1
|
Disha IJ, Hasan R, Bhuia S, Ansari SA, Ansari IA, Islam MT. Anxiolytic Efficacy of Indirubin: In Vivo Approach Along with Receptor Binding Profiling and Molecular Interaction with GABAergic Pathways. ChemistryOpen 2025; 14:e202400290. [PMID: 39460441 PMCID: PMC11808267 DOI: 10.1002/open.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/03/2024] [Indexed: 10/28/2024] Open
Abstract
Anxiety is a natural response to stress, characterized by feelings of worry, fear, or unease. The current research was conducted to investigate the anxiolytic effect of indirubin (IND) in different behavioral paradigms in Swiss albino mice. To observe the animal's behavioural response to assess anxiolytic activity, different tests were performed, such as the open-field (square cross, grooming, and rearing), swing, dark-light, and hole cross tests. The experimental mice were administered IND (5 and 10 mg/kg, p.o.), where diazepam (DZP) and vehicle were used as positive and negative controls, respectively. In addition, a combination treatment (DZP+IND-10) was provided to the animals to determine the modulatory effect of IND on DZP. Molecular docking approach was also conducted to determine the binding energy of IND with the GABAA receptor (α2 and α3 subunits) and pharmacokinetics were also estimated. The findings revealed that IND dose-dependently significantly (p<0.05) reduced the animal's movement exerting calming behavior like DZP. IND also demonstrated the highest docking score (-7.7 kcal/mol) against the α3 subunit, while DZP showed a lower docking value (-6.4 kcal/mol) than IND. The ADMET analysis revealed that IND has proper drug-likeness and pharmacokinetic characteristics. In conclusion, IND exerted anxiolytic effects through GABAergic Pathways.
Collapse
Affiliation(s)
- Ishrat Jahan Disha
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
- Bioinformatics and Drug Innovation LaboratoryBioLuster Research Center Ltd.Gopalganj, Dhaka8100Bangladesh
| | - Rubel Hasan
- Bioinformatics and Drug Innovation LaboratoryBioLuster Research Center Ltd.Gopalganj, Dhaka8100Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Shimul Bhuia
- Bioinformatics and Drug Innovation LaboratoryBioLuster Research Center Ltd.Gopalganj, Dhaka8100Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical ChemistryCollege of PharmacyKing Saud UniversityRiyadh11451Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and TechnologyUniversity of TurinTurin10124Italy
| | - Muhammad Torequl Islam
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganj8100Bangladesh
- Pharmacy DisciplineKhulna UniversityKhulna9208Bangladesh
| |
Collapse
|
2
|
Lu C, Xiu W, Yang B, Zhang H, Lian G, Zhang T, Bi E, Guo H. Natural Attenuation of Groundwater Uranium in Post-Neutral-Mining Sites Evidenced from Multiple Isotopes and Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12674-12684. [PMID: 38965983 DOI: 10.1021/acs.est.4c04498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Although natural attenuation is an economic remediation strategy for uranium (U) contamination, the role of organic molecules in driving U natural attenuation in postmining aquifers is not well-understood. Groundwaters were sampled to investigate the chemical, isotopic, and dissolved organic matter (DOM) compositions and their relationships to U natural attenuation from production wells and postmining wells in a typical U deposit (the Qianjiadian U deposit) mined by neutral in situ leaching. Results showed that Fe(II) concentrations and δ34SSO4 and δ18OSO4 values increased, but U concentrations decreased significantly from production wells to postmining wells, indicating that Fe(III) reduction and sulfate reduction were the predominant processes contributing to U natural attenuation. Microbial humic-like and protein-like components mediated the reduction of Fe(III) and sulfate, respectively. Organic molecules with H/C > 1.5 were conducive to microbe-mediated reduction of Fe(III) and sulfate and facilitated the natural attenuation of dissolved U. The average U attenuation rate was -1.07 mg/L/yr, with which the U-contaminated groundwater would be naturally attenuated in approximately 11.2 years. The study highlights the specific organic molecules regulating the natural attenuation of groundwater U via the reduction of Fe(III) and sulfate.
Collapse
Affiliation(s)
- Chongsheng Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bing Yang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Haoyan Zhang
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Guoxi Lian
- The Fourth Research and Design Engineering Corporation of CNNC, Shijiazhuang 050021, China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- Institute of Earth Sciences, China University of Geosciences (Beijing), Beijing 100083, China
| | - Erping Bi
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
- MOE Key Laboratory of Groundwater Circulation and Environment Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Li F, Huang X, Wang S, Zhang H, Ma J, Ding Y, Ding D. Synergistic effects of hydrogen peroxide and phosphate on uranium(VI) immobilization: implications for the remediation of groundwater at decommissioned in situ leaching uranium mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117132-117142. [PMID: 37864694 DOI: 10.1007/s11356-023-30468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023]
Abstract
The processes of acid in situ leaching (ISL) uranium (U) mines cause the pollution of groundwater. Phosphate (PO43-) has the potential to immobilize U in groundwater through forming highly insoluble phosphate minerals, but the performance is highly restricted by low pH and high sulfate concentration. In this study, hydrogen peroxide (H2O2) and PO43- were synergistically used for immobilizing U based on the specific properties of groundwater from a decommissioned acid ISL U mine. The removal mechanisms of U and the stability of U on the formed minerals were elucidated by employing X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and kinetic experiments. Our results indicated that the removal of U by simultaneously adding H2O2 and PO43- was significantly higher than the removal of U by individually adding H2O2 or PO43-. The removal of U increased with increasing PO43- concentration from 20 to 200 mg L-1 while decreased with increasing H2O2 concentration from 0.003 to 0.3%. Specifically, the removal efficiency of U from groundwater reached 98% after the application of 0.003% H2O2 and 200 mg L-1 PO43-. Amorphous iron phosphate that preferentially formed at low H2O2 and high PO43- concentrations played a dominant role in U removal, while the formations of schwertmannite and crystalline iron phosphates may be also contributed to the removal of U. This was significantly different from the immobilization mechanism of U through the formation of uranyl phosphate minerals after adding phosphate. The kinetic experimental results suggested that the immobilized U had a good stability. Our research may provide a promising method for in situ remediating U-contaminated groundwater at the decommissioned acid ISL U mines.
Collapse
Affiliation(s)
- Feng Li
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Xixian Huang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shasha Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Hui Zhang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Jianhong Ma
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yang Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China.
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, People's Republic of China
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| |
Collapse
|
4
|
Bhuia MS, Rokonuzzman M, Hossain MI, Ansari SA, Ansari IA, Islam T, Al Hasan MS, Mubarak MS, Islam MT. Anxiolytic- like Effects by trans-Ferulic Acid Possibly Occur through GABAergic Interaction Pathways. Pharmaceuticals (Basel) 2023; 16:1271. [PMID: 37765079 PMCID: PMC10535412 DOI: 10.3390/ph16091271] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous previous studies reported that ferulic acid exerts anxiolytic activity. However, the mechanisms have yet to be elucidated. The current study aimed to investigate the anxiolytic effect of trans-ferulic acid (TFA), a stereoisomer of ferulic acid, and evaluated its underlying mechanism using in vivo and computational studies. For this, different experimental doses of TFA (25, 50, and 75 mg/kg) were administered orally to Swiss albino mice, and various behavioral methods of open field, hole board, swing box, and light-dark tests were carried out. Diazepam (DZP), a positive allosteric modulator of the GABAA receptor, was employed as a positive control at a dose of 2 mg/kg, and distilled water served as a vehicle. Additionally, molecular docking was performed to estimate the binding affinities of the TFA and DZP toward the GABAA receptor subunits of α2 and α3, which are associated with the anxiolytic effect; visualizations of the ligand-receptor interaction were carried out using various computational tools. Our findings indicate that TFA dose-dependently reduces the locomotor activity of the animals in comparison with the controls, calming their behaviors. In addition, TFA exerted the highest binding affinity (-5.8 kcal/mol) to the α2 subunit of the GABAA receptor by forming several hydrogen and hydrophobic bonds. Taken together, our findings suggest that TFA exerts a similar effect to DZP, and the compound exerts moderate anxiolytic activity through the GABAergic interaction pathway. We suggest further clinical studies to develop TFA as a reliable anxiolytic agent.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Imran Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| |
Collapse
|
5
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
6
|
Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Anxiolytic-like Effect of Quercetin Possibly through GABA Receptor Interaction Pathway: In Vivo and In Silico Studies. Molecules 2022; 27:molecules27217149. [PMID: 36363979 PMCID: PMC9656213 DOI: 10.3390/molecules27217149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scientific evidence suggests that quercetin (QUR) has anxiolytic-like effects in experimental animals. However, the mechanism of action responsible for its anxiolytic-like effects is yet to be discovered. The goal of this research is to assess QUR's anxiolytic effects in mouse models to explicate the possible mechanism of action. After acute intraperitoneal (i.p.) treatment with QUR at a dose of 50 mg/kg (i.p.), behavioral models of open-field, hole board, swing box, and light-dark tests were performed. QUR was combined with a GABAergic agonist (diazepam) and/or antagonist (flumazenil) group. Furthermore, in silico analysis was also conducted to observe the interaction of QUR and GABA (α5), GABA (β1), and GABA (β2) receptors. In the experimental animal model, QUR had an anxiolytic-like effect. QUR, when combined with diazepam (2 mg/kg, i.p.), drastically potentiated an anxiolytic effect of diazepam. QUR is a more highly competitive ligand for the benzodiazepine recognition site that can displace flumazenil (2.5 mg/kg, i.p.). In all the test models, QUR acted similar to diazepam, with enhanced effects of the standard anxiolytic drug, which were reversed by pre-treatment with flumazenil. QUR showed the best interaction with the GABA (α5) receptor compared to the GABA (β1) and GABA (β2) receptors. In conclusion, QUR may exert an anxiolytic-like effect on mice, probably through the GABA-receptor-interacting pathway.
Collapse
|
8
|
Restoration Insights Gained from a Field Deployment of Dithionite and Acetate at a Uranium In Situ Recovery Mine. MINERALS 2022. [DOI: 10.3390/min12060711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mining uranium by in situ recovery (ISR) typically involves injecting an oxidant and a complexing agent to mobilize and extract uranium in a saturated ore zone. This strategy involves less infrastructure and invasive techniques than traditional mining, but ISR often results in persistently elevated concentrations of U and other contaminants of concern in groundwater after mining. These concentrations may remain elevated for an extended period without remediation. Here, we describe a field experiment at an ISR facility in which both a chemical reductant (sodium dithionite) and a biostimulant (sodium acetate) were sequentially introduced into a previously mined ore zone in an attempt to establish reducing geochemical conditions that, in principle, should decrease and stabilize aqueous U concentrations. While several lines of evidence indicated that reducing conditions were established, U concentrations did not decrease, and in fact increased after the amendment deployments. We discuss likely reasons for this behavior, and we also discuss how the results provide insights into improvements that could be made to the restoration process to benefit from the seemingly detrimental behavior.
Collapse
|
9
|
Coral T, Placko AL, Beaufort D, Tertre E, Bernier-Latmani R, Descostes M, De Boissezon H, Guillon S, Rossi P. Biostimulation as a sustainable solution for acid neutralization and uranium immobilization post acidic in-situ recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153597. [PMID: 35114226 DOI: 10.1016/j.scitotenv.2022.153597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Major uranium (U) deposits worldwide are exploited by acid leaching, known as 'in-situ recovery' (ISR). ISR involves the injection of an acid fluid into ore-bearing aquifers and the pumping of the resulting metal-containing solution through cation exchange columns for the recovery of dissolved U. Rehabilitation of ISR-impacted aquifers could be achieved through natural attenuation, or via biostimulation of autochthonous heterotrophic microorganisms due to the associated acid neutralization and trace metal immobilization. In this study, we analyzed the capacity of pristine aquifer sediments impacted by diluted ISR fluids to buffer pH and immobilize U. The experimental setup consisted of glass columns, filled with sediment from a U ore-bearing aquifer, through which diluted ISR fluids were flowed continuously. The ISR solution was obtained from ISR mining operations at the Muyunkum and Tortkuduk deposits in Kazakhstan. Following this initial phase, columns were biostimulated with a mix of molasses, yeast extract and glycerol to stimulate the growth of autochthonous heterotrophic communities. Experimental results showed that this amendment efficiently promoted the activity of acid-tolerant bacterial guilds, with pH values rising from 4.8 to 6.5-7.0 at the outlet of the stimulated columns. The reduction of sulfate, nitrate, and metals as well as dissimilatory nitrate reduction to ammonia induced the rise in pH values, in agreement with geochemical modelling results. Biostimulation efficiently promoted the complete immobilization of U, with the accumulation of up to 3343 ppm in the first few centimeters of the columns. Synchrotron analysis and SEM-EDS revealed that up to 60% of the injected hexavalent U was immobilized as tetravalent non-crystalline U onto bacterial cell surfaces. 16S rDNA amplicon analysis and qPCR data suggested a predominant role played for members of the Phylum Firmicutes (from the genera Clostridium, Pelosinus and Desulfosporosinus) in biological U reduction and immobilization.
Collapse
Affiliation(s)
- Thomas Coral
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland
| | - Anne-Laure Placko
- Orano Mining, Environmental R&D Dpt., 125 avenue de Paris, 92320 Chatillon, France
| | - Daniel Beaufort
- Université de Poitiers/CNRS, UMR 7285 IC2MP, Equipe HydrASA, 5 rue Albert Turpain, 86073 Poitiers Cedex 9, France.
| | - Emmanuel Tertre
- Université de Poitiers/CNRS, UMR 7285 IC2MP, Equipe HydrASA, 5 rue Albert Turpain, 86073 Poitiers Cedex 9, France.
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 6, 1015 Lausanne, Switzerland.
| | - Michael Descostes
- Orano Mining, Environmental R&D Dpt., 125 avenue de Paris, 92320 Chatillon, France; Centre de Géosciences, MINES ParisTech, PSL University. 35 rue St Honoré, 77300 Fontainebleau, France
| | - Hélène De Boissezon
- Orano Mining, Environmental R&D Dpt., 125 avenue de Paris, 92320 Chatillon, France
| | - Sophie Guillon
- Centre de Géosciences, MINES ParisTech, PSL University. 35 rue St Honoré, 77300 Fontainebleau, France.
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Station 2, 1015 Lausanne, Switzerland.
| |
Collapse
|
10
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
11
|
de Boissezon H, Levy L, Jakymiw C, Distinguin M, Guerin F, Descostes M. Modeling uranium and 226Ra mobility during and after an acidic in situ recovery test (Dulaan Uul, Mongolia). JOURNAL OF CONTAMINANT HYDROLOGY 2020; 235:103711. [PMID: 32949982 DOI: 10.1016/j.jconhyd.2020.103711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
This article presents the results of groundwater monitoring over a period of six years and the interpretation of these results by a reactive transport model, following an In Situ Recovery (ISR) test on the Dulaan Uul uranium deposit in Mongolia. An environmental monitoring survey was set up using 17 piezometers, from which it has been possible to describe the changes in the water composition before, during and after the ISR test. The water quality before the start of mining activities rendered it unfit for human consumption. During and after the test, a descent of the saline plume was observed, resulting in a dilution of the injection solutions. After a rapid decrease to pH = 1.13 during the production phase of the ISR test, the pH stabilized at around 4 in the production area and 5.5 below the production cell one year after the end of the test. Uranium and radium were being naturally attenuated. Uranium returned to background concentrations (0.3 mg/L) after two years and the measured 226Ra concentrations represent no more than 10% of the expected concentrations during production (75 Bq/L). The modeling of the contaminants of concern mobility, namely pH and concentrations of sulfate, uranium and 226Ra, is based on several key complementary mechanisms: density flow, cation exchange with clay minerals and co-precipitation of 226Ra in the barite. The modeling results show that the observed plume descent and sulfate dilution can only be predicted if consideration of a high-density flow is included. Similarly, the changes in pH and 226Ra concentration are only correctly predicted when the cationic exchanges with the clays and the co-precipitation reaction within the barite using the solid solution theory are integrated into the models. Finally, the proper representation of the changes in water composition at the scale of the test requires the use of a sufficiently fine mesh (1 m × 1 m cell) to take into account the spatial variability of hydrogeological (permeability distribution in particular) and geological (reduced, oxidized and mineralized facies distributions) parameters.
Collapse
Affiliation(s)
- H de Boissezon
- ORANO Mining, R&D Dept, 125 Avenue de Paris, 92320 Chatillon, France.
| | - L Levy
- ORANO Mining, R&D Dept, 125 Avenue de Paris, 92320 Chatillon, France
| | - C Jakymiw
- ORANO Mining, R&D Dept, 125 Avenue de Paris, 92320 Chatillon, France
| | - M Distinguin
- COGEGOBI, ICC Tower, Jamyan Gun Street 9, Ulaanbaatar, Mongolia
| | - F Guerin
- ORANO Mining, R&D Dept, 125 Avenue de Paris, 92320 Chatillon, France
| | - M Descostes
- ORANO Mining, R&D Dept, 125 Avenue de Paris, 92320 Chatillon, France
| |
Collapse
|