarcity and infrastructure challenges, particularly at the building scale. However, there are a range of possible treatment technologies, source water options, and treatment system sizes, each with its unique costs and benefits. While demonstration projects are proving that these systems can be technologically feasible and protective of public health, little guidance exists for identifying systems that balance public health protection with environmental and economic performance. This study uses quantitative microbial risk assessment, life cycle assessment and life cycle cost analysis to characterize the human health, environmental and economic aspects of onsite NPR systems. Treatment trains for both mixed wastewater and source-separated graywater were modeled using a core biological process-an aerobic membrane bioreactor (AeMBR), an anaerobic membrane bioreactor (AnMBR) or recirculating vertical flow wetland (RVFW)-and additional treatment and disinfection unit processes sufficient to meet current health-based NPR guidelines. Results show that the graywater AeMBR system designed to provide 100% of onsite non-potable demand results in the lowest impacts across most environmental and human health metrics considered but costs more than the mixed-wastewater version due to the need for a separate collection system. The use of multiple metrics also allows for identification of weaknesses in systems that lead to burden shifting. For example, although the RVFW process requires less energy than the AeMBR process, the RVFW system is more environmentally impactful and costly when considering the additional unit processes required to protect human health. Similarly, we show that incorporation of thermal recovery units to reduce hot water energy consumption can offset some environmental impacts but result in increases to others, including cumulative energy demand. Results demonstrate the need for additional data on the pathogen treatment performance of NPR systems to inform NPR health guidance.
Collapse
Affiliation(s)
- Sam Arden
- Eastern Research Group, Lexington, MA 02421, USA
| | - Ben Morelli
- Eastern Research Group, Lexington, MA 02421, USA
| | - Mary Schoen
- Soller Environmental, Berkeley, CA 94703, USA
| | | | - Michael Jahne
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, USA
| | - Xin (Cissy) Ma
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, USA
| | - Jay Garland
- United States Environmental Protection Agency, Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45268, USA
| |
Collapse
|
40
|
Optimization of In Situ Backwashing Frequency for Stable Operation of Anaerobic Ceramic Membrane Bioreactor. Processes (Basel) 2020. [DOI: 10.3390/pr8050545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The cost-effective and stable operation of an anaerobic ceramic membrane bioreactor (AnCMBR) depends on operational strategies to minimize membrane fouling. A novel strategy for backwashing, filtration and relaxation was optimized for stable operation of a side stream tubular AnCMBR treating domestic wastewater at the ambient temperature. Two in situ backwashing schemes (once a day at 60 s/day, and twice a day at 60 s × 2/day) maintaining 55 min filtration and 5 min relaxation as a constant were compared. A flux level over 70% of the initial membrane flux was stabilized by in situ permeate backwashing irrespective of its frequency. The in situ backwashing by permeate once a day was better for energy saving, stable membrane filtration and less permeate consumption. Ex situ chemical cleaning after 60 days’ operation was carried out using pure water, sodium hypochlorite (NaOCl), and citric acid as the order. The dominant cake layer was effectively reduced by in situ backwashing, and the major organic foulants were fulvic acid-like substances and humic acid-like substances. Proteobacteria, Firmucutes, Epsilonbacteria and Bacteroides were the major microbes attached to the ceramic membrane fouling layer which were effectively removed by NaOCl.
Collapse
|
41
|
Evans PJ, Parameswaran P, Lim K, Bae J, Shin C, Ho J, McCarty PL. A comparative pilot-scale evaluation of gas-sparged and granular activated carbon-fluidized anaerobic membrane bioreactors for domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2019; 288:120949. [PMID: 31202711 DOI: 10.1016/j.biortech.2019.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Two significantly different pilot-scale AnMBRs were used to treat screened domestic wastewater for over one year. Both systems similarly reduced BOD5 and COD by 86-90% within a 13-32 °C temperature range and at comparable COD loading rates of 1.3-1.4 kg-COD m-3 d-1 and membrane fluxes of 7.6-7.9 L m-2 h-1 (LMH). However, the GAC-fluidized AnMBR achieved these results at a 65% shorter hydraulic retention time than the gas-sparged AnMBR. The gas-sparged AnMBR was able to operate at a similar operating permeability with greater reactor concentrations of suspended solids and colloidal organics than the GAC-fluidized AnMBR. Also, the membranes were damaged more in the GAC-fluidized system. To better capture the relative advantages of each system a hybrid AnMBR comprised of a GAC-fluidized bioreactor connected to a separate gas-sparged ultrafiltration membrane system is proposed. This will likely be more effective, efficient, robust, resilient, and cost-effective.
Collapse
Affiliation(s)
- Patrick J Evans
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA.
| | - Prathap Parameswaran
- Kansas State University, Department of Civil Engineering, 1701 C. Platt. St., 2118 Fiedler Hall, Manhattan, KS 66506-5000, USA
| | - Kahao Lim
- Kansas State University, Department of Civil Engineering, 1701 C. Platt. St., 2118 Fiedler Hall, Manhattan, KS 66506-5000, USA
| | - Jaeho Bae
- Inha University, Department of Environmental Engineering, Nam-gu, Inharo 100, Republic of Korea
| | - Chungheon Shin
- Stanford University, Department of Civil and Environmental Engineering, 473 Via Ortega, Stanford, CA 94305, USA
| | - Jaeho Ho
- CDM Smith, 14432 SE Eastgate Way, Suite 100, Bellevue, WA 98007, USA
| | - Perry L McCarty
- Stanford University, Department of Civil and Environmental Engineering, 473 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|