1
|
Zhao Z, Fu H, Ling L, Westerhoff P. Advancing Light-Driven Reactions with Surface-Modified Optical Fibers. Acc Chem Res 2025; 58:1596-1606. [PMID: 40311088 DOI: 10.1021/acs.accounts.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
ConspectusThe challenge of optimizing decentralized water, wastewater, and reuse treatment systems calls for innovative, efficient technologies. One advancement involves surface-modified side-emitting optical fibers (SEOFs), which enhance biochemical and chemical light-driven reactions. SEOFs are thin glass or polymeric optical fibers with functionalized surfaces that can be used individually or bundled together. They can be attached to various light sources, such as light-emitting diodes (LEDs) or lasers, which launch ultraviolet (UV) or visible light into the fibers. This light is then emitted along the fiber's surface, creating irradiance similar to a glow stick. The resulting SEOFs uniquely deliver light energy to complex environments while maximizing photon utilization and minimizing energy loss, addressing long-standing inefficiencies in photolysis and photocatalysis systems. SEOFs generate and leverage refracted light and evanescent waves to achieve continuous irradiation of their cladding, wherein photocatalysts are embedded. This method contrasts with traditional slurry-based systems, where light energy is often scattered or absorbed before reaching the reaction sites. Such scattering typically reduces quantum yields and reaction kinetics. In contrast, SEOFs create a controlled light delivery system that enhances reaction efficiency and adaptability to diverse applications.Important chemical and physical concepts are explored when scaling up SEOFs for three potential engineered applications. The selection of polymer materials and nanoparticle compositions is crucial for optimizing SEOFs as waveguides for visible to UV-C wavelengths and for embedding surface-accessible photocatalysts within porous polymer coatings on SEOF surfaces. Additionally, understanding how light propagates within SEOFs and emits along their exterior surface and length is essential for influencing the quantum yields of chemical products and enhancing biochemical sensitivity to low UV-C exposure. UV-C SEOFs are employed for germicidal disinfection, inactivating biofilms and pathogens in water systems. By overcoming UV light attenuation issues in traditional methods, SEOFs facilitate uniform distribution of UV-C energy, disrupting biofilm formation at early stages. SEOFs enhance UV-A and visible-light photocatalytic degradation of pollutants. Embedding photocatalysts in porous polymer cladding enables simultaneous improvements in reaction kinetics and quantum yields. SEOFs enable decentralized light-driven production of clean energy resources such as hydrogen, hydrogen peroxide, and formic acid, offering sustainable alternatives for off-grid systems.The design principles of SEOFs emphasize scalability, flexibility, and efficiency. Recent innovations in polymer chemistry, nanoparticle coatings, and surface roughness engineering have further optimized light delivery and side-emission. Tailoring the refractive index and nanoparticle distribution on fiber surfaces ensures precise evanescent wave propagation, enhancing photocatalytic performance. These advancements, coupled with scalable fabrication techniques, have positioned SEOFs as promising platforms for broad photochemical applications.By summarizing recent advances and identifying future needs, this Account positions SEOFs as a transformative approach to light-driven reactions, merging cutting-edge materials science with sustainable water treatment and energy production goals. This emerging technology offers immense potential to reshape photochemical processes for decentralized applications. Despite significant progress, challenges remain. Future research should focus on optimizing catalyst loading, improving uniformity in side emissions, and enhancing polymer durability for long-term operational stability. Additionally, scaling SEOF configurations to multifiber bundles and integrating them into decentralized water systems will be critical for broader adoption.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Han Fu
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Guangdong Provincial Key Laboratory of Wastewater Information Analysis and Early Warning, Beijing Normal University, Zhuhai 519087, China
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
2
|
Alidokht L, Fitzpatrick K, Butler C, Hunsucker KZ, Braga C, Maza WA, Fears KP, Arekhi M, Lanzarini-Lopes M. UV emitting glass: A promising strategy for biofilm inhibition on transparent surfaces. Biofilm 2024; 7:100186. [PMID: 38495771 PMCID: PMC10940134 DOI: 10.1016/j.bioflm.2024.100186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Marine biofouling causes serious environmental problems and has adverse impacts on the maritime industry. Biofouling on windows and optical equipment reduces surface transparency, limiting their application for on-site monitoring or continuous measurement. This work illustrates that UV emitting glasses (UEGs) can prevent the establishment and growth of biofilm on the illuminated surfaces. Specifically, this paper describes how UEGs are enabled by innovatively modifying the surfaces of the glass with light scattering particles. Modification of glass surface with silica nanoparticles at a concentration 26.5 μg/cm2 resulted in over ten-fold increase in UV irradiance, while maintaining satisfactory visible and IR transparency metrics of over 99 %. The UEG reduced visible biological growth by 98 % and resulted in a decrease of 1.79 log in detected colony forming units when compared to the control during a 20 day submersion at Port Canaveral, Florida, United States. These findings serve as strong evidence that UV emitting glass should be explored as a promising approach for biofilm inhibition on transparent surfaces.
Collapse
Affiliation(s)
- Leila Alidokht
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Katrina Fitzpatrick
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Caitlyn Butler
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Kelli Z. Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - Cierra Braga
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, USA
| | - William A. Maza
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Kenan P. Fears
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Marieh Arekhi
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| | - Mariana Lanzarini-Lopes
- Environmental and Water Resource Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, MA, USA
| |
Collapse
|
3
|
Zhao Z, Luo YH, Wang TH, Sinha S, Ling L, Rittmann B, Alvarez P, Perreault F, Westerhoff P. Phenotypic and Transcriptional Responses of Pseudomonas aeruginosa Biofilms to UV-C Irradiation via Side-Emitting Optical Fibers: Implications for Biofouling Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15736-15746. [PMID: 37802050 DOI: 10.1021/acs.est.3c04658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 μW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.
Collapse
Affiliation(s)
- Zhe Zhao
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Yi-Hao Luo
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
- Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Northeast Normal University, Changchun 130117, China
| | - Tzu-Heng Wang
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Shahnawaz Sinha
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Li Ling
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China
| | - Bruce Rittmann
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287-5701, United States
| | - Pedro Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - François Perreault
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Paul Westerhoff
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85287-3005, United States
| |
Collapse
|
4
|
Rho H, Yu P, Zhao Z, Lee CS, Chon K, Perreault F, Alvarez PJJ, Amy G, Westerhoff P. Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers. WATER RESEARCH 2022; 224:119094. [PMID: 36115159 DOI: 10.1016/j.watres.2022.119094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Biofouling of membrane surfaces poses significant operational challenges and costs for desalination and wastewater reuse applications. Ultraviolet (UV) light can control biofilms while reducing chemical usage and disinfection by-products, but light deliveries to membrane surfaces in spiral wound geometries has been a daunting challenge. Thin and flexible nano-enabled side-emitting optical fibers (SEOFs) are novel light delivery devices that enable disinfection or photocatalytic oxidation by radiating UV light from light-emitting diodes (LEDs). We envision SEOFs as an active membrane spacer to mitigate biofilm formation on reverse osmosis (RO) membranes. A lab-scale RO membrane apparatus equipped with SEOFs allowed comparison of UV-A (photocatalysis-enabled) versus UV-C (direct photolysis disinfection). Compared against systems without any light exposure, systems with UV-C light formed thinner-but denser-biofilms, prevented permeate flux declines due to biofouling, and maintained the highest salt rejection. Results were corroborated by in-situ optical coherence tomography and ex-situ measurements of biofilm growth on the membranes. Transcriptomic analysis showed that UV-C SEOFs down-regulated quorum sensing and surface attachment genes. In contrast, UV-A SEOFs upregulated quorum sensing, surface attachment, and oxidative stress genes, resulting in higher extracellular polymeric substances (EPS) accumulation on membrane surfaces. Overall, SEOFs that deliver a low fluence of UV-C light onto membrane surfaces are a promising non-chemical approach for mitigating biofouling formation on RO membranes.
Collapse
Affiliation(s)
- Hojung Rho
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA; Department of Environment Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyang-Daero, Ilsanseo-Gu, Goyang-Si, Gyeonggi-Do 10223, Republic of Korea.
| | - Pingfeng Yu
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77251, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhe Zhao
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA
| | - Chung-Seop Lee
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA
| | - Kangmin Chon
- Department of Environmental Engineering, College of Art, Culture, and Engineering, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA
| | - Pedro J J Alvarez
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77251, USA
| | - Gary Amy
- College of Engineering and Science, Clemson University, Clemson, SC 29634, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
5
|
Sahoo M, Panigrahi C, Aradwad P. Management strategies emphasizing advanced food processing approaches to mitigate food borne zoonotic pathogens in food system. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Monalisa Sahoo
- Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India
| | - Chirasmita Panigrahi
- Agricultural and Food Engineering Department Indian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Pramod Aradwad
- Division of Agricultural Engineering Indian Agricultural Research Institute New Delhi India
| |
Collapse
|
6
|
Elvis Cao X, Hong T, Hong S, Erickson D. Engineering waveguide surface by gradient etching for uniform light scattering in photocatalytic applications. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Westerhoff P, Alvarez PJ, Kim J, Li Q, Alabastri A, Halas NJ, Villagran D, Zimmerman J, Wong MS. Utilizing the Broad Electromagnetic Spectrum and Unique Nanoscale Properties for Chemical-Free Water Treatment. Curr Opin Chem Eng 2021; 33:100709. [PMID: 34804780 PMCID: PMC8597955 DOI: 10.1016/j.coche.2021.100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clean water is critical for drinking, industrial processes, and aquatic organisms. Existing water treatment and infrastructure are chemically-intensive and based on nearly century-old technologies that fail to meet modern large and decentralized communities. The next-generation of water processes can transition from outdated technologies by utilizing nanomaterials to harness energy from across the electromagnetic spectrum, enabling electrified and solar-based technologies. The last decade was marked by tremendous improvements in nanomaterial design, synthesis, characterization, and assessment of material properties. Realizing the benefits of these advances requires placing greater attention on embedding nanomaterials onto and into surfaces within reactors and applying external energy sources. This will allow nanomaterial-based processes to replace Victorian-aged, chemical intensive water treatment technologies.
Collapse
Affiliation(s)
- Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Arizona State University, Tempe, Arizona 85287-3005, United States
| | - Pedro J.J. Alvarez
- Civil and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Jaehong Kim
- Department of Chemical and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Qilin Li
- Civil and Environmental Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Alessandro Alabastri
- Department of Electrical and Computer Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, TX 77005
| | - Naomi J. Halas
- Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Department of Physics and Astronomy, Department of Chemistry, Rice University, Houston, Texas 77005
| | - Dino Villagran
- Department of Chemistry and Biochemistry, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Julie Zimmerman
- School of the Environment, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, CT 06511, USA
| | - Michael S. Wong
- Department of Chemical and Biomolecular Engineering, Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Rice University, Houston, Texas 77005, United States
| |
Collapse
|
8
|
Hynninen V, Chandra S, Das S, Amini M, Dai Y, Lepikko S, Mohammadi P, Hietala S, Ras RHA, Sun Z, Ikkala O. Luminescent Gold Nanocluster-Methylcellulose Composite Optical Fibers with Low Attenuation Coefficient and High Photostability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005205. [PMID: 33491913 DOI: 10.1002/smll.202005205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Because of their lightweight structure, flexibility, and immunity to electromagnetic interference, polymer optical fibers (POFs) are used in numerous short-distance applications. Notably, the incorporation of luminescent nanomaterials in POFs offers optical amplification and sensing for advanced nanophotonics. However, conventional POFs suffer from nonsustainable components and processes. Furthermore, the traditionally used luminescent nanomaterials undergo photobleaching, oxidation, and they can be cytotoxic. Therefore, biopolymer-based optical fibers containing nontoxic luminescent nanomaterials are needed, with efficient and environmentally acceptable extrusion methods. Here, such an approach for fibers wet-spun from aqueous methylcellulose (MC) dispersions under ambient conditions is demonstrated. Further, the addition of either luminescent gold nanoclusters, rod-like cellulose nanocrystals or gold nanocluster-cellulose nanocrystal hybrids into the MC matrix furnishes strong and ductile composite fibers. Using cutback attenuation measurement, it is shown that the resulting fibers can act as short-distance optical fibers with a propagation loss as low as 1.47 dB cm-1 . The optical performance is on par with or even better than some of the previously reported biopolymeric optical fibers. The combination of excellent mechanical properties (Young's modulus and maximum strain values up to 8.4 GPa and 52%, respectively), low attenuation coefficient, and high photostability makes the MC-based composite fibers excellent candidates for multifunctional optical fibers and sensors.
Collapse
Affiliation(s)
- Ville Hynninen
- Faculty of Engineering and Natural Sciences, Tampere University, P. O. Box 541, Tampere, FI-33101, Finland
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Sourov Chandra
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Mohammad Amini
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Sakari Lepikko
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Pezhman Mohammadi
- VTT Technical Research Centre, P. O. Box 1000, Espoo, FI-02044, Finland
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, P. O. Box 55, Helsinki, FI-00014, Finland
| | - Robin H A Ras
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- HYBER Centre of Excellence, Department of Applied Physics, Aalto University, P. O. Box 15100, Espoo, FI-00076, Finland
| |
Collapse
|
9
|
Serrà A, Philippe L, Perreault F, Garcia-Segura S. Photocatalytic treatment of natural waters. Reality or hype? The case of cyanotoxins remediation. WATER RESEARCH 2021; 188:116543. [PMID: 33137522 DOI: 10.1016/j.watres.2020.116543] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 05/08/2023]
Abstract
This review compiles recent advances and challenges in the photocatalytic treatment of natural water by analyzing the remediation of cyanotoxins. The review frames the treatment need based on the occurrence, geographical distribution, and legislation of cyanotoxins in drinking water while highlighting the underestimated global risk of cyanotoxins. Next, the fundamental principles of photocatalytic treatment for remediating cyanotoxins and the complex degradation pathway for the most widespread cyanotoxins are presented. The state-of-the-art and recent advances on photocatalytic treatment processes are critically discussed, especially the modification strategies involving TiO2 and the primary operational conditions that determine the scalability and integration of photocatalytic reactors. The relevance of light sources and light delivery strategies are shown, with emphasis on novel biomimicry materials design. Thereafter, the seldomly-addressed role of water-matrix components is thoroughly and critically explored by including natural organic matter and inorganic species to provide future directions in designing highly efficient strategies and scalable reactors.
Collapse
Affiliation(s)
- Albert Serrà
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland.
| | - Laetitia Philippe
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Mechanics of Materials and Nanostructures, Feuerwerkerstrasse 39, CH-3602 Thun, Switzerland
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment. School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005, USA.
| |
Collapse
|
10
|
Vandekerckhove B, Missinne J, Vonck K, Bauwens P, Verplancke R, Boon P, Raedt R, Vanfleteren J. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. MICROMACHINES 2020; 12:38. [PMID: 33396287 PMCID: PMC7824489 DOI: 10.3390/mi12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.
Collapse
Affiliation(s)
- Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Pieter Bauwens
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Rik Verplancke
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| |
Collapse
|
11
|
Murchio S, Ding Y, Speranza G, Sorarù GD, Maniglio D. Ultrasound-Assisted Hydroxyapatite-Decorated Breath-Figure Polymer-Derived Ceramic Coatings for Ti6Al4V Substrates. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50772-50783. [PMID: 33108160 PMCID: PMC8016169 DOI: 10.1021/acsami.0c08849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The introduction of nanoparticles (NPs) into the breath-figure-templated self-assembly (BFTSA) process is an increasingly common method to selectively decorate a surface porous structure. In the field of prosthetic devices, besides controlling the morphology and roughness of the structure, NPs can enhance the osteointegration mechanism because of their specific ion release. Among the most widely used NPs, there are silica and hydroxyapatite (HAp). In this work, we propose a novel one-stage method to fabricate NP-decorated surface porous structures that are suitable for prosthetic coating applications. This technique combines the classical direct BFTSA process with the cavitation effect induced by an ultrasonic atomizer that generates a mist of water droplets with embedded NPs. Coatings were successfully obtained by combining a UV cross-linkable polymer precursor, alkoxy silicone, with synthesized HAp NPs, on Ti6Al4V alloy discs. The cross-linked polymeric surface porous structures at selected concentrations were then pyrolyzed in an ammonia atmosphere to obtain a silicon oxynitride (SiON) ceramic coating. Herein, we report the chemical and morphological analyses of both the polymeric and ceramic coatings as well as the effect of NPs at the interface.
Collapse
Affiliation(s)
- Simone Murchio
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
- BIOtech, Center for Biomedical Technologies, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Yifu Ding
- Department of Mechanical Engineering, University
of Colorado, 427 UCB, Boulder, Colorado 80309-0427, United States
| | - Giorgio Speranza
- Fondazione
Bruno Kessler, Via Sommarive 18, Povo, 38123 Trento, Italy
- Institute of Photonics
and Nanotechnologies—CNR, Via alla Cascata 56/C Povo, 38123 Trento, Italy
| | - Gian Domenico Sorarù
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
| | - Devid Maniglio
- Department of Industrial
Engineering, University of Trento, Via Sommarive 9, Povo, 38123 Trento, Italy
- BIOtech, Center for Biomedical Technologies, University of Trento, Via delle Regole 101, 38123 Trento, Italy
- . Phone: (+39) 0461 282751
| |
Collapse
|
12
|
Lanzarini-Lopes M, Zhao Z, Perreault F, Garcia-Segura S, Westerhoff P. Germicidal glowsticks: Side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces. WATER RESEARCH 2020; 184:116191. [PMID: 32721764 DOI: 10.1016/j.watres.2020.116191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
This paper investigates using UV-C side-emitting optical fibers (SEOFs) to prevent growth of pathogenic bacteria (Pseudomonas aeruginosa and Escherichia coli) on nutrient-rich surfaces. Attaching a SEOF to a single 265 nm light emitting diode (LED) increases irradiation area by >1000x and provides continuous low-irradiance of UV-C light to a large surface area. A zone-of-inhibition protocol was developed to quantify bacterial growth prevention on an agar plate around one SEOF. The inhibition zone increased linearly with irradiance time until achieving a maximum inhibition zone of 2.5 to 3 cm, which received ~ 4.3 mJ/cm2 of 265 nm light in 2 hours. The surviving lawn edge bacterial colonies did not develop UV resistance after two generations of exposure. The agar plate remained bio-available after UV exposure, and bacteria could be grown on pre-illuminated area in the absence of UV-C light. Whereas we previously demonstrated SEOFs can inactivate planktonic bacteria, herein we show the ability of SEOFs to prevent bacteria growth on surfaces. This is the first step towards developing technologies with multiple SEOFs to inhibit biofilm growth on surfaces, which is a ubiquitous challenge across multiple applications from membrane surfaces to surfaces in pipes or water storage systems.
Collapse
Affiliation(s)
- Mariana Lanzarini-Lopes
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Zhe Zhao
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA.
| |
Collapse
|
13
|
Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115892] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|