1
|
Suo M, Liu L, Fan H, Li N, Pan H, Hrynsphan D, Tatsiana S, Robles-Iglesias R, Wang Z, Chen J. Advancements in chain elongation technology: Transforming lactic acid into caproic acid for sustainable biochemical production. BIORESOURCE TECHNOLOGY 2025; 425:132312. [PMID: 40023331 DOI: 10.1016/j.biortech.2025.132312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
This review provides an insight into the chain-elongation technology for the production of caproic acid, a chemical widely used in the food, pharmaceutical, and cosmetic industries, from lactic acid in waste organic matter. The evolution of the technology is traced, the reaction mechanism is elucidated, and the properties of key microbial agents capable of carrying out the chain-elongation technology are summarized and compared, including pure bacterial isolates and reactor-mixed microorganisms. Furthermore, the parameters that regulate caproic acid formation by influencing microbial activity, competitive pathways, product selection, and carbon flow distribution, such as pH, temperature, electron donor, electron acceptor, and hydrogen partial pressure, are highlighted and discussed. It is worth noting that various caproic acid product extraction technologies were also summarized and assessed. Finally, based on the perspective of interdisciplinary field, bold suggestions for the future research direction are put forward.
Collapse
Affiliation(s)
- Minyu Suo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lingxiu Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongye Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nan Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk 220030, Belarus
| | - Raúl Robles-Iglesias
- Chemical Engineering Laboratory, Faculty of Sciences and Center for Advanced Scientific Research/Centro de Investigaciones Científicas Avanzadas (CICA), BIOENGIN Group, University of La Coruña, La Coruña 15008, Spain
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Matthay P, Schalck T, Simoens K, Kerstens D, Sels B, Verstraeten N, Bernaerts K, Michiels J. In silico identification of gene targets to enhance C12 fatty acid production in Escherichia coli. Appl Microbiol Biotechnol 2025; 109:116. [PMID: 40341454 PMCID: PMC12062052 DOI: 10.1007/s00253-025-13501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
The global interest in fatty acids is steadily rising due to their wealth of industrial potential ranging from cosmetics to biofuels. Unfortunately, certain fatty acids, such as monounsaturated lauric acid with a carbon atom chain length of twelve (C12 fatty acids), cannot be produced cost and energy-efficiently using conventional methods. Biosynthesis using microorganisms can overcome this drawback. However, rewiring a microbe's metabolome for increased production remains challenging. To overcome this, sophisticated genome-wide metabolic network models have become available. These models predict the effect of genetic perturbations on the metabolism, thereby serving as a guide for metabolic pathways optimization. In this work, we used constraint-based modeling in combination with the algorithm Optknock to identify gene deletions in Escherichia coli that improve C12 fatty acid production. Nine gene targets were identified that, when deleted, were predicted to increase C12 fatty acid titers. Targets play a role in anaplerotic reactions, amino acid synthesis, carbon metabolism, and cofactor-balancing. Subsequently, we constructed the corresponding (combinatorial) deletion mutants to validate the in silico predictions in vivo. Our highest producer (ΔmaeB Δndk ΔpykA) reaches a titer of 6.7 mg/L, corresponding to a 7.5-fold increase in C12 fatty acid production. This study demonstrates that model-guided metabolic engineering is a useful tool to improve C12 fatty acid production. KEY POINTS: •Escherichia coli as a promising biofactory for unsaturated C12 fatty acids. •Optknock to identify non-obvious gene deletions for increased C12 fatty acids. •7.5-fold higher C12 fatty acid production achieved by deleting maeB, ndk, and pykA.
Collapse
Affiliation(s)
- Paul Matthay
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
- KU Leuven Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
| | - Thomas Schalck
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
- KU Leuven Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
| | - Kenneth Simoens
- Chemical and Biochemical Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200 F, 3001, Louvain, Belgium
| | - Dorien Kerstens
- KU Leuven Center for Sustainable Catalysis and Engineering, Celestijnenlaan 200 F, 3001, Louvain, Belgium
| | - Bert Sels
- KU Leuven Center for Sustainable Catalysis and Engineering, Celestijnenlaan 200 F, 3001, Louvain, Belgium
| | - Natalie Verstraeten
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
- KU Leuven Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001, Louvain, Belgium
| | - Kristel Bernaerts
- Chemical and Biochemical Reactor Engineering and Safety Section, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200 F, 3001, Louvain, Belgium
| | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 20, 3001, Louvain, Belgium.
- KU Leuven Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, 3001, Louvain, Belgium.
| |
Collapse
|
3
|
Wang Z, Chen J, Veiga MC, Kennes C. Enhancing caproate production in lactate-containing effluents by Megasphaera hexanoica through acetate modulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125327. [PMID: 40262499 DOI: 10.1016/j.jenvman.2025.125327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
The anaerobic bacterium Megasphaera hexanoica has great potential for caproate production through reverse β-oxidation using lactate, acetate, and butyrate as substrates. This study assessed the effect of acetate concentrations (10-50 mM) on caproate biosynthesis, lactate oxidation, and cell synthesis in M. hexanoica. At 30 mM acetate, caproate production reached 42.83 mM, with an electron efficiency of 67.03 % and a specific productivity of 4.47 gCA·h-1·gDCW-1. Subsequent fed-batch experiments with lactate, acetate, and butyrate maintained continuous caproate production, achieving 65.21 mM. Bioreactor assays further validated the strategy, yielding 65.25 mM caproate over 180 h. Mechanistic analysis demonstrated that 30 mM acetate optimized acetyl-CoA flux and enhanced caproyl-CoA transferase activity (3.5 U‧mg-1), supporting caproate synthesis. Kinetic modeling demonstrated the Logistic model fit lactate consumption (R2 = 0.991), while the Fitzhugh model captured caproate production (R2 = 0.991, NRMSE = 1.137). The findings offer practical insights for industrial-scale caproate production.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008, La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008, La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008, La Coruña, Spain.
| |
Collapse
|
4
|
Zhou L, Wu M, Lin X, Guo J. Mildly acidic pH boosts up CO 2 conversion to isobutyrate in H 2 driven gas fermentation system. WATER RESEARCH 2025; 273:123023. [PMID: 39731840 DOI: 10.1016/j.watres.2024.123023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
As a greenhouse gas, massive carbon dioxide (CO2) has been generated due to organic matter degradation in wastewater treatment processes. Microbial gas fermentation offers a promising approach to capture CO2 and generate various valuable chemicals. However, limited studies have achieved branched or medium-chain fatty acids production via gas fermentation. This study reported the production of isobutyrate and hexanoate by feeding H2 and CO2 into membrane biofilm reactors (MBfRs). The gas fermentation product in the reactor with neutral pH (pH of 7) was dominated by acetate (accounting for 90 % of the product spectrum), whereas a mildly acidic pH (pH of 6) resulted in isobutyrate and hexanoate as the dominant products, with a selectivity of 57 % and 42 %, respectively. Notably, a remarkably high concentration of isobutyrate (266 mmol C/L) was produced in the reactor with pH of 6. Subsequent batch test results suggest that the isobutyrate production in this study is coupled with acetogenesis and ethanol-driven chain elongation processes, rather than via methanol-driven chain elongation reported previously. High-throughput 16S rRNA gene amplicon sequencing revealed that the microbial community under neutral pH was dominated by acetate-producing homoacetogens Acetobacterium. By contrast, a mildly acidic pH promoted the community shifting towards chain elongation microorganisms, dominated by Clostridium sensu stricto 12, Oscillibacter and Caproiciproducens. Collectively, this study demonstrates the significant role of mildly acidic pH in boosting up bioisomerization and chain elongation in gas fermentation systems, thus triggering isobutyrate and hexanoate production. The findings highlight gas fermentation as a new green alternative route for generating highly valuable isobutyrate and hexanoate.
Collapse
Affiliation(s)
- Linjie Zhou
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| | - Xunyang Lin
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Cheng M, Qu G, Xu R, Ren N. Research on the conversion of biowaste to MCCAs: A review of recent advances in the electrochemical synergistic anaerobic pathway. CHEMOSPHERE 2024; 366:143430. [PMID: 39353474 DOI: 10.1016/j.chemosphere.2024.143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Medium-chain carboxylic acids (MCCAs) show great promise as commercial chemicals due to their high energy density, significant product value, and wide range of applications. The production of MCCAs from waste biomass through coupling chain extension with anaerobic fermentation represents a new and innovative approach to biomass utilization. This review provides an overview of the principles of MCCAs production through coupled chain extension and anaerobic fermentation, as well as the extracellular electron transfer pathways and microbiological effects involved. Emphasis is placed on the mechanisms, limitations, and microbial interactions in MCCAs production, elucidating metabolic pathways, potential influencing factors, and the cooperative and competitive relationships among various microorganisms. Additionally, this paper delves into a novel technology for the bio-electrocatalytic generation of MCCAs, which promotes electron transfer through the use of different three-dimensional electrodes, various electrical stimulation methods, and hydrogen-assisted approaches. The insights and conclusions from previous studies, as well as the identification of existing challenges, will be valuable for the further development of high-product-selectivity strategies and environmentally friendly treatments.
Collapse
Affiliation(s)
- Minhua Cheng
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China.
| | - Rui Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, Yunnan, 650500, China; National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming, Yunnan, 650500, China
| | - Nanqi Ren
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Wu L, Ngo HH, Wang C, Hou Y, Chen X, Guo W, Duan H, Ni BJ, Wei W. Lactobacillus inoculation mediated carboxylates and alcohols production from waste activated sludge fermentation system: Insight into process outcomes and metabolic network. BIORESOURCE TECHNOLOGY 2024; 409:131191. [PMID: 39094964 DOI: 10.1016/j.biortech.2024.131191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Producing medium chain fatty acids (MCFAs) from waste activated sludge (WAS) is crucial for sustainable chemical industries. This study addressed the electron donor requirement for MCFAs production by inoculating Lactobacillus at varying concentrations (7.94 × 1010, 3.18 × 1011, and 6.35 × 1011 cell/L) to supply lactate internally. Interestingly, the highest MCFAs yield (∼2000 mg COD/L) occurred at the lowest Lactobacillus inoculation. Higher inoculation concentrations redirected more carbon from WAS towards alcohols production rather than MCFAs generation, with up to 2852 mg COD/L alcohols obtained under 6.35 × 1011 cell/L inoculation. Clostridium dominance and increased genes abundance for substrate hydrolysis, lactate conversion, and MCFAs/alcohol production collectively enhanced WAS-derived MCFAs and alcohols synthesis after Lactobacillus inoculation. Overall, the strategy of Lactobacillus inoculation regulated fermentation outcomes and subsequent carbon recovery in WAS, presenting a sustainable technology to achieve liquid bio-energy production from underutilized wet wastes.
Collapse
Affiliation(s)
- Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Chen Wang
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yanan Hou
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xueming Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Haoran Duan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
7
|
Wang X, Han J, Zeng M, Chen Y, Jiang F, Zhang L, Zhou Y. Total ammonia nitrogen inhibits medium-chain fatty acid biosynthesis by disrupting hydrolysis, acidification, chain elongation, substrate transmembrane transport and ATP synthesis processes. BIORESOURCE TECHNOLOGY 2024; 409:131236. [PMID: 39122132 DOI: 10.1016/j.biortech.2024.131236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study used 16S rRNA gene sequencing and metatranscriptomic analysis to comprehensively illustrate how ammonia stress influenced medium-chain fatty acids (MCFA) biosynthesis. MCFA synthesis was inhibited at total ammonia nitrogen (TAN) concentrations above 1000 mg N/L. TAN stress hindered organic hydrolysis, acidification, and volatile fatty acids elongation. Chain-elongating bacteria (e.g., Clostridium_sensu_stricto_12, Clostridium_sensu_stricto_1, Caproiciproducens) abundance remained unchanged, but their activity decreased, partially due to the increased reactive oxygen species. Metatranscriptomic analysis revealed reduced activity of enzymes critical for MCFA production under TAN stress. Fatty acid biosynthesis pathway rather than reverse β-oxidation pathway primarily contributed to MCFA production, and was inhibited under TAN stress. Functional populations likely survived TAN stress through osmoprotectant generation and potassium uptake regulation to maintain osmotic pressure, with NADH-ubiquinone oxidoreductase potentially compensating for ATP loss. This study enhances understanding of MCFA biosynthesis under TAN stress, aiding MCFA production system stability and efficiency improvement.
Collapse
Affiliation(s)
- Xiuping Wang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Junjie Han
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Meihui Zeng
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China
| | - Yun Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology
| | - Liang Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, China; Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology.
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
8
|
Fernández-Blanco C, Pereira A, Veiga MC, Kennes C, Ganigué R. Comprehensive comparative study on n-caproate production by Clostridium kluyveri: batch vs. continuous operation modes. BIORESOURCE TECHNOLOGY 2024; 408:131138. [PMID: 39043275 DOI: 10.1016/j.biortech.2024.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Recently, there has been notable interest in researching and industrially producing medium-chain carboxylic acids (MCCAs) like n-caproate and n-caprylate via chain elongation process. This study presents a comprehensive assessment of the behavior and MCCA production profiles of Clostridium kluyveri in batch and continuous modes, at different ethanol:acetate molar ratios (1.5:1, 3.5:1 and 5.5:1). The highest n-caproate concentration, 12.9 ± 0.67 g/L (92.9 ± 1.39 % MCCA selectivity), was achieved in batch mode at a 3.5:1 ratio. Interestingly, higher ratios favored batch mode selectivity over continuous mode when this was equal or higher to 3.5:1. Steady state operation yielded the highest n-caproate (9.5 ± 0.13 g/L) and n-caprylate (0.35 ± 0.020 g/L) concentrations at the 3.5:1 ratio. Increased ethanol:acetate ratios led to a higher excessive ethanol oxidation (EEO) in both operational modes, potentially limiting n-caproate production and selectivity, especially at the 5.5:1 ratio. Overall, this study reports the efficient MCCA production of both batch and continuous modes by C. kluyveri.
Collapse
Affiliation(s)
- Carla Fernández-Blanco
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Alexandra Pereira
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, Ghent 9052, Belgium
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química e Bioloxía (CICA), BIOENGIN Group, University of A Coruña, E-15008-A Coruña, Spain
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat, Ghent 9052, Belgium.
| |
Collapse
|
9
|
Lanfranchi A, Desmond-Le Quéméner E, Magdalena JA, Cavinato C, Trably E. Conversion of wine lees and waste activated sludge into caproate and heptanoate: Thermodynamic and microbiological insights. BIORESOURCE TECHNOLOGY 2024; 408:131126. [PMID: 39029767 DOI: 10.1016/j.biortech.2024.131126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
In this study, wine lees and waste activated sludge (WAS) were co-fermented for the first time in a 4:1 ratio (COD basis) at 20, 40, 70 and 100 gCOD/L, in batch at 37 °C and pH 7.0. The substrates were successfully converted to caproate (C6) and heptanoate (C7) with a high selectivity (40.2 % at 40 gCOD/L). The rapidly-growing chain-elongating microbiome was enriched inClostridiaceaeandOscillospiraceae, representing together 3.4-8.8 % of the community. Substrate concentrations higher than 40 gCOD/L negatively affected C6 and C7 selectivities and yields, probably due to microbial inhibition by high ethanol concentrations (15.82-22.93 g/L). At 70 and 100 gCOD/L, chain elongation shifted from ethanol-based to lactate-based, with a microbiome enriched in the lactic acid bacteriaRoseburia intestinalis(27.3 %) andEnterococcus hirae(13.8 %). The partial pressure of H2(pH2) was identified by thermodynamic analysis as a fundamental parameter for controlling ethanol oxidation and improving C6 and C7 selectivities.
Collapse
Affiliation(s)
- A Lanfranchi
- INRAE, Univ Montpellier, LBE, 102 Avenue Des Etangs, 11100 Narbonne, France; Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Mestre 30174, Italy.
| | | | - J A Magdalena
- INRAE, Univ Montpellier, LBE, 102 Avenue Des Etangs, 11100 Narbonne, France; Vicerrectorado de Investigación Y Transferencia de La Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - C Cavinato
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia, Mestre 30174, Italy
| | - E Trably
- INRAE, Univ Montpellier, LBE, 102 Avenue Des Etangs, 11100 Narbonne, France
| |
Collapse
|
10
|
Wang C, Wei W, Wu L, Wang Y, Dai X, Ni BJ. A Novel Sustainable and Self-Sufficient Biotechnological Strategy for Directly Transforming Sewage Sludge into High-Value Liquid Biochemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12520-12531. [PMID: 38953238 DOI: 10.1021/acs.est.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.
Collapse
Affiliation(s)
- Chen Wang
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Lan Wu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Sun X, Chen H, Cui T, Zhao L, Wang C, Zhu X, Yang T, Yin Y. Enhanced medium-chain fatty acid production from sewage sludge by combined electro-fermentation and anaerobic fermentation. BIORESOURCE TECHNOLOGY 2024; 404:130917. [PMID: 38824969 DOI: 10.1016/j.biortech.2024.130917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Electro-fermentation (EF) was combined with anaerobic fermentation (AF) to promote medium-chain fatty acid (MCFA) from sewage sludge. Results showed that EF at acidification process significantly increased short-chain fatty acid (SCFA) production of by 0.5 times (82.4 mmol C/L). AF facilitated the chain elongation (CE) process by enhancing the SCFA conversion. Combined EF at acidification and AF at CE (EF-AF) achieved the highest MCFA production of 27.9 mmol C/L, which was 20 %-866 % higher than the other groups. Electrochemical analyses showed that enhanced SCFA and MCFA production was accompanied with good electrochemical performance at acidification and CE. Microbial analyses showed that EF-AF promoted MCFA production by enriching electrochemically active bacteria (EAB, Bacillus sp.). Enzyme analyses indicated that EF-AF promoted MCFA production by enriching the functional enzymes involved in Acetyl-CoA formation and the fatty acid biosynthesis (FAB) pathway. This study provided new insights into the production of MCFA from enhanced sewage sludge.
Collapse
Affiliation(s)
- Xiaoyan Sun
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China; Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Hui Chen
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China
| | - Ting Cui
- Department of Industrial Technology, Sinopec (Beijing) Research Institute of Chemical Industry CO., Ltd., Beijing 100013, PR China
| | - Lei Zhao
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science & Technology, Wuhan 430081, PR China.
| | - Cheng Wang
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Xuejun Zhu
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan 617000, PR China
| | - Tao Yang
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, Sichuan 617000, PR China
| | - Yanan Yin
- Division of Materials Chemistry and New Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
12
|
Liu Y, Duan Y, Chen L, Yang Z, Yang X, Liu S, Song G. Research on the Resource Recovery of Medium-Chain Fatty Acids from Municipal Sludge: Current State and Future Prospects. Microorganisms 2024; 12:680. [PMID: 38674623 PMCID: PMC11051992 DOI: 10.3390/microorganisms12040680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.
Collapse
Affiliation(s)
- Yuhao Liu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (Y.D.); (L.C.); (Z.Y.); (X.Y.); (S.L.); (G.S.)
| | | | | | | | | | | | | |
Collapse
|
13
|
Robles A, Sundar SV, Mohana Rangan S, Delgado AG. Butanol as a major product during ethanol and acetate chain elongation. Front Bioeng Biotechnol 2023; 11:1181983. [PMID: 37274171 PMCID: PMC10233103 DOI: 10.3389/fbioe.2023.1181983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/08/2023] [Indexed: 06/06/2023] Open
Abstract
Chain elongation is a relevant bioprocess in support of a circular economy as it can use a variety of organic feedstocks for production of valuable short and medium chain carboxylates, such as butyrate (C4), caproate (C6), and caprylate (C8). Alcohols, including the biofuel, butanol (C4), can also be generated in chain elongation but the bioreactor conditions that favor butanol production are mainly unknown. In this study we investigated production of butanol (and its precursor butyrate) during ethanol and acetate chain elongation. We used semi-batch bioreactors (0.16 L serum bottles) fed with a range of ethanol concentrations (100-800 mM C), a constant concentration of acetate (50 mM C), and an initial total gas pressure of ∼112 kPa. We showed that the butanol concentration was positively correlated with the ethanol concentration provided (up to 400 mM C ethanol) and to chain elongation activity, which produced H2 and further increased the total gas pressure. In bioreactors fed with 400 mM C ethanol and 50 mM C acetate, a concentration of 114.96 ± 9.26 mM C butanol (∼2.13 g L-1) was achieved after five semi-batch cycles at a total pressure of ∼170 kPa and H2 partial pressure of ∼67 kPa. Bioreactors with 400 mM C ethanol and 50 mM C acetate also yielded a butanol to butyrate molar ratio of 1:1. At the beginning of cycle 8, the total gas pressure was intentionally decreased to ∼112 kPa to test the dependency of butanol production on total pressure and H2 partial pressure. The reduction in total pressure decreased the molar ratio of butanol to butyrate to 1:2 and jolted H2 production out of an apparent stall. Clostridium kluyveri (previously shown to produce butyrate and butanol) and Alistipes (previously linked with butyrate production) were abundant amplicon sequence variants in the bioreactors during the experimental phases, suggesting the microbiome was resilient against changes in bioreactor conditions. The results from this study clearly demonstrate the potential of ethanol and acetate-based chain elongation to yield butanol as a major product. This study also supports the dependency of butanol production on limiting acetate and on high total gas and H2 partial pressures.
Collapse
Affiliation(s)
- Aide Robles
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| | - Skanda Vishnu Sundar
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
| | - Srivatsan Mohana Rangan
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| | - Anca G. Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, United States
- Engineering Research Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
14
|
Ho Ahn J, Hwan Jung K, Seok Lim E, Min Kim S, Ok Han S, Um Y. Recent advances in microbial production of medium chain fatty acid from renewable carbon resources: a comprehensive review. BIORESOURCE TECHNOLOGY 2023; 381:129147. [PMID: 37169199 DOI: 10.1016/j.biortech.2023.129147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Microbial production of medium chain length fatty acids (MCFAs) from renewable resources is becoming increasingly important in establishing a sustainable and clean chemical industry. This review comprehensively summarizes current advances in microbial MCFA production from renewable resources. Detailed information is provided on two major MCFA production pathways using various renewable resources and other auxiliary pathways supporting MCFA production to help understand the fundamentals of bio-based MCFA production. In addition, conventional and well-studied MCFA producers are classified into two categories, natural and synthetic producers, and their characteristics on MCFA production are outlined. Moreover, various engineering strategies employed to achieve the highest MCFAs production up to date are showcased together with key enzymes suggested for MCFA overproduction. Finally, future challenges and perspectives are discussed towards more efficient production of bio-based MCFA production.
Collapse
Affiliation(s)
- Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Kweon Hwan Jung
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea.
| |
Collapse
|
15
|
Jin Y, de Leeuw KD, Strik DPBTB. Microbial Recycling of Bioplastics via Mixed-Culture Fermentation of Hydrolyzed Polyhydroxyalkanoates into Carboxylates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2693. [PMID: 37048987 PMCID: PMC10096456 DOI: 10.3390/ma16072693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Polyhydroxyalkanoates (PHA) polymers are emerging within biobased biodegradable plastic products. To build a circular economy, effective recycling routes should be established for these and other end-of-life bioplastics. This study presents the first steps of a potential PHA recycling route by fermenting hydrolyzed PHA-based bioplastics (Tianan ENMATTM Y1000P; PHBV (poly(3-hydroxybutyrate-co-3-hydroxyvalerate)) into carboxylates acetate and butyrate. First, three different hydrolysis pretreatment methods under acid, base, and neutral pH conditions were tested. The highest 10% (from 158.8 g COD/L to 16.3 g COD/L) of hydrolysate yield was obtained with the alkaline pretreatment. After filtration to remove the remaining solid materials, 4 g COD/L of the hydrolyzed PHA was used as the substrate with the addition of microbial nutrients for mixed culture fermentation. Due to microbial conversion, 1.71 g/L acetate and 1.20 g/L butyrate were produced. An apparent complete bioconversion from intermediates such as 3-hydroxybutyrate (3-HB) and/or crotonate into carboxylates was found. The overall yields of the combined processes were calculated as 0.07 g acetate/g PHA and 0.049 g butyrate/g PHA. These produced carboxylates can theoretically be used to reproduce PHA or serve many other applications as part of the so-called carboxylate platform.
Collapse
Affiliation(s)
- Yong Jin
- Environmental Technology, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (Y.J.); (K.D.d.L.)
| | - Kasper D. de Leeuw
- Environmental Technology, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (Y.J.); (K.D.d.L.)
- ChainCraft B.V., 1043 AP Amsterdam, The Netherlands
| | - David P. B. T. B. Strik
- Environmental Technology, Wageningen University & Research, 6708 WG Wageningen, The Netherlands; (Y.J.); (K.D.d.L.)
| |
Collapse
|
16
|
Zhang C, Liu H, Wu P, Li J, Zhang J. Clostridium kluyveri enhances caproate production by synergistically cooperating with acetogens in mixed microbial community of electro-fermentation system. BIORESOURCE TECHNOLOGY 2023; 369:128436. [PMID: 36470493 DOI: 10.1016/j.biortech.2022.128436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
As a chain elongation (CE) model strain, Clostridium kluyveri has been used in the studies of bioaugmentation of caproate production. However, its application in the novel electro-fermentation CE system for bioaugmentation is still unclear. In this study, the CE performances, with or without bioaugmentation and in conventional or electro-fermentation systems were compared. And the mechanism of electrochemical-bioaugmentation by constructing a co-culture of Acetobacterium woodii and Clostridium kluyveri were further verified. Results demonstrated that the bioaugmentation treatments have better CE performance, especially in electro-fermentation system, with a highest caproate concentration of 4.68 g·L-1. Mechanism analysis revealed that C. kluyveri responded to the electric field and emerged synergy with the acetogens, which was proved by the increases of C. kluyveri colonization and the acetogens abundance in biofilm and supported by the co-culture experiment. This study provides a novel insight of microbial synergy mechanism of C. kluyveri during CE bioaugmentation in electro-fermentation system.
Collapse
Affiliation(s)
- Chao Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, 215011, China.
| | - Ping Wu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Fu B, Lu Y, Liu H, Zhang X, Ozgun H, Ersahin ME, Liu H. One-stage anaerobic fermentation of excess sludge for caproate production by supplementing chain elongation enrichments with ethanol as electron donor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116723. [PMID: 36403461 DOI: 10.1016/j.jenvman.2022.116723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Medium chain fatty acids (MCFAs) production from excess sludge have recently received great research interest due to higher energy densities, easy-separation capability and high economic benefits. Here, the addition of chain elongation (CE) enrichments with ethanol as electron donor was used to enhance caproate production from one-stage sludge fermentation. Compared with 0.20 g/L of controls, caproate production reached 9.00 g/L by supplementing CE enrichments with ethanol/acetate ratio of 3:1 after 7 days of acidification of organic matter in pretreated sludge fermentation. Clostridium_sensu_stricto_12, that refers to CE, was enriched in the first and second transfer of the sludge microbial consortium. Maintaining the stability of the microbial consortium would be the key that enables stable and efficient caproate production from sludge fermentation by supplementing CE enrichments.
Collapse
Affiliation(s)
- Bo Fu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Yujie Lu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hongbo Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Xuedong Zhang
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China
| | - Hale Ozgun
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Mustafa Evren Ersahin
- Istanbul Technical University, Civil Engineering Faculty, Environmental Engineering Department, Ayazaga Campus, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - He Liu
- School of Environmental and Civil Engineering, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China.
| |
Collapse
|
18
|
Wu B, Lin R, Ning X, Kang X, Deng C, Dobson ADW, Murphy JD. An assessment of how the properties of pyrochar and process thermodynamics impact pyrochar mediated microbial chain elongation in steering the production of medium-chain fatty acids towards n-caproate. BIORESOURCE TECHNOLOGY 2022; 358:127294. [PMID: 35550922 DOI: 10.1016/j.biortech.2022.127294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microbial chain elongation fermentation is an alternative technology for medium-chain fatty acid (MCFA) production. This paper proposed the addition of pyrochar and graphene in chain elongation to improve MCFA production using ethanol and acetate as substrates. Results showed that the yield of, and selectivity towards, C6 n-caproate were significantly enhanced with pyrochar addition. At the optimal mass ratio of pyrochar to substrate of 2 g/g, the maximum n-caproate yield of 13.67 g chemical oxygen demand/L and the corresponding selectivity of 56.8% were obtained; this represents an increase of 115% and 128% respectively as compared with no pyrochar addition. Such improvements were postulated as due to the high electrical conductivity and surface redox groups of pyrochar. The optimal ethanol to acetate molar ratio of 2 mol/mol achieved the highest MCFA yield under pyrochar mediated chain elongation conditions. Thermodynamic calculations modelled an energy benefit of 93.50 kJ/mol reaction for pyrochar mediated n-caproate production.
Collapse
Affiliation(s)
- Benteng Wu
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Richen Lin
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 211189, PR China.
| | - Xue Ning
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Xihui Kang
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Chen Deng
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| | - Alan D W Dobson
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; School of Microbiology, University College Cork, Cork T12 K8AF, Ireland
| | - Jerry D Murphy
- MaREI Centre, Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland; Civil, Structural and Environmental Engineering, School of Engineering and Architecture, University College Cork, Cork T12 YN60, Ireland
| |
Collapse
|
19
|
Rovira-Alsina L, Romans-Casas M, Balaguer MD, Puig S. Thermodynamic approach to foresee experimental CO 2 reduction to organic compounds. BIORESOURCE TECHNOLOGY 2022; 354:127181. [PMID: 35447329 DOI: 10.1016/j.biortech.2022.127181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic gas fermentation is a promising approach to transform carbon dioxide (CO2) into chemical building blocks. However, the main operational conditions to enhance the process and its selectivity are still unknown. The main objective of this study was to trigger chain elongation from a joint perspective of thermodynamic and experimental assessment. Thermodynamics revealed that acetic acid formation was the most spontaneous reaction, followed by n-caproic and n-butyric acids, while the doorway for alcohols production was bounded by the selected conditions. Best parameters combinations were applied in three 0.12 L fermenters. Experimentally, n-caproic acid formation was boosted at pH 7, 37 °C, Acetate:Ethanol mass ratio of 1:3 and low H2 partial pressure. Though these conditions did not match with those required to produce their main substrates, the unification of both perspectives yielded the highest n-caproic acid concentration (>11 g L-1) so far from simple substrates, accounting for 77 % of the total products.
Collapse
Affiliation(s)
- Laura Rovira-Alsina
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Meritxell Romans-Casas
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - M Dolors Balaguer
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
| | - Sebastià Puig
- LEQUiA, Institute of the Environment, University of Girona, Campus Montilivi, C/Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain.
| |
Collapse
|
20
|
Wu Q, Jiang Y, Chen Y, Liu M, Bao X, Guo W. Opportunities and challenges in microbial medium chain fatty acids production from waste biomass. BIORESOURCE TECHNOLOGY 2021; 340:125633. [PMID: 34315125 DOI: 10.1016/j.biortech.2021.125633] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Medium chain fatty acids (MCFAs) that produced from affordable waste biomass via chain elongation (CE) technology are recognized as the potential alternatives to part fossil-derived chemicals, contributing to the sustainable development of economy and environment. The purpose of this review is to provide comprehensive analyses on the opportunities and challenges of MCFAs production and application. First, both two microbial MCFAs synthesis pathways of reverse β-oxidation and fatty acid biosynthesis were introduced/compared in detail to give readers a thorough understanding of the CE process, with the expectation of further boosting MCFAs production by well distinguishing them. Furthermore, the six key MCFAs production bottlenecks, corresponding research progresses, and possible solutions were analyzed. Five major MCFAs production strategies with their production mechanism, performances, and characteristics were also critically assessed. Additionally, the commercial production status was introduced, and future alternative production mode and research priorities were also recommended.
Collapse
Affiliation(s)
- Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
21
|
Moerland MJ, Castañares Pérez L, Ruiz Velasco Sobrino ME, Chatzopoulos P, Meulman B, de Wilde V, Zeeman G, Buisman CJN, van Eekert MHA. Thermophilic (55 °C) and hyper-thermophilic (70 °C) anaerobic digestion as novel treatment technologies for concentrated black water. BIORESOURCE TECHNOLOGY 2021; 340:125705. [PMID: 34391186 DOI: 10.1016/j.biortech.2021.125705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic and hyper-thermophilic anaerobic digestion (AD) are promising techniques for the treatment of concentrated black water (toilet fraction of domestic wastewater collected by low flush volume toilets; BW), recovery of nutrients and simultaneous pathogen removal for safe recovery and reuse of those nutrients. This study showed that thermophilic AD (55 °C) of concentrated BW reaches the same methanisation and COD removal as mesophilic anaerobic treatment of BW (conventional vacuum toilets) and kitchen waste while applying a higher loading rate (OLR) (2.5-4.0 kgCOD/m3/day). With a retention time of 8.7 days, and an OLR of >3 kgCOD/m3/day, COD removal of 70% and a methanisation of 62% (based on CODt) was achieved during thermophilic AD. Hyper-thermophilic (70 °C) reached lower levels of methanisation (38%). Start-up time of thermophilic AD was 12 days. And during thermophilic AD, a shift from acetoclastic methanogenesis towards syntrophic acetate oxidation was observed.
Collapse
Affiliation(s)
- Marinus J Moerland
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | - Laura Castañares Pérez
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | - Maria E Ruiz Velasco Sobrino
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | | | - Brendo Meulman
- DeSaH B.V, Pieter Zeemanstraat 6, 8606 JR Sneek, the Netherlands.
| | - Vinnie de Wilde
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | - Grietje Zeeman
- LeAF B.V, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | - Cees J N Buisman
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| | - Miriam H A van Eekert
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6706 WG Wageningen, the Netherlands.
| |
Collapse
|
22
|
He J, Li L, Zhang J, Wu X, Li B, Tang X. Medium chain fatty acids production from simple substrate and waste activated sludge with ethanol as the electron donor. CHEMOSPHERE 2021; 283:131278. [PMID: 34467945 DOI: 10.1016/j.chemosphere.2021.131278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Production of MCFAs (Medium-chain fatty acids) from simple substrate (i.e., ethanol and acetate) and WAS with chain elongation microbiome was investigated in this study. The results showed that rapid production of MCFAs was observed when simple substrate was utilized. 1889 mg/L of caproate and 3434 mg/L of butyrate were achieved after 10 d's reaction. H2 proportion in the headspace could reach as high as 10.1% on day 8 and then declined quickly. However, when WAS was used, the bacterial consortia was not able to hydrolyze WAS efficiently, which resulted in poor MCFAs production performance. Presence of ethanol could improve the hydrolysis process to a limited degree, which resulted in solubilization of a small fraction of protein and carbohydrate. Around 33.8% and 36.9% of the total detected electrons on day 6 in the 50 mM and 100 mM tests were extracted from WAS respectively. Those results indicate that the chain elongation microbial consortia tended to receive electrons form ethanol directly other than the complex WAS.
Collapse
Affiliation(s)
- Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lin Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xuewei Wu
- Guangzhou Sewage Purification CO., LTD, Guangzhou, 510655, China
| | - Biqing Li
- Guangzhou Sewage Purification CO., LTD, Guangzhou, 510655, China
| | - Xia Tang
- Guangzhou Sewage Purification CO., LTD, Guangzhou, 510655, China
| |
Collapse
|
23
|
de Leeuw KD, Ahrens T, Buisman CJN, Strik DPBTB. Open Culture Ethanol-Based Chain Elongation to Form Medium Chain Branched Carboxylates and Alcohols. Front Bioeng Biotechnol 2021; 9:697439. [PMID: 34485254 PMCID: PMC8416115 DOI: 10.3389/fbioe.2021.697439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
Chain elongation fermentation allows for the synthesis of biobased chemicals from complex organic residue streams. To expand the product spectrum of chain elongation technology and its application range we investigated 1) how to increase selectivity towards branched chain elongation and 2) whether alternative branched carboxylates such as branched valerates can be used as electron acceptors. Elongation of isobutyrate elongation towards 4-methyl-pentanoate was achieved with a selectivity of 27% (of total products, based on carbon atoms) in a continuous system that operated under CO2 and acetate limited conditions. Increasing the CO2 load led to more in situ acetate formation that increased overall chain elongation rate but decreased the selectivity of branched chain elongation. A part of this acetate formation was related to direct ethanol oxidation that seemed to be thermodynamically coupled to hydrogenotrophic carboxylate reduction to corresponding alcohols. Several alcohols including isobutanol and n-hexanol were formed. The microbiome from the continuous reactor was also able to form small amounts of 5-methyl-hexanoate likely from 3-methyl-butanoate and ethanol as substrate in batch experiments. The highest achieved concentration of isoheptanoate was 6.4 ± 0.9 mM Carbon, or 118 ± 17 mg/L, which contributed for 7% to the total amount of products (based on carbon atoms). The formation of isoheptanoate was dependent on the isoform of branched valerate. With 3-methyl-butanoate as substrate 5-methylhexanoate was formed, whereas a racemic mixture of L/D 2-methyl-butanoate did not lead to an elongated product. When isobutyrate and isovalerate were added simultaneously as substrates there was a large preference for elongation of isobutyrate over isovalerate. Overall, this work showed that chain elongation microbiomes can be further adapted with supplement of branched-electron acceptors towards the formation of iso-caproate and iso-heptanoate as well as that longer chain alcohol formation can be stimulated.
Collapse
Affiliation(s)
- Kasper D de Leeuw
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Theresa Ahrens
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
24
|
Smit SM, Buisman CJN, Bitter JH, Strik DPBTB. Cyclic Voltammetry is Invasive on Microbial Electrosynthesis. ChemElectroChem 2021. [DOI: 10.1002/celc.202100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sanne M. Smit
- Environmental Technology Wageningen University and Research Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
- Biobased Chemistry and Technology Wageningen University and Research Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Cees J. N. Buisman
- Environmental Technology Wageningen University and Research Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - Johannes H. Bitter
- Biobased Chemistry and Technology Wageningen University and Research Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| | - David P. B. T. B. Strik
- Environmental Technology Wageningen University and Research Axis-Z Bornse Weilanden 9 6708 WG Wageningen The Netherlands
| |
Collapse
|
25
|
Pierangeli GMF, Domingues MR, de Jesus TA, Coelho LHG, Hanisch WS, Pompêo MLM, Saia FT, Gregoracci GB, Benassi RF. Higher Abundance of Sediment Methanogens and Methanotrophs Do Not Predict the Atmospheric Methane and Carbon Dioxide Flows in Eutrophic Tropical Freshwater Reservoirs. Front Microbiol 2021; 12:647921. [PMID: 33815337 PMCID: PMC8010658 DOI: 10.3389/fmicb.2021.647921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/02/2022] Open
Abstract
Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.
Collapse
Affiliation(s)
| | - Mercia Regina Domingues
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Tatiane Araujo de Jesus
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | - Lúcia Helena Gomes Coelho
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| | | | | | | | | | - Roseli Frederigi Benassi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
26
|
Candry P, Ganigué R. Chain elongators, friends, and foes. Curr Opin Biotechnol 2021; 67:99-110. [PMID: 33529974 DOI: 10.1016/j.copbio.2021.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022]
Abstract
Bioproduction of medium chain carboxylic acids has recently emerged as an alternative strategy to valorize low-value organic waste and side-streams. Key to this route is chain elongation, an anaerobic microbial process driven by ethanol, lactic acid, or carbohydrates. Because these technologies use wastes as feedstocks, mixed microbial communities are often considered as biocatalysts. Understanding and steering these microbiomes is key to optimize bioprocess performance. From a meta-analysis of publicly available sequencing data, we (i) explore how the current collection of isolated chain elongators compares to microbiome members, (ii) discuss the main beneficial and antagonistic interactions with community partners, and (iii) identify the key research gaps and needs to help understand chain elongation microbiomes, and design/steer these novel bioproduction processes.
Collapse
Affiliation(s)
- Pieter Candry
- Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700, USA
| | - Ramon Ganigué
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
27
|
Wu Q, Feng X, Chen Y, Liu M, Bao X. Continuous medium chain carboxylic acids production from excess sludge by granular chain-elongation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123471. [PMID: 32693336 DOI: 10.1016/j.jhazmat.2020.123471] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Short chain carboxylic acids (SCCAs) production is one of the primary ways to recycle excess sludge (ES). However, the high cost for the SCCAs separation/extraction due to its complete miscibility in water hinders the practical application of SCCAs and the popularization of this recycling way. To overcome this barrier, this study performed an emerging chain elongation (CE) technology to upgrade the SCCAs-rich sludge fermentation broth into the highly hydrophobic medium chain carboxylic acids (MCCAs). In a continuous expanded granule sludge bed (EGSB) reactor, a maximal MCCAs yield of 67.39 % and the corresponding concentration of 9.80 g COD/L (224.97 mM C/L) were achieved. By supplying CO2 at a loading rate of 2 [Formula: see text] to lower the hydrogen partial pressure, the ethanol utilization rate and the resulting MCCAs yield were further improved. In addition, three branched-MCCAs including iso-caproate, iso-heptylate, and iso-caprylate were obtained the first time from waste biomass with the average proportions of 6.17 %, 3.65 %, and 0.8 %, respectively. The branched-MCCAs came from the CE of branched-SCCAs. The granule sludges performing CE were mainly consisted of rod-shaped cells, and dominated by Clostridium sensu stricto and Clostridium IV. This study is expected to lay a foundation for recycling ES to MCCAs.
Collapse
Affiliation(s)
- Qinglian Wu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xian Bao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
28
|
Liu B, Popp D, Müller N, Sträuber H, Harms H, Kleinsteuber S. Three Novel Clostridia Isolates Produce n-Caproate and iso-Butyrate from Lactate: Comparative Genomics of Chain-Elongating Bacteria. Microorganisms 2020; 8:microorganisms8121970. [PMID: 33322390 PMCID: PMC7764203 DOI: 10.3390/microorganisms8121970] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The platform chemicals n-caproate and iso-butyrate can be produced by anaerobic fermentation from agro-industrial residues in a process known as microbial chain elongation. Few lactate-consuming chain-elongating species have been isolated and knowledge on their shared genetic features is still limited. Recently we isolated three novel clostridial strains (BL-3, BL-4, and BL-6) that convert lactate to n-caproate and iso-butyrate. Here, we analyzed the genetic background of lactate-based chain elongation in these isolates and other chain-elongating species by comparative genomics. The three strains produced n-caproate, n-butyrate, iso-butyrate, and acetate from lactate, with the highest proportions of n-caproate (18%) for BL-6 and of iso-butyrate (23%) for BL-4 in batch cultivation at pH 5.5. They show high genomic heterogeneity and a relatively small core-genome size. The genomes contain highly conserved genes involved in lactate oxidation, reverse β-oxidation, hydrogen formation and either of two types of energy conservation systems (Rnf and Ech). Including genomes of another eleven experimentally validated chain-elongating strains, we found that the chain elongation-specific core-genome encodes the pathways for reverse β-oxidation, hydrogen formation and energy conservation, while displaying substantial genome heterogeneity. Metabolic features of these isolates are important for biotechnological applications in n-caproate and iso-butyrate production.
Collapse
Affiliation(s)
- Bin Liu
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (B.L.); (D.P.); (H.S.); (H.H.)
| | - Denny Popp
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (B.L.); (D.P.); (H.S.); (H.H.)
| | - Nicolai Müller
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany;
| | - Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (B.L.); (D.P.); (H.S.); (H.H.)
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (B.L.); (D.P.); (H.S.); (H.H.)
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (B.L.); (D.P.); (H.S.); (H.H.)
- Correspondence: ; Tel.: +49-341-235-1325
| |
Collapse
|
29
|
Fermentation of organic wastes and CO2 + H2 off-gas by microbiotas provides short-chain fatty acids and ethanol for n-caproate production. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Chen WS, Huang S, Plugge CM, Buisman CJN, Strik DPBTB. Concurrent use of methanol and ethanol for chain-elongating short chain fatty acids into caproate and isobutyrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 258:110008. [PMID: 31929052 DOI: 10.1016/j.jenvman.2019.110008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/07/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Microbial chain elongation (MCE) is a bioprocess that could utilise a mixed-culture fermentation to valorise organic waste. MCE converting ethanol and short chain fatty acids (SCFA; derived from organic waste) to caproate has been studied extensively and implemented. Recent studies demonstrated the conversion of SCFAs and methanol or ethanol into isomerised fatty acids as novel products, which may expand the MCE application and market. Integrating caproate and isomerised fatty acid production in one reactor system is theoretically feasible given the employment of a mixed culture and may increase the economic competence of MCE; however, the feasibility of such has never been demonstrated. This study investigated the feasibility of using two electron donors, i.e. methanol and ethanol, for upgrading SCFAs into isobutyrate and caproate concurrently in MCE Results show that supplying methanol and ethanol in MCE simultaneously converted acetate and/or butyrate into caproate and isobutyrate, by a mixed-culture microbiome. The butyrate supplement stimulated the caproate production rate from 1.5 to 2.6 g/L.day and induced isobutyrate production (1.5 g/L.day). Further increasing ethanol feeding rate from 140 to 280 mmol carbon per litre per day enhanced the direct use of butyrate for caproate production, which improved the caproate production rate to 5.9 g/L.day. Overall, the integration of two electron donors, i.e. ethanol and methanol, in one chain-elongation reactor system for upgrading SCFAs was demonstrated. As such, MCE could be applied to valorise organic waste (water) streams into a wider variety of value-added biochemical.
Collapse
Affiliation(s)
- Wei-Shan Chen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Shengle Huang
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708, WE, Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
| | - David P B T B Strik
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands.
| |
Collapse
|
31
|
Duong TH, Grolle K, Nga TTV, Zeeman G, Temmink H, van Eekert M. Protein hydrolysis and fermentation under methanogenic and acidifying conditions. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:254. [PMID: 31673289 PMCID: PMC6815036 DOI: 10.1186/s13068-019-1592-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Many kinds of wastewaters contain appreciable quantities of protein. Anaerobic processes are suitable for the treatment of wastewater high in organics to achieve pollution control and recovery of energy as methane and hydrogen, or intermediates for production of biofuels and valuable biochemicals. A distinction between protein hydrolysis and amino acid fermentation, especially for dissolved proteins, is needed to target which one is truly rate-limiting and to effectively harvest bioproducts during anaerobic conversion of these wastewaters. This study explored mesophilic anaerobic hydrolysis and amino acid fermentation of gelatine, as a model for dissolved proteins, at pH 7 and at pH 5. RESULTS The results showed that at pH 7, protein hydrolysis (first-order rate of 0.15 h-1) was approximately 5 times faster than acidification of the hydrolysis products (first-order rate of 0.03 h-1), implying that not hydrolysis but acidification was the rate-limiting step in anaerobic dissolved protein degradation. This was confirmed by (temporary) accumulation of amino acids. Nineteen different amino acids were detected during the first 8 incubation hours of gelatine at neutral pH and the total chemical oxygen demand (COD) of these 19 amino acids was up to approximately 40% of the COD of the gelatine that was added. Protein hydrolysis at pH 5 was 2-25 times slower than at pH 7. Shifting the initial pH from neutral to acidic conditions (pH 5) inhibited protein degradation and changed the volatile fatty acids (VFA) product profile. Furthermore, the presence or absence of methanogenic activity did not affect the rates of protein hydrolysis and acidification. CONCLUSIONS The findings in this study can help to set a suitable solid retention time to accomplish anaerobic degradation of protein-rich wastewaters in continuous reactor systems. For example, if the target is harvesting VFAs, methanogens can be washed-out for a shorter retention time while amino acid fermentation, instead of hydrolysis as assumed previously, will govern the design and solutions to improve the system dealing with dissolved proteins.
Collapse
Affiliation(s)
- Thu Hang Duong
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- Faculty of Environmental Engineering, National University of Civil Engineering, 55 Giai Phong, Hanoi, Vietnam
| | - Katja Grolle
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Tran Thi Viet Nga
- Faculty of Environmental Engineering, National University of Civil Engineering, 55 Giai Phong, Hanoi, Vietnam
| | - Grietje Zeeman
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- LeAF BV, PO Box 500, 6700 AM Wageningen, The Netherlands
| | - Hardy Temmink
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Miriam van Eekert
- Department of Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
- LeAF BV, PO Box 500, 6700 AM Wageningen, The Netherlands
| |
Collapse
|
32
|
Syngas-aided anaerobic fermentation for medium-chain carboxylate and alcohol production: the case for microbial communities. Appl Microbiol Biotechnol 2019; 103:8689-8709. [PMID: 31612269 DOI: 10.1007/s00253-019-10086-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Syngas fermentation has been successfully implemented in commercial-scale plants and can enable the biochemical conversion of the driest fractions of biomass through synthesis gas (H2, CO2, and CO). The process relies on optimized acetogenic strains able to reach and maintain high productivity of ethanol and acetate. In parallel, microbial communities have shown to be the best choice for the production of valuable medium-chain carboxylates through anaerobic fermentation of biomass, demanding low technical complexity and being able to realize simultaneous hydrolysis of the substrate. Each of the two technologies benefits from different strong points and has different challenges to overcome. This review discusses the rationales for merging these two seemingly disparate technologies by analyzing previous studies and drawing opinions based on the lessons learned from such studies. For keeping the technical demands of the resulting process low, a case is built for using microbial communities instead of pure strains. For that to occur, a shift from conventional syngas-based to "syngas-aided" anaerobic fermentation is suggested. Strategies for tackling the intricacies of working simultaneously with communities and syngas, such as competing pathways, and thermodynamic aspects are discussed as well as the stoichiometry and economic feasibility of the concept. Overall, syngas-aided anaerobic fermentation seems to be a promising concept for the biorefinery of the future. However, the effects of process parameters on microbial interactions have to be understood in greater detail, in order to achieve and sustain feasible medium-chain carboxylate and alcohol productivity.
Collapse
|