1
|
Yao J, Li Y, An L, Wang P, Liu D, Ma J, Wang A, Wang W. Tolerant and highly-permeable membrane aerated biofilm reactor enabled by selective armored membrane. WATER RESEARCH 2025; 278:123337. [PMID: 40043581 DOI: 10.1016/j.watres.2025.123337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/19/2025] [Indexed: 04/14/2025]
Abstract
Membrane aerated biofilm reactor (MABR) is a promising technology for dramatically reducing aeration energy consumption in wastewater treatment. However, the crucial membranes, including microporous hydrophobic membranes and dense membranes, are intolerant to fouling and possess high oxygen transfer resistance respectively, hindering their application potential. Herein, we developed a tolerant and highly-permeable membrane aerated biofilm reactor (THMABR) with a selective armor layer on the membrane to support the biofilm. The selective permeability of the selective armor layer enabled oxygen transfer efficiently and prevented interference by water, surfactant and microbial extracellular polymers. Besides, the composite of the 5 μm selective armor layer and microporous support significantly shortened the distance for solution-diffusion, reducing the transmembrane energy barrier of oxygen molecules. The THMABR's excellent and stable oxygen permeability solved the oxygen substrate concentration's limitation on oxidation rate, enabling functional bacteria to possess a higher oxidation potential and more abundant ecological niche. Based on the novel design, oxygen selective armor membrane (OSAM) performed notably higher oxygen transfer rates (9.61 gO2·m-2d-1) compared to the fouled microporous hydrophobic membrane (3.31 gO2·m-2d-1) and the dense membrane (4.04 gO2·m-2d-1). Besides, the OSAM exhibited more stable fouling resistance to water infiltration and pollutant intrusion compared to the microporous hydrophobic membrane after surfactant pretreatment. Municipal wastewater treatment tests further confirmed that the novel membrane support-selective armored layer-biofilm structure of THMABR can high-efficiently remove nitrogen. The structural characteristics, mechanisms of fouling resistance and oxygen transfer, as well as wastewater treatment performance of the THMABR and OSAM are discussed in detail. This work introduces a new design concept to overcome the bottleneck of traditional MABRs involving the disunity of tolerance and permeability, being expected to support the low-carbon and stable operation of wastewater biological treatment.
Collapse
Affiliation(s)
- Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuchen Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peizhi Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongqing Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Zheng J, Jiang M, Chen Y, Zhang Y, Wei Q, Chen M, Zhang X, Zhang X, Li H. Hollow fiber layout matters the denitrification performance and mechanism of H 2-based membrane biofilm reactor: A comprehensive study of hydrodynamics, bioecology and biokinetics. WATER RESEARCH 2025; 281:123708. [PMID: 40315761 DOI: 10.1016/j.watres.2025.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/01/2025] [Accepted: 04/21/2025] [Indexed: 05/04/2025]
Abstract
As a promising technology for water treatment, the decontamination performance of membrane-biofilm reactor (MBfR) is largely affected by its flow distribution, which regulates the biofilm structure and activity. Herein, we firstly optimized the hydraulic conditions to ameliorate the denitrification performance of H2-based MBfR through a rational design of hollow fiber membrane (HFM) layout. Two MBfRs, assembled by bundled and dispersed modules (termed as B-MBfR and D-MBfR, respectively), were constructed to investigate their process performance and mechanism, from a multi-perspective analysis of flow characteristics, biofilm ecology and microbial kinetics. The results indicated that as the HFM spacing was enlarged from 0 to 4 mm, the shift of flow distribution from bias flow to homogeneous flow occured, leading to the development of annular biofilm and individual biofilms in B-MBfR and D-MBfR, respectively. The superior denitrification flux was attained by D-MBfR instead of B-MBfR (1.1 vs. 0.58 g N/m2·d) in long-term experiments, and so were the denitrification kinetics rates of the former in short-term tests. The biofilms in D-MBfR exhibited the stronger anti-shear capacity over annular biofilm, due to their more uniform distribution of proteins and polysaccharides. Benefiting from the thinner thicknesses of biofilms and narrowed hydrodynamic boundary layer, D-MBfR enabled the greater abundance and metabolic activity of hydrogenotrophic denitrifying bacteria than B-MBfR, which then resulted in the almost full exploitation of H2 and NO3-. The findings of this research can provide important scientific foundation for future design and management of MBfRs.
Collapse
Affiliation(s)
- Junjian Zheng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Minmin Jiang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yuchao Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China.
| | - Yuanyuan Zhang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Qiaoyan Wei
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China
| | - Mei Chen
- School of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xingran Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin 541004, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control (Guilin University of Technology), Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China.
| |
Collapse
|
3
|
Shi D, Liu T. Versatile Gas-Transfer Membrane in Water and Wastewater Treatment: Principles, Opportunities, and Challenges. ACS ENVIRONMENTAL AU 2025; 5:152-164. [PMID: 40125285 PMCID: PMC11926753 DOI: 10.1021/acsenvironau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Technologies using liquid-transfer membranes, such as microfiltration, ultrafiltration, and reverse osmosis, have been widely applied in water and wastewater treatment. In the last few decades, gas-transfer membranes have been introduced in various fields to facilitate mass transfer, in which gaseous compounds permeate through membrane pores driven by gradients in chemical concentration or potential. A notable knowledge gap exists among researchers working on these emerging gas-transfer membranes as they approach this subject from different angles and areas of expertise (e.g., material science versus microbiology). This review explores the versatile applications of gas-transfer membranes in water and wastewater treatment, categorizing them into three primary types according to the function of membranes: water vapor transferring, gaseous reactant supplying, and gaseous compound extraction. For each type, the principles, evolution, and potential for further development were elaborated. Moreover, this review highlights the potential knowledge transfer between different fields, as insights from one type of gas-transfer membrane could potentially benefit another. Despite their technical innovations, these processes still face challenges in practical operation, such as membrane fouling and wetting. We advocate for research focusing on more practical and sustainable membranes and careful consideration of these emerging membrane technologies in specific scenarios. The current practicality and maturity of these emerging processes in water and wastewater treatment are described by the Technology Readiness Level (TRL) framework. Particularly, ongoing fundamental progress in membranes and engineering is expected to continue fueling the future development of these technologies.
Collapse
Affiliation(s)
- Danting Shi
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Tao Liu
- Department of Civil and Environmental
Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| |
Collapse
|
4
|
Qiu Y, Zhang T, Zhang P. Micro/nano plastics inhibit the formation of barium sulfate scale on metal surface. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136151. [PMID: 39426152 DOI: 10.1016/j.jhazmat.2024.136151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Mineral scale (scale) is the crystalline inorganic precipitate from aqueous solution. Scale formation in pipelines has long been a challenge in various industrial systems. Micro/nano plastics (MNPs) have the potential to strongly influence scale formation process. However, comprehensive studies and mechanistic understanding of the interactions between MNPs and scales remain significantly underexplored. To fill this gap, we firstly adopted quartz crystal microbalance with dissipation (QCM-D) technology to monitor the in situ formation of barium sulfate (BaSO4) (0.001 M, saturation index 2.5) scale influenced by MNPs on metal surfaces. Microplastic (MP) (5 µm)-loaded surface exhibits hydrophobicity (contact angle > 123.1º), which reduces the rate of scale formation (90.86 ± 11.01 (ng cm-2 min-1)). Electrostatic repulsion impeded crystal growth while ion adsorption has a limited effect. Experiments on BaSO4 formation on metal pipes loaded with foam packaging debris were conducted over 30 days, and similar inhibition results were obtained. This study highlights the important role of MNPs in controlling heterogeneous nucleation and crystal growth of scale on metal surfaces, providing valuable insights for both MNPs and scale research.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao.
| |
Collapse
|
5
|
Luo J, Zhao C, Huang W, Wang F, Fang F, Su L, Wang D, Wu Y. A holistic valorization of treasured waste activated sludge for directional high-valued products recovery: Routes, key technologies and challenges. ENVIRONMENTAL RESEARCH 2024; 262:119904. [PMID: 39270963 DOI: 10.1016/j.envres.2024.119904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Global energy shortages and environmental crises underscore the imperative for a circular economy to tackle resource scarcity and waste management. The circular economy model encourages the recovery and reuse of valuable materials, reducing reliance on finite natural resources and lessening the environmental impact of waste disposal. Among urban organic solid wastes, waste activated sludge (WAS) emerges as a potent reservoir of untapped resources (including various inorganic and organic ones) offering significant potential for recovery. This review delves into a comprehensive analysis of directional valorization of WAS to recover high-valued products, including the inorganic matters (i.e. phosphorus, ammonia nitrogen, and heavy metals), organic resources (i.e. extracellular polymers like alginate and protein, volatile fatty acid, methane, hydrogen, and plant growth hormones) and reutilization of WAS residues for the preparation of adsorbent materials - the biochar. Moreover, the main recovery methodologies associated influencing parameters, product application, and attendant challenges for those diverse recovered resources are unveiled. Future research are encouraged to prioritize the development of integrated multi-resource recovery approaches, the establishment of regulatory frameworks to support resource recovery and product utilization, and the systematic evaluation of disposal strategies to foster a more sustainable and resource-efficient future. This work illuminates avenues for sustainable WAS management with high-valued resource recovery towards circular economy.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Chenxin Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Feng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing, 210098, China; College of Environment, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
6
|
Yin S, Guan Z, Zhu Y, Guo D, Chen X, Wang S. Highly Efficient Electrocatalytic Nitrate Reduction to Ammonia: Group VIII-Based Catalysts. ACS NANO 2024; 18:27833-27852. [PMID: 39365283 DOI: 10.1021/acsnano.4c09247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The accumulation of nitrates in the environment causes serious health and environmental problems. The electrochemical nitrate reduction reaction (e-NO3RR) has received attention for its ability to convert nitrate to value-added ammonia with renewable energy. The key to effective catalytic efficiency is the choice of materials. Group VIII-based catalysts demonstrate great potential for application in e-NO3RR because of their high activity, low cost, and good electron transfer capability. This review summarizes the Group VIII catalysts, including monatomic, bimetallic, oxides, phosphides, and other composites. On this basis, strategies to enhance the intrinsic activity of the catalysts through coordination environment modulation, synergistic effects, defect engineering and hybridization are discussed. Meanwhile, the ammonia recovery process is summarized. Finally, the current research status in this field is prospected and summarized. This review aims to realize the large-scale application of nitrate electrocatalytic reduction in industrial wastewater.
Collapse
Affiliation(s)
- Shiyue Yin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhixi Guan
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuchuan Zhu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Daying Guo
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xi'an Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Wang Z, Zhang J, Zhang Z, Zhang Q, Deng B, Zhang N, Cao Z, Wei G, Xia S. Gas permeable membrane electrode assembly with in situ utilization of authigenic acid and base for transmembrane electro-chemisorption to enhance ammonia recovery from wastewater. WATER RESEARCH 2024; 258:121655. [PMID: 38762914 DOI: 10.1016/j.watres.2024.121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Ammonia recovery from wastewater is of great significance for aquatic ecology safety, human health and carbon emissions reduction. Electrochemical methods have gained increasing attention since the authigenic base and acid of electrochemical systems can be used as stripper and absorbent for transmembrane chemisorption of ammonia, respectively. However, the separation of electrodes and gas permeable membrane (GPM) significantly restricts the ammonia transfer-transformation process and the authigenic acid-base utilization. To break the restrictions, this study developed a gas permeable membrane electrode assembly (GPMEA), which innovatively integrated anode and cathode on each side of GPM through easy phase inversion of polyvinylidene fluoride binder, respectively. With the GPMEA assembled in a stacked transmembrane electro-chemisorption (sTMECS) system, in situ utilization of authigenic acid and base for transmembrane electro-chemisorption of ammonia was achieved to enhance the ammonia recovery from wastewater. At current density of 60 A/m2, the transmembrane ammonia flux of the GPMEA was 693.0 ± 15.0 g N/(m2·d), which was 86 % and 28 % higher than those of separate GPM and membrane cathode, respectively. The specific energy consumption of the GPMEA was 9.7∼16.1 kWh/kg N, which were about 50 % and 25 % lower than that of separate GPM and membrane cathode, respectively. Moreover, the application of GPMEA in the ammonia recovery from wastewater is easy to scale up in the sTMECS system. Accordingly, with the features of excellent performance, energy saving and easy scale-up, the GPMEA showed good prospects in electrochemical ammonia recovery from wastewater.
Collapse
Affiliation(s)
- Zuobin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Dredging Technology and Equipment, Key Laboratory of Dredging Technology, CCCC, Shanghai 200082, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiao Zhang
- School of Municipal and Ecological Engineering, Shanghai Urban Construction Vocational College, Shanghai 200432, China
| | - Zhiqiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingbo Zhang
- National Engineering Research Center of Dredging Technology and Equipment, Key Laboratory of Dredging Technology, CCCC, Shanghai 200082, China
| | - Beiqi Deng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Nan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhiyong Cao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
8
|
Wang R, Liu H, Wang Z, Zhao J, Lv Z, Qi Y, Yu Y, Sun S. Synergistic Interaction of Ionic Liquid Grafted Poly(vinylidene Fluoride) and Carbon Nanotubes to Construct Water Treatment Membranes with Multiple Separation Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11903-11913. [PMID: 38813993 DOI: 10.1021/acs.langmuir.3c03913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
In this study, the dual strategy of 1-butyl-3-vinylimidazolium bromide ionic liquid (IL) grafting and carbon nanotubes (CNTs) nanocomposition was applied to modify poly(vinylidene fluoride) (PVDF)-based membranes. The highly hydrophilic/oleophobic and fouling-resistant PVDF-g-IL/CNTs membranes with excellent separation efficiency were obtained by the nonsolvent-induced phase separation method with ethanol-water mixed solution as the coagulation bath. The grafted IL not only generated hydrophilic groups on PVDF chains but also acted together with the CNTs to induce the formation of hydrophilic β-crystalline phase of PVDF, which significantly improved the hydrophilicity and pore structure of the modified PVDF membranes. As a result, the pure water flux of the optimal membrane increased up to 294.2 L m-2 h-1, which was 5.2 times greater than that of the pure PVDF membrane. Simultaneously, the electrostatic interaction of the positive IL and the integration of CNTs enhanced adsorption sites of the membranes, producing exceptional retention and adsorption of dye wastewater and oil-water emulsion. This study presents a straightforward and efficient approach for fabricating PVDF separation membranes, which have potential applications in the purification of various polluted wastewater.
Collapse
Affiliation(s)
- Ruijia Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Hongxu Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Zicheng Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Jingxuan Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Ziwei Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yuchao Qi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Yang Yu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shulin Sun
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
9
|
Yang M, Zhu JJ, McGaughey AL, Priestley RD, Hoek EMV, Jassby D, Ren ZJ. Machine Learning for Polymer Design to Enhance Pervaporation-Based Organic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10128-10139. [PMID: 38743597 DOI: 10.1021/acs.est.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pervaporation (PV) is an effective membrane separation process for organic dehydration, recovery, and upgrading. However, it is crucial to improve membrane materials beyond the current permeability-selectivity trade-off. In this research, we introduce machine learning (ML) models to identify high-potential polymers, greatly improving the efficiency and reducing cost compared to conventional trial-and-error approach. We utilized the largest PV data set to date and incorporated polymer fingerprints and features, including membrane structure, operating conditions, and solute properties. Dimensionality reduction, missing data treatment, seed randomness, and data leakage management were employed to ensure model robustness. The optimized LightGBM models achieved RMSE of 0.447 and 0.360 for separation factor and total flux, respectively (logarithmic scale). Screening approximately 1 million hypothetical polymers with ML models resulted in identifying polymers with a predicted permeation separation index >30 and synthetic accessibility score <3.7 for acetic acid extraction. This study demonstrates the promise of ML to accelerate tailored membrane designs.
Collapse
Affiliation(s)
- Meiqi Yang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Jun-Jie Zhu
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Allyson L McGaughey
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Rodney D Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - David Jassby
- Department of Civil & Environmental Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Zhang Z, Huang Z, Li H, Wang D, Yao Y, Dong K. Impact of Nitrate on the Removal of Pollutants from Water in Reducing Gas-Based Membrane Biofilm Reactors: A Review. MEMBRANES 2024; 14:109. [PMID: 38786943 PMCID: PMC11123063 DOI: 10.3390/membranes14050109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
The membrane biofilm reactor (MBfR) is a novel wastewater treatment technology, garnering attention due to its high gas utilization rate and effective pollutant removal capability. This paper outlines the working mechanism, advantages, and disadvantages of MBfR, and the denitrification pathways, assessing the efficacy of MBfR in removing oxidized pollutants (sulfate (SO4-), perchlorate (ClO4-)), heavy metal ions (chromates (Cr(VI)), selenates (Se(VI))), and organic pollutants (tetracycline (TC), p-chloronitrobenzene (p-CNB)), and delves into the role of related microorganisms. Specifically, through the addition of nitrates (NO3-), this paper analyzes its impact on the removal efficiency of other pollutants and explores the changes in microbial communities. The results of the study show that NO3- inhibits the removal of other pollutants (oxidizing pollutants, heavy metal ions and organic pollutants), etc., in the simultaneous removal of multiple pollutants by MBfR.
Collapse
Affiliation(s)
- Zhiheng Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Zhian Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
| | - Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China; (Z.Z.); (Z.H.); (H.L.); (D.W.)
- Guangxi Collaborative Innovation Center for Water Pollution Control and Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
11
|
Gao J, Ma Q, Zhang Y, Xue S, Young J, Zhao M, Ren ZJ, Kim JH, Zhang W. Coupling Curvature and Hydrophobicity: A Counterintuitive Strategy for Efficient Electroreduction of Nitrate into Ammonia. ACS NANO 2024; 18:10302-10311. [PMID: 38537206 DOI: 10.1021/acsnano.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The electrochemical upcycling of nitrate (NO3-) to ammonia (NH3) holds promise for synergizing both wastewater treatment and NH3 synthesis. Efficient stripping of gaseous products (NH3, H2, and N2) from electrocatalysts is crucial for continuous and stable electrochemical reactions. This study evaluated a layered electrocatalyst structure using copper (Cu) dendrites to enable a high curvature and hydrophobicity and achieve a stratified liquid contact at the gas-liquid interface of the electrocatalyst layer. As such, gaseous product desorption or displacement from electrocatalysts was enhanced due to the separation of a wetted reaction zone and a nonwetted zone for gas transfer. Consequently, this electrocatalyst structure yielded a 2.9-fold boost in per-active-site activity compared with that with a low curvature and high hydrophilic counterpart. Moreover, a NH3 Faradaic efficiency of 90.9 ± 2.3% was achieved with nearly 100% NO3- conversion. This high-curvature hydrophobic Cu dendrite was further integrated with a gas-extraction membrane, which demonstrated a comparable NH3 yield from the real reverse osmosis retentate brine.
Collapse
Affiliation(s)
- Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yihan Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shan Xue
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
12
|
Wang H, Yang J, Zhang H, Zhao J, Liu H, Wang J, Li G, Liang H. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168277. [PMID: 37939956 DOI: 10.1016/j.scitotenv.2023.168277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
In this review, the application of membrane-based technology in water social circulation was summarized. Water social circulation encompassed the entire process from the acquirement to discharge of water from natural environment for human living and development. The focus of this review was primarily on the membrane-based technology in recovery of water and other valuable resources such as mineral ions, nitrogen and phosphorus. The main text was divided into four main sections according to water flow in the social circulation: drinking water treatment, agricultural utilization, industrial waste recycling, and urban wastewater reuse. In drinking water treatment, the acquirement of water resources was of the most importance. Pressure-driven membranes, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) were considered suitable in natural surface water treatment. Additionally, electrodialysis (ED) and membrane capacitive deionization (MCDI) were also effective in brackish water desalination. Agriculture required abundant water with relative low quality for irrigation. Therefore, the recovery of water from other stages of the social circulation has become a reasonable solution. Membrane bioreactor (MBR) was a typical technique attributed to low-toxicity effluent. In industrial waste reuse, the osmosis membranes (FO and PRO) were utilized due to the complex physical and chemical properties of industrial wastewater. Especially, membrane distillation (MD) might be promising when the wastewater was preheated. Resources recovery in urban wastewater was mainly divided into recovery of bioenergy (via anaerobic membrane bioreactors, AnMBR), nitrogen (utilizing MD and gas-permeable membrane), and phosphorus (through MBR with chemical precipitation). Furthermore, hybrid/integrated systems with membranes as the core component enhanced their performance and long-term working ability in utilization. Generally, concentrate management and energy consumption control might be the key areas for future advancements of membrane-based technology.
Collapse
Affiliation(s)
- Hesong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jiaxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Han Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Hongzhi Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jinlong Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
13
|
Chen C, Lu L, Fei L, Xu J, Wang B, Li B, Shen L, Lin H. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166220. [PMID: 37591402 DOI: 10.1016/j.scitotenv.2023.166220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
The integration of catalytic degradation and membrane separation processes not only enables continuous degradation of contaminants but also effectively alleviates inevitable membrane fouling, demonstrating fascinating practical value for efficient water purification. Such membrane-catalysis integrated system (MCIS) has attracted tremendous research interest from scientists in chemical engineering and environmental science recently. In this review, the advantages of MCIS are discussed, including the membrane structure regulation, stable catalyst loading, nano-confinement effect, and efficient natural organic matter (NOM) exclusion, highlighting the synergistic effect between membrane separation and catalytic process. Subsequently, the design considerations for the fabrication of catalytic membranes, including substrate membrane, catalytic material, and fabrication method, are comprehensively summarized. Afterward, the mechanisms and performance of MCIS based on different catalytic types, including liquid-phase oxidants/reductants involved MCIS, gas involved MCIS, photocatalysis involved MCIS, and electrocatalysis involved MCIS are reviewed in detail. Finally, the research direction and future perspectives of catalytic membranes for water purification are proposed. The current review provides an in-depth understanding of the design of catalytic membranes and facilitates their further development for practical applications in efficient water purification.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University Jinhua, 321004, China.
| |
Collapse
|
14
|
Wang Z, Li K, Guo J, Liu H, Zhang Y, Dang P, Wang J. Enhanced Mass Transfer of Ozone and Emerging Pollutants through a Gas-Solid-Liquid Reaction Interface for Efficient Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18647-18657. [PMID: 36722492 DOI: 10.1021/acs.est.2c07688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ozone (O3), as an environmentally friendly oxidant, is widely used to remove emerging pollutants and ensure the safety of the water supply, whereas the restricted accessibility of O3 and limited collision frequency between pollutants and O3 will inevitably reduce the ozonation efficiency. To promote the chemical reactions between O3 and target pollutants, here we developed a novel gas-solid-liquid reaction interface dominated triphase ozonation system using a functional hydrophobic membrane with an adsorption layer as the O3 distributor and place where chemical reactions occurred. In the triphase system, the functional hydrophobic membrane simultaneously improved the interface adsorption performance of emerging pollutants and the access pathway of O3, leading to a marked enhancement of interfacial pollutant concentration and O3 levels. These synergistic qualities result in high ciprofloxacin (CIP) removal efficiency (94.39%) and fast apparent reaction rate constant (kapp, 2.75 × 10-2 min-1) versus a traditional O3 process (41.82% and 0.48 × 10-2 min-1, respectively). In addition, this triphase system was an advanced oxidation process involving radical participation and showed excellent degradation performance of multiple emerging pollutants. Our findings highlight the importance of gas-solid-liquid triphase reaction interface design and provide new insight into the efficient removal of emerging pollutants by the ozonation process.
Collapse
Affiliation(s)
- Zhiyong Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Kuiling Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Jingjing Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Hongxin Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Yong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| | - Ping Dang
- Inner Mongolia Jiuke Kangrui Environmental Protection Technology Co., LTD.North Boerdong Avenue, Equipment Manufacturing Base, Dongsheng District, Ordos, Inner Mongolia017000, China
| | - Jun Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing100049, China
| |
Collapse
|
15
|
Im S, Jung B, Wang X, Wu J, Xiao M, Chen X, Quezada-Renteria JA, Iddya A, Dlamini D, Lu S, Maravelias CT, Ren ZJ, Hoek EMV, Jassby D. High-Efficiency Recovery of Acetic Acid from Water Using Electroactive Gas-Stripping Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37368842 DOI: 10.1021/acs.est.3c01357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Recovery of carbon-based resources from waste is a critical need for achieving carbon neutrality and reducing fossil carbon extraction. We demonstrate a new approach for extracting volatile fatty acids (VFAs) using a multifunctional direct heated and pH swing membrane contactor. The membrane is a multilayer laminate composed of a carbon fiber (CF) bound to a hydrophobic membrane and sealed with a layer of polydimethylsiloxane (PDMS); this CF is used as a resistive heater to provide a thermal driving force for PDMS that, while a highly hydrophobic material, is known for its ability to rapidly pass gases, including water vapor. The transport mechanism for gas transport involves the diffusion of molecules through the free volume of the polymer matrix. CF coated with polyaniline (PANI) is used as an anode to induce an acidic pH swing at the interface between the membrane and water, which can protonate the VFA molecule. The innovative multilayer membrane used in this study has successfully demonstrated a highly efficient recovery of VFAs by simultaneously combining pH swing and joule heating. This novel technique has revealed a new concept in the field of VFA recovery, offering promising prospects for further advancements in this area. The energy consumption was 3.37 kWh/kg for acetic acid (AA), and an excellent separation factor of AA/water of 51.55 ± 2.11 was obtained with high AA fluxes of 51.00 ± 0.82 g.m-2hr-1. The interfacial electrochemical reactions enable the extraction of VFAs without the need for bulk temperature and pH modification.
Collapse
Affiliation(s)
- Sungju Im
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Bongyeon Jung
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Xinyi Wang
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Jishan Wu
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Minhao Xiao
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Xin Chen
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Javier A Quezada-Renteria
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Arpita Iddya
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Derrick Dlamini
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
| | - Sidan Lu
- Andlinger Center for Energy and Environment, Princeton University 86 Olden St, Princeton, New Jersey 08540, United States
- Department of Chemical and Biological Engineering, Princeton University 50-70 Olden St, Princeton, New Jersey 08540, United States
- Department of Civil and Environmental Engineering and The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Christos T Maravelias
- Andlinger Center for Energy and Environment, Princeton University 86 Olden St, Princeton, New Jersey 08540, United States
- Department of Chemical and Biological Engineering, Princeton University 50-70 Olden St, Princeton, New Jersey 08540, United States
- Department of Civil and Environmental Engineering and The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Andlinger Center for Energy and Environment, Princeton University 86 Olden St, Princeton, New Jersey 08540, United States
- Department of Chemical and Biological Engineering, Princeton University 50-70 Olden St, Princeton, New Jersey 08540, United States
- Department of Civil and Environmental Engineering and The Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M V Hoek
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- UCLA California NanoSystems Institute, Los Angeles, California 90095, United States
- UCLA Institute of the Environment & Sustainability, Los Angeles, California 90095, United States
- Lawrence Berkeley National Lab, Energy Systems & Distributed Resources Division, Berkeley, California 94720, United States
| | - David Jassby
- Department of Civil & Environmental Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, United States
- UCLA California NanoSystems Institute, Los Angeles, California 90095, United States
- UCLA Institute of the Environment & Sustainability, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Wang X, Im S, Jung B, Wu J, Iddya A, Javier QRA, Xiao M, Ma S, Lu S, Jaewon B, Zhang J, Ren ZJ, Maravelias CT, Hoek EMV, Jassby D. Simple and Low-Cost Electroactive Membranes for Ammonia Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37318093 DOI: 10.1021/acs.est.3c01470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ammonia is considered a contaminant to be removed from wastewater. However, ammonia is a valuable commodity chemical used as the primary feedstock for fertilizer manufacturing. Here we describe a simple and low-cost ammonia gas stripping membrane capable of recovering ammonia from wastewater. The material is composed of an electrically conducting porous carbon cloth coupled to a porous hydrophobic polypropylene support, that together form an electrically conductive membrane (ECM). When a cathodic potential is applied to the ECM surface, hydroxide ions are produced at the water-ECM interface, which transforms ammonium ions into higher-volatility ammonia that is stripped across the hydrophobic membrane material using an acid-stripping solution. The simple structure, low cost, and easy fabrication process make the ECM an attractive material for ammonia recovery from dilute aqueous streams, such as wastewater. When paired with an anode and immersed into a reactor containing synthetic wastewater (with an acid-stripping solution providing the driving force for ammonia transport), the ECM achieved an ammonia flux of 141.3 ± 14.0 g.cm-2.day-1 at a current density of 6.25 mA.cm-2 (69.2 ± 5.3 kg(NH3-N)/kWh). It was found that the ammonia flux was sensitive to the current density and acid circulation rate.
Collapse
Affiliation(s)
- Xinyi Wang
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Sungju Im
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Bongyeon Jung
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Jishan Wu
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Arpita Iddya
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Quezada-Renteria A Javier
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Minhao Xiao
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Shengcun Ma
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
| | - Sidan Lu
- Andlinger Center for Energy and Environment, Princeton University 86 Olden St, Princeton, New Jersey 08540, United States
- Department of Chemical and Biological Engineering, Princeton University 50-70 Olden St, Princeton, New Jersey 08540, United States
- University of California, Los Angeles (UCLA), Department of Mechanical Engineering, Los Angeles, Caliornia 90095, United States
| | - Byun Jaewon
- Department of Chemical and Biological Engineering, Princeton University 50-70 Olden St, Princeton, New Jersey 08540, United States
| | - Jeffrey Zhang
- University of California, Los Angeles (UCLA), Department of Mechanical Engineering, Los Angeles, Caliornia 90095, United States
| | - Zhiyong Jason Ren
- University of California, Los Angeles (UCLA), Department of Mechanical Engineering, Los Angeles, Caliornia 90095, United States
- Princeton University, Department of Civil and Environmental Engineering and The Andlinger Center for Energy and the Environment, Princeton, New Jersey 08544, United States
| | - Christos T Maravelias
- Andlinger Center for Energy and Environment, Princeton University 86 Olden St, Princeton, New Jersey 08540, United States
- University of California, Los Angeles (UCLA), Department of Mechanical Engineering, Los Angeles, Caliornia 90095, United States
- Princeton University, Department of Civil and Environmental Engineering and The Andlinger Center for Energy and the Environment, Princeton, New Jersey 08544, United States
| | - Eric M V Hoek
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
- UCLA California NanoSystems Institute, Los Angeles, California 90095, United States
- UCLA Institute of the Environment & Sustainability, Los Angeles, California 90095, United States
- Lawrence Berkeley National Lab, Energy Storage & Distributed Resources Division, Berkeley, California 94720, United States
| | - David Jassby
- University of California, Los Angeles (UCLA), Department of Civil & Environmental Engineering, Los Angeles, California 90095, United States
- UCLA California NanoSystems Institute, Los Angeles, California 90095, United States
- UCLA Institute of the Environment & Sustainability, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Liu M, Graham N, Xu L, Zhang K, Yu W. Bubbleless aerated-biological activated carbon as a superior process for drinking water treatment in rural areas. WATER RESEARCH 2023; 240:120089. [PMID: 37216786 DOI: 10.1016/j.watres.2023.120089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Drinking water supply in rural areas remains a substantial challenge due to complex natural, technical and economic conditions. To provide safe and affordable drinking water to all, as targeted in the UN Sustainable Development Goals (2030 Agenda), low-cost, efficient water treatment processes suitable for rural areas need to be developed. In this study, a bubbleless aeration BAC (termed ABAC) process is proposed and evaluated, involving the incorporation of a hollow fiber membrane (HFM) assembly within a slow-rate BAC filter, to provide dissolved oxygen (DO) throughout the BAC filter and an increased DOM removal efficiency. The results showed that after a 210-day period of operation, the ABAC increased the DOC removal by 54%, and decreased the disinfection byproduct formation potential (DBPFP) by 41%, compared to a comparable BAC filter without aeration (termed NBAC). The elevated DO (> 4 mg/L) not only reduced secreted extracellular polymer, but also modified the microbial community with a stronger degradation ability. The HFM-based aeration showed comparable performance to 3 mg/L pre-ozonation, and the DOC removal efficiency was four times greater than that of a conventional coagulation process. The proposed ABAC treatment, with its various advantages (e.g., high stability, avoidance of chemicals, ease of operation and maintenance), is well-suited to be integrated as a prefabricated device, for decentralized drinking water systems in rural areas.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Liu M, Graham NJD, Xu L, Zhang K, Yu W. Bubbleless Air Shapes Biofilms and Facilitates Natural Organic Matter Transformation in Biological Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4543-4555. [PMID: 36877961 DOI: 10.1021/acs.est.2c08889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The biodegradation in the middle and downstream of slow-rate biological activated carbon (BAC) is limited by insufficient dissolved oxygen (DO) concentrations. In this study, a bubbleless aerated BAC (termed ABAC) process was developed by installing a hollow fiber membrane (HFM) module within a BAC filter to continuously provide aeration throughout the BAC system. The BAC filter without an HFM was termed NBAC. The laboratory-scale ABAC and NBAC systems operated continuously for 426 days using secondary sewage effluent as an influent. The DO concentrations for NBAC and ABAC were 0.78 ± 0.27 and 4.31 ± 0.44 mg/L, respectively, with the latter providing the ABAC with greater electron acceptors for biodegradation and a microbial community with better biodegradation and metabolism capacity. The biofilms in ABAC secreted 47.3% less EPS and exhibited greater electron transfer capacity than those in NBAC, resulting in enhanced contaminant degradation efficiency and long-term stability. The extra organic matter removed by ABAC included refractory substances with a low elemental ratio of oxygen to carbon (O/C) and a high elemental ratio of hydrogen to carbon (H/C). The proposed ABAC filter provides a valuable, practical example of how to modify the BAC technology to shape the microbial community, and its activity, by optimizing the ambient atmosphere.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Lei Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Kai Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| |
Collapse
|
19
|
Ren K, Lu X, Zheng S, Zhang S, Ma R, Yang Y. A novel preparation method for protective coating on hydrophobic membrane based on vapor opposite transmission process. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Dong K, Feng X, Yao Y, Zhu Z, Lin H, Zhang X, Wang D, Li H. Nitrogen Removal From Nitrate-Containing Wastewaters in Hydrogen-Based Membrane Biofilm Reactors via Hydrogen Autotrophic Denitrification: Biofilm Structure, Microbial Community and Optimization Strategies. Front Microbiol 2022; 13:924084. [PMID: 35722343 PMCID: PMC9201494 DOI: 10.3389/fmicb.2022.924084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/13/2022] Open
Abstract
The hydrogen-based membrane biofilm reactor (MBfR) has been widely applied in nitrate removal from wastewater, while the erratic fluctuation of treatment efficiency is in consequence of unstable operation parameters. In this study, hydrogen pressure, pH, and biofilm thickness were optimized as the key controlling parameters to operate MBfR. The results of 653.31 μm in biofilm thickness, 0.05 MPa in hydrogen pressure and pH in 7.78 suggesting high-efficiency NO 3 - - N removal and the NO 3 - - N removal flux was 1.15 g·m-2 d-1. 16S rRNA gene analysis revealed that Pseudomonas, Methyloversatilis, Thauera, Nitrospira, and Hydrogenophaga were the five most abundant bacterial genera in MBfRs after optimization. Moreover, significant increases of Pseudomonas relative abundances from 0.36 to 9.77% suggested that optimization could effectively remove nitrogen from MBfRs. Membrane pores and surfaces exhibited varying degrees of calcification during stable operation, as evinced by Ca2+ precipitation adhering to MBfR membrane surfaces based on scanning electron microscopy (SEM), atomic force microscopy (AFM) analyses. Scanning electron microscopy-energy dispersive spectrometer (SEM-EDS) analyses also confirmed that the primary elemental composition of polyvinyl chloride (PVC) membrane surfaces after response surface methodology (RSM) optimization comprised Ca, O, C, P, and Fe. Further, X-ray diffraction (XRD) analyses indicated the formation of Ca5F(PO4)3 geometry during the stable operation phase.
Collapse
Affiliation(s)
- Kun Dong
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Xinghui Feng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Yi Yao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Zongqiang Zhu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin, China
| |
Collapse
|
21
|
Zhang Z, Xi H, Yu Y, Wu C, Yang Y, Guo Z, Zhou Y. Coupling of membrane-based bubbleless micro-aeration for 2,4-dinitrophenol degradation in a hydrolysis acidification reactor. WATER RESEARCH 2022; 212:118119. [PMID: 35114527 DOI: 10.1016/j.watres.2022.118119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Micro-aeration hydrolysis acidification (HA) is an effective method to enhance the removal of toxic and refractory organic matter, but the difficulty in stable dosing control of trace oxygen limits its wide application. Membrane-based bubbleless aeration has been proved as an ideal aeration method because of its higher oxygen transfer rate, more uniform mass transfer, and lower cost than HA. However, the available information on its application in HA is limited. In this study, membrane-based bubbleless micro-aeration coupled with hydrolysis acidification (MBL-MHA) was exploited to investigate the performance of 2,4-dinitrophenol (2,4-DNP) degradation via comparing it with bubble micro-aeration HA (MHA) and anaerobic HA. The results indicated that the performances in MBL-MHA and MHA were higher than those in HA during the experiment. 2,4-DNP degradation rates under redox microenvironments caused by counter-diffusion in MBL-MHA (84.43∼97.28%) were higher than those caused by co-diffusion in MHA (82.41∼94.71%) under micro-aeration of 0.5-5.0 mL air/min. The 2,4-DNP degradation pathways in MBL-MHA were nitroreduction, deamination, aromatic ring cleavage, and fermentation, while those in MHA were hydroxylation, aromatic ring cleavage, and fermentation. Reduction/oxidation-related, interspecific electron transfer-related species, and fermentative species in MBL-MHA were more abundant than that in MHA. Ultimately, more reducing/oxidizing forces formed by more redox proteins/enzymes from these rich species could enhance 2,4-DNP degradation in MBL-MHA.
Collapse
Affiliation(s)
- Zhuowei Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yang Yang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Zhenzhen Guo
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070China
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Li Z, Ren L, Qiao Y, Li X, Zheng J, Ma J, Wang Z. Recent advances in membrane biofilm reactor for micropollutants removal: Fundamentals, performance and microbial communities. BIORESOURCE TECHNOLOGY 2022; 343:126139. [PMID: 34662738 DOI: 10.1016/j.biortech.2021.126139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of micropollutants (MPs) in water and wastewater imposes potential risks on ecological security and human health. Membrane biofilm reactor (MBfR), as an emerging technology, has attracted much attention for MPs removal from water and wastewater. The review aims to consolidate the recent advances in membrane biofilm reactor for MPs removal from the standpoint of fundamentals, removal performance and microbial communities. First, the configuration and working principles of MBfRs are reviewed prior to the discussion of the current status of the system. Thereafter, a comprehensive review of the MBfR performance for MPs elimination based on literature database is presented. Key information on the microbial communities that are of great significance for the removal performance is then synthesized. Perspectives on the future research needs are also provided in this review to ensure the development of MBfRs for more cost-effective elimination of MPs from water and wastewater.
Collapse
Affiliation(s)
- Zhouyan Li
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Shanghai 200092, PR China
| | - Lehui Ren
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Shanghai 200092, PR China
| | - Yiwen Qiao
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Shanghai 200092, PR China
| | - Xuesong Li
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Shanghai 200092, PR China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, 1 Jinji Road, Guilin 541004, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhiwei Wang
- Tongji University, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Shanghai 200092, PR China.
| |
Collapse
|
23
|
Rauter MT, Schnell SK, Kjelstrup S. Cassie-Baxter and Wenzel States and the Effect of Interfaces on Transport Properties across Membranes. J Phys Chem B 2021; 125:12730-12740. [PMID: 34755514 PMCID: PMC8630791 DOI: 10.1021/acs.jpcb.1c07931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass transfer across a liquid-repelling gas permeable membrane is influenced by the state(s) of the liquid-vapor interface(s) on the surface of the membrane, the pore geometry, and the solid-fluid interactions inside the membrane. By tuning the different local contributions, it is possible to enhance the temperature difference-driven mass flux across the membrane for a constant driving force. Non-equilibrium molecular dynamics simulations were used to simulate a temperature difference-driven mass flux through a gas permeable membrane with the evaporating liquid on one side and the condensing liquid on the other. Both sides were simulated for Wenzel- and Cassie-Baxter-like states. The interaction between the fluid and the solid inside the gas permeable membrane varied between the wetting angles of θ = 125° and θ = 103°. For a constant driving force, the Cassie-Baxter state led to an increased mass flux of almost 40% in comparison to the Wenzel state (given a small pore resistance). This difference was caused by an insufficient supply of vapor particles at the pore entrance in the Wenzel state. The difference between the Wenzel and Cassie-Baxter states decreased with increasing resistance of the pore. The condensing liquid-vapor interface area contributed in the same manner to the overall transport resistance as the evaporating liquid-vapor interface area. A higher repulsion between the fluid and the solid inside the membrane decreased the overall resistance.
Collapse
Affiliation(s)
- Michael T Rauter
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sondre K Schnell
- Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Chemistry, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
24
|
Wang G, Xu X, Kou X, Liu X, Dong X, Ma H, Wang D. N-Doping of Graphene Aerogel as a Multifunctional Air Cathode for Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51312-51320. [PMID: 34672529 DOI: 10.1021/acsami.1c12605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the main challenges faced by microbial fuel cells (MFCs) generating voltage is how to facilitate the oxygen reduction reaction (ORR) process using a specifically designed air cathode, especially by optimizing a three-phase catalytic interface and enhanced O2 diffusion on it. Herein, a three-dimensional porous N-doped graphene aerogel (NGA) is polymerized onto a steel mesh (SM) to construct a simple structure of an air cathode (NGA-x/SM) via hydrothermal synthesis and subsequent freeze-drying treatment; more specifically, NGA was simultaneously used as an efficient ORR catalyst layer and breathable gas diffusion layer to improve the performance of MFCs. In this system, the NGA-5/SM (with a precursor concentration of x = 5.0 mg mL-1) makes itself a perfect candidate to be used as an air cathode. Characterization parameters reveal that sub-micrometer micropores, defective multilayer structures, and the highest proportion of pyridinic-N (48.1%) exist in NGA-5/SM. Furthermore, electrochemical measurements demonstrate that it has an oxygen reduction peak potential of 0.63 V, a Tafel slope of 187 mV dec-1, and closest 4e- transfer pathway (n = 3.2-3.5). These data prove that a three-phase boundary can naturally form in NGA-5/SM, where the ORR occurs. More importantly, this work provides a proof of concept that a Pt-free air cathode could be prepared with high-efficiency NGA by a two-step preparation method to achieve a MFC maximum power density of 1593 mW m-2.
Collapse
Affiliation(s)
- Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Xuefei Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Xiaonan Kou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Xing Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, P.R. China
| | - Dong Wang
- College of Marine Science-Technology and Environment, Dalian Ocean University, No. 52 Heishijiao, Shahekou District, Dalian 116023, P.R. China
| |
Collapse
|
25
|
He H, Wagner BM, Carlson AL, Yang C, Daigger GT. Recent progress using membrane aerated biofilm reactors for wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2131-2157. [PMID: 34810302 DOI: 10.2166/wst.2021.443] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The membrane biofilm reactor (MBfR), which is based on the counter diffusion of the electron donors and acceptors into the biofilm, represents a novel technology for wastewater treatment. When process air or oxygen is supplied, the MBfR is known as the membrane aerated biofilm reactor (MABR), which has high oxygen transfer rate and efficiency, promoting microbial growth and activity within the biofilm. Over the past few decades, laboratory-scale studies have helped researchers and practitioners understand the relevance of influencing factors and biological transformations in MABRs. In recent years, pilot- to full-scale installations are increasing along with process modeling. The resulting accumulated knowledge has greatly improved understanding of the counter-diffusional biological process, with new challenges and opportunities arising. Therefore, it is crucial to provide new insights by conducting this review. This paper reviews wastewater treatment advancements using MABR technology, including design and operational considerations, microbial community ecology, and process modeling. Treatment performance of pilot- to full-scale MABRs for process intensification in existing facilities is assessed. This paper also reviews other emerging applications of MABRs, including sulfur recovery, industrial wastewater, and xenobiotics bioremediation, space-based wastewater treatment, and autotrophic nitrogen removal. In conclusion, commercial applications demonstrate that MABR technology is beneficial for pollutants (COD, N, P, xenobiotics) removal, resource recovery (e.g., sulfur), and N2O mitigation. Further research is needed to increase packing density while retaining efficient external mass transfer, understand the microbial interactions occurring, address existing assumptions to improve process modeling and control, and optimize the operational conditions with site-specific considerations.
Collapse
Affiliation(s)
- Huanqi He
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Brett M Wagner
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Avery L Carlson
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Cheng Yang
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 177 EWRE Building, 1351 Beal Street, Ann Arbor, MI 48109, USA E-mail:
| |
Collapse
|
26
|
Velasco P, Jegatheesan V, Thangavadivel K, Othman M, Zhang Y. A focused review on membrane contactors for the recovery of dissolved methane from anaerobic membrane bioreactor (AnMBR) effluents. CHEMOSPHERE 2021; 278:130448. [PMID: 34126683 DOI: 10.1016/j.chemosphere.2021.130448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/16/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The need for a more sustainable wastewater treatment is more relevant now due to climate change. Production and reuse of methane from anaerobic treatment is one pathway. However, this is defeated by the presence of dissolved methane in the effluent and would be released to the environment, adding to the greenhouse gas emissions. This review paper provided summary and analysis of studies involved in the production of dissolved methane from AnMBR, focusing with actual methane measurement (gas and dissolved) from AnMBR with different types of wastewater. Then more focused discussion and analysis on the use of membrane-based technology or membrane contactors in the recovery of dissolved methane from AnMBR effluent are included, with its development and energy analysis. The dissolved methane removal and recovery rate of membrane contactors can be as high as 96% and 0.05 mol methane/m2/h, respectively, with very low additional energy requirement of 0.01 kWh/m3 for the recovery. Future perspectives presented focus on the long-term evaluation and modelling of membrane contactors and on the membrane modifications to improve the selectivity of membranes to methane and to limit their fouling and wetting, thus making the technology more economical for resource recovery.
Collapse
Affiliation(s)
- Perlie Velasco
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia; Department of Civil Engineering, University of the Philippines - Los Baños, Pili Drive, College, Laguna, 4031, Philippines.
| | - Veeriah Jegatheesan
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | | | - Maazuza Othman
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Yang Zhang
- Membrane Innovation and Resource Recovery (MIRR), School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, 266042, Shandong, China
| |
Collapse
|
27
|
Chen X, Zhu X, He S, Hu L, Ren ZJ. Advanced Nanowood Materials for the Water-Energy Nexus. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001240. [PMID: 32725940 DOI: 10.1002/adma.202001240] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/25/2020] [Indexed: 05/16/2023]
Abstract
Wood materials are being reinvented to carry superior properties for a variety of new applications. Cutting-edge nanomanufacturing transforms traditional bulky and low-value woods into advanced materials that have desired structures, durability, and functions to replace nonrenewable plastics, polymers, and metals. Here, a first prospect report on how novel nanowood materials have been developed and applied in water and associated industries is provided, wherein their unique features and promises are discussed. First, the unique hierarchical structure and associated properties of the material are introduced, and then how such features can be harnessed and modified by either bottom-up or top-down manufacturing to enable different functions for water filtration, chemical adsorption and catalysis, energy and resource recovery, as well as energy-efficient desalination and environmental cleanup are discussed. The study recognizes that this is a nascent but very promising field; therefore, insights are offered to encourage more research and development. Trees harness solar energy and CO2 and provide abundant carbon-negative materials. Once harvested and utilized, it is believed that advanced wood materials will play a vital role in enabling a circular water economy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Xiaobo Zhu
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Shuaiming He
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
28
|
Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Kim KY, Moreno-Jimenez DA, Efstathiadis H. Electrochemical Ammonia Recovery from Anaerobic Centrate Using a Nickel-Functionalized Activated Carbon Membrane Electrode. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7674-7680. [PMID: 33970609 DOI: 10.1021/acs.est.1c01703] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ammonia (NH3) recovery from used water (previously wastewater) is highly desirable to depart from fossil fuel-dependent NH3 production and curb nitrogen emission to the environment. Electrochemical NH3 recovery is promising since it can simply convert aqueous NH4+ to gaseous NH3 using cathodic reactions (OH- generation). However, the use of a separated electrode and membrane imposes high resistances to the cathodic reaction and NH3 transfer. This study examined an activated carbon (AC)-based membrane electrode functionalized with nickel to electrochemically recover NH3 from synthetic anaerobic centrate. The membrane electrode was fabricated using nickel-adsorbed AC powder and a polyvinylidene fluoride (PVDF) binder, and the PVDF membrane layer was formed at the electrode surface by phase inversion. The NH3-N recovery flux of 50.3 ± 0.4 gNH3-N/m2/d was produced at 17.1 A/m2 with a recovery solution at pH 7, and NH3-N fluxes and energy consumptions were improved as the recovery solution became acidic (62.2 ± 2.1 gNH3-N/m2/d with 16.0 ± 1.6 kWh/kgNH3-N at pH 2). Increasing PVDF loadings did not impact the electrochemical performances of the Ni/AC-PVDF electrode, but slightly lower (7%) NH3-N fluxes were obtained with higher PVDF loadings. Ni dissolution (3.7-6.0% loss) was affected by the recovery solution pH, but it did not impact the performances over the cycles.
Collapse
Affiliation(s)
- Kyoung-Yeol Kim
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Daniel A Moreno-Jimenez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Harry Efstathiadis
- College of Nanoscale Science and Engineering, State University of New York Polytechnic Institute, 257 Fuller Road, Albany, New York 12203, United States
| |
Collapse
|
30
|
Bartosiewicz M, Rzepka P, Lehmann MF. Tapping Freshwaters for Methane and Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4183-4189. [PMID: 33666422 DOI: 10.1021/acs.est.0c06210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Energy supply limits development through fuel constraints and climatic effects. Production of renewable energy is a central pillar of sustainability but will need to play an increasingly important role in energy generation in order to mitigate fossil-fuel based greenhouse-gas emissions. Global freshwaters represent a vast reservoir of biomass and biogenic CH4. Here we demonstrate the great potential for the optimized use of this nonfossil carbon as a source of energy that is replenishable within a human lifetime. The feasibility of up-scaled adsorption-driven technologies to capture and refine aqueous CH4 still awaits verification, yet recent estimates of global freshwater CH4 production imply that the worldwide energy demand could be satisfied by using the "biofuel" building up in lakes and wetlands. Biogenic CH4 is mostly generated from biomass produced through atmospheric CO2 uptake. Its exploitation in freshwaters can thus secure large amounts of carbon-neutral energy, helping to sustain the planetary equilibrium.
Collapse
Affiliation(s)
- Maciej Bartosiewicz
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| | - Przemyslaw Rzepka
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Li Z, Dai R, Yang B, Chen M, Wang X, Wang Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124198. [PMID: 33068987 DOI: 10.1016/j.jhazmat.2020.124198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.9% removal of SDZ, significantly higher than that of a control membrane biofilm reactor (MBfR) without electric field applied (44.3%) or an electrolytic reactor without biofilm (77.3%). Moreover, the relative abundance of ARGs in the EMBfR was only 32.0% of that in MBfR, suggesting that the production of ARGs was significantly suppressed in the EMBfR. The underlying mechanisms relate to (i) the change of the microbial community structure in the presence of the electric field, leading to the enrichment of potential aromatic-degrading microorganisms (e.g., Rhodococcus accounting for 51.0% of the total in the EMBfR compared to 10.0% in the MBfR) and (ii) the unique degradation pathway of SDZ in the EMBfR attributed to the synergistic effect between the electrochemical and biological processes. Our study highlights the benefits of EMBfR in removing pharmaceuticals from contaminated waters and suppressing the development (and transfer) of ARGs in the environment.
Collapse
Affiliation(s)
- Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Baichuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
Lai YS, Eustance E, Shesh T, Rittmann BE. Enhanced carbon-transfer and -utilization efficiencies achieved using membrane carbonation with gas sources having a range of CO2 concentrations. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Ammonia capture from wastewater with a high ammonia nitrogen concentration by water splitting and hollow fiber extraction. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Son M, Cho KH, Jeong K, Park J. Membrane and Electrochemical Processes for Water Desalination: A Short Perspective and the Role of Nanotechnology. MEMBRANES 2020; 10:E280. [PMID: 33053773 PMCID: PMC7600412 DOI: 10.3390/membranes10100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
In the past few decades, membrane-based processes have become mainstream in water desalination because of their relatively high water flux, salt rejection, and reasonable operating cost over thermal-based desalination processes. The energy consumption of the membrane process has been continuously lowered (from >10 kWh m-3 to ~3 kWh m-3) over the past decades but remains higher than the theoretical minimum value (~0.8 kWh m-3) for seawater desalination. Thus, the high energy consumption of membrane processes has led to the development of alternative processes, such as the electrochemical, that use relatively less energy. Decades of research have revealed that the low energy consumption of the electrochemical process is closely coupled with a relatively low extent of desalination. Recent studies indicate that electrochemical process must overcome efficiency rather than energy consumption hurdles. This short perspective aims to provide platforms to compare the energy efficiency of the representative membrane and electrochemical processes based on the working principle of each process. Future water desalination methods and the potential role of nanotechnology as an efficient tool to overcome current limitations are also discussed.
Collapse
Affiliation(s)
- Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kwanho Jeong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
35
|
Valverde-Pérez B, Xing W, Zachariae AA, Skadborg MM, Kjeldgaard AF, Palomo A, Smets BF. Cultivation of methanotrophic bacteria in a novel bubble-free membrane bioreactor for microbial protein production. BIORESOURCE TECHNOLOGY 2020; 310:123388. [PMID: 32335344 DOI: 10.1016/j.biortech.2020.123388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Microbial protein is proposed as an alternative protein source with low environmental impact. Methane oxidizing bacteria are already produced at commercial scale from natural gas. However, their productivity is limited because of the creation of explosive atmospheres in the fermenters during production. This work demonstrates the applicability of bioreactors with a membrane-based gas supply via diffusion. Methanotrophic bacteria were successfully cultivated, with growth yields from 0.26 to 0.43 g-VSS g-CH4-1, slightly below those observed in analogous fermenters relying on bubbling. However, ammonia yields ranged from 5.2 to 6.9 g-VSS g-NH3-1, indicating higher nitrogen assimilation than in conventional fermenters. Indeed, protein content increased during the operational period reaching up to 51% of dry weight. The amino acid profile included the majority of the essential amino acids, demonstrating suitability as feed ingredient. Never during the operational period was an explosive atmosphere established in the reactor. Thus, bubble-free membrane bioreactors are a promising technology for microbial protein production relying on explosive gas mixtures.
Collapse
Affiliation(s)
- Borja Valverde-Pérez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark.
| | - Wei Xing
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark; School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - August A Zachariae
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Monika M Skadborg
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Astrid F Kjeldgaard
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 115, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
36
|
Tesler AB, Sheng Z, Lv W, Fan Y, Fricke D, Park KC, Alvarenga J, Aizenberg J, Hou X. Metallic Liquid Gating Membranes. ACS NANO 2020; 14:2465-2474. [PMID: 31994870 DOI: 10.1021/acsnano.9b10063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The development of liquid gating membrane (LGM) systems with tunable multiphase selectivity and antifouling properties is limited by the mechanical stability of the membrane materials. The mechanical integrity of most polymeric membranes can be compromised by deformation under harsh operating conditions (elevated temperatures, corrosive environments, foulants, etc.), ultimately leading to their failure. Here, a facile electrochemical approach to the fabrication of multifunctional metal-based liquid gating membrane systems is presented. The membrane porosity, pore size, and membrane surface roughness can be tuned from micro- to nanometer scale, enabling function under a variety of operating conditions. The prepared LGMs demonstrate controllable gas-liquid selectivity, superior resistance to corrosive conditions and fouling chemicals, and significant reduction of the transmembrane pressure required for the separation process, resulting in lower energy consumption. The stability of the gating liquid is confirmed experimentally through sustained fouling resistance and further supported by the interfacial energy calculations. The mechanically robust metal-based membrane systems reported in this study significantly extend the operating range of LGMs, prompting their applications in water treatment processes such as wastewater treatment, degassing, and multiphase separation.
Collapse
Affiliation(s)
- Alexander B Tesler
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Zhizhi Sheng
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - Wei Lv
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology , Xiamen University , Xiamen 361005 , China
| | - Yi Fan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
| | - David Fricke
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Kyoo-Chul Park
- Department of Mechanical Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Jack Alvarenga
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States
- Wyss Institute for Biologically Inspired Engineering , Harvard University , Cambridge , Massachusetts 02138 , United States
- Kavli Institute for Bionano Science and Technology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Xu Hou
- College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces , Xiamen University , Xiamen 361005 , China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology , Xiamen University , Xiamen 361005 , China
| |
Collapse
|