1
|
He Y, Wang Z, Zhu J, Lin X, Qi J. Soil Carbon Sequestration: Role of Fe Oxides and Polyphenol Oxidase Across Temperature and Cultivation Systems. PLANTS (BASEL, SWITZERLAND) 2025; 14:927. [PMID: 40265840 PMCID: PMC11945063 DOI: 10.3390/plants14060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
The "enzyme latch" and "Fe gate" mechanisms are crucial factors influencing soil carbon sequestration capacity, playing a key role in understanding the dynamic changes in soil organic carbon (SOC). However, there is a lack of research regarding polyphenol oxidase (PPO) activity and the concentration of iron oxides in paddy soils under varying incubating temperatures and cultivation practices. This study was conducted over three years in a double-cropping rice area in southern China, incorporating systematic soil sampling to measure PPO activity, Fe oxide concentration, and basic physicochemical properties. The results showed that temperature did not significantly affect either PPO activity or the concentration of Fe oxides. Additionally, compared to conventional management (CK), organic management led to a decrease in Fe oxides (Fe bound to organic matter, reactive Fe, and total free Fe) by 19.1%, 16.2%, and 13.7%, respectively (p < 0.05). At the same time, PPO activity did not show any significant changes. Our results indicated that short-term (5 weeks) incubation temperature did not affect PPO activity or Fe oxides, while organic farming decreased Fe oxides without influencing PPO activity. PPO activity increased with the length of the incubation period.
Collapse
Affiliation(s)
| | | | | | | | - Jianying Qi
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (Z.W.); (J.Z.); (X.L.)
| |
Collapse
|
2
|
Bartak D, Říha J, Dudáš D, Gallus P, Bedrníková E, Kašpar V, Černá K. Bentonite sterilization methods in relation to geological disposal of radioactive waste: comparative efficiency of dry heat and gamma radiation. J Appl Microbiol 2025; 136:lxaf051. [PMID: 40042982 DOI: 10.1093/jambio/lxaf051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
AIMS This study evaluates the effectiveness of two standard sterilization methods on microorganisms in bentonite, which is proposed as a buffer around metal canisters containing long-lived radioactive waste. Bentonite, as a natural clay, contains microorganisms with enhanced resistance to harsh conditions and the ability to reactivate upon decompaction. Sterile controls are crucial in experiments estimating the impact of microorganisms on nuclear waste repositories. Yet, the effectiveness of common sterilization methods on bentonite microorganisms has not been fully evaluated. METHODS AND RESULTS Two methods were compared: dry heat (nine cycles at 121°C for 4 h) and gamma irradiation (10-140 kGy at 147 Gy·min-1). Molecular-genetic, microscopic, and cultivation techniques were used to assess sterilization. Heat sterilization did not eliminate heat-resistant microorganisms, such as Bacillus, Paenibacillus, and Terribacillus, from bentonite powder even after nine heat cycles. However, bentonite suspended in deionized water was sterile after four heat cycles. In contrast, gamma irradiation effectively reduced microbial survivability above a dose of 10 kGy, with the highest doses (100-140 kGy) potentially degrading DNA. CONCLUSIONS Gamma irradiation at 30 kGy effectively sterilized bentonite powder. The findings of our experiments emphasize the importance of using appropriate sterilization methods to maintain sterile controls in experiments that evaluate the microbial impacts in nuclear waste repositories. However, further assessment is needed to determine the effects of potential alterations induced by gamma radiation on bentonite properties.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| | - Denis Dudáš
- Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 78/7, 115 19 Prague, Czech Republic
- Research and Development Department, UJP PRAHA a.s., Nad Kamínkou 1345, 156 00 Prague, Czech Republic
| | - Petr Gallus
- Research and Development Department, UJP PRAHA a.s., Nad Kamínkou 1345, 156 00 Prague, Czech Republic
| | - Eva Bedrníková
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, 250 68 Husinec, Czech Republic
| | - Vlastislav Kašpar
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, 250 68 Husinec, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01 Liberec, Czech Republic
| |
Collapse
|
3
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Lazuen-Lopez G, Aranda E, Vilchez-Vargas R, Solari PL, Ju-Nam Y, Jroundi F, Ojeda JJ, Merroun ML. Dual effect of Se(IV) and bentonite microbial community interactions on the corrosion of copper and Se speciation: Implication on repository safety assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178613. [PMID: 39889575 DOI: 10.1016/j.scitotenv.2025.178613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
The Deep Geological Repository (DGR) design, the internationally safest option for the long-term disposal of high-level radioactive waste (HLW), features metal canisters encased in compacted bentonite clay and embedded deep within a host rock. Despite presenting a hostile environment for microorganisms, DGRs scenarios with favorable microbial-activity conditions must be considered for the safety assessment of this disposal. This study investigated the impact of Se(IV), as a natural analogue of 79Se present in the HLW, in anoxic microcosms of bentonite slurry spiked with a bacterial consortium and amended with lactate, acetate, and sulfate as electron donors/acceptor. The addition of the bacterial consortium promoted the rate of Se(IV) reduction to Se(0), while the tyndallization (heat-shock) of bentonite slowed this process. Se(IV) reduced the relative abundance of most genera of sulfate-reducing bacteria (SRB), while stimulating the abundance of Se-tolerant bacteria, which played an important role in Se(IV) reduction. Moreover, it was observed that lactate was the preferred electron donor, linking to the production and subsequent consumption of acetate. X-ray absorption spectroscopy (XAS) and high-resolution transmission electron microscopy (HRTEM) revealed the reduction of Se(IV) forming amorphous Se(0) nanospheres. In addition, HRTEM showed that the biogenic Se(0) undergo a biotransformation to more stable crystalline forms, contributing to the immobilization of Se in the case of HLW release. Additionally, the sulfide generated by the activity of SRB reacted with Cu producing corrosion products (CuxS) on the surface of the copper material.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | | | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Granada, Spain
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Pier L Solari
- MARS Beamline, Synchrotron SOLEIL, L' Orme des Merisiers, Départementale 128, Saint-Aubin, France
| | - Yon Ju-Nam
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
4
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Aranda E, Vilchez-Vargas R, Jroundi F, Ojeda JJ, Merroun ML. Microbial influence in Spanish bentonite slurry microcosms: Unveiling a-year long geochemical evolution and early-stage copper corrosion related to nuclear waste repositories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124491. [PMID: 38964646 DOI: 10.1016/j.envpol.2024.124491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The deep geological repository (DGR) concept consists of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed deeply into a geological formation. Here, bentonite slurry microcosms with copper canisters, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of the copper canisters in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while the heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate, which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides, which could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of H2O) to copper sulfide (Cu2S), were identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Elisabet Aranda
- Institute of Water Research, Department of Microbiology, University of Granada, Granada, Spain
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
| | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Sushko V, Dressler M, Wei STS, Neubert T, Kühn L, Cherkouk A, Stumpf T, Matschiavelli N. No signs of microbial-influenced corrosion of cast iron and copper in bentonite microcosms after 400 days. CHEMOSPHERE 2024; 364:143007. [PMID: 39098347 DOI: 10.1016/j.chemosphere.2024.143007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
High-level radioactive waste needs to be safely stored for a long time in a deep geological repository by using a multi-barrier system. In this system, suitable barrier materials are selected that ideally show long-term stability to prevent early radionuclide release into the biosphere. In this study, different container matals (copper and cast iron) and pore water compositions (Opalinus Clay pore water and saline cap rock solution) were combined with Bavarian bentonite in static batch experiments to investigate microbial-influenced corrosion. The increasing concentration of iron and copper in the solution as well as detected corrosion products on the metal surface are indicative of anaerobic corrosion of the respective metals during an incubation of 400 days at 37 °C. However, although the intrinsic microbial bentonite community was stimulated with either lactate or H2, an acceleration of cast iron- and copper corrosion did not occur. Furthermore, neither corrosive bacteria nor conventional bacterial corrosion products, such as metal sulfides, were detected in any of the analyzed samples. The analyses of geochemical parameters (e.g. ferrous iron-, iron-, copper- and potassium concentrations as well as redox potentials) showed significant changes in some cast iron- and copper-containing setups, but these changes did not correlate with the microbial community structure in the respective microcosms, as confirmed by statistical analyses. Hence, the analyzed Bavarian bentonite (type B25) showed no significant contribution to cast iron and copper corrosion under the applied conditions after 400 days of incubation. From this perspective, bentonite B25 could be a suitable candidate as a geotechnical barrier in future repositories.
Collapse
Affiliation(s)
- Vladyslav Sushko
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Magdalena Dressler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sean Ting-Shyang Wei
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Tom Neubert
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Luise Kühn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Nicole Matschiavelli
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
6
|
Bartak D, Šachlová Š, Kašpar V, Říha J, Dobrev D, Večerník P, Hlaváčková V, Matulová M, Černá K. Dramatic loss of microbial viability in bentonite exposed to heat and gamma radiation: implications for deep geological repository. World J Microbiol Biotechnol 2024; 40:264. [PMID: 38990244 PMCID: PMC11239606 DOI: 10.1007/s11274-024-04069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Bentonite is an integral part of the engineered barrier system (EBS) in deep geological repositories (DGR) for nuclear waste, but its indigenous microorganisms may jeopardize long-term EBS integrity. To predict microbial activity in DGRs, it is essential to understand microbial reactions to the early hot phase of DGR evolution. Two bentonites (BCV and MX-80) with varied bentonite/water ratios and saturation levels (compacted to 1600 kg.m- 3 dry density/powder/suspension), were subjected to heat (90-150 °C) and irradiation (0.4 Gy.h- 1) in the long-term experiments (up to 18 months). Molecular-genetic, microscopic, and cultivation-based techniques assessed microbial survivability. Exposure to 90 °C and 150 °C notably diminished microbial viability, irrespective of bentonite form, with negligible impacts from irradiation or sample type compared to temperature. Bentonite powder samples exhibited microbial recovery after 90 °C heating for up to 6 months but not 12 months in most cases; exposure to 150 °C had an even stronger effect. Further long-term experiments at additional temperatures combined with the mathematical prediction of temperature evolution in DGR are recommended to validate the possible evolution and spatial distribution of microbially depleted zones in bentonite buffer around the waste canisters and refine predictions of microbial effects over time in the DGR.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Šárka Šachlová
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Vlastislav Kašpar
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - David Dobrev
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Petr Večerník
- Disposal Processes and Safety, ÚJV Řež, a. s., Hlavní 130, Husinec, 250 68, Czech Republic
| | - Veronika Hlaváčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic
| | - Michaela Matulová
- Radioactive Waste Repository Authority, SÚRAO, Dlážděná 6, Prague, 11000, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, Liberec, 460 01, Czech Republic.
| |
Collapse
|
7
|
Martinez-Moreno MF, Povedano-Priego C, Mumford AD, Morales-Hidalgo M, Mijnendonckx K, Jroundi F, Ojeda JJ, Merroun ML. Microbial responses to elevated temperature: Evaluating bentonite mineralogy and copper canister corrosion within the long-term stability of deep geological repositories of nuclear waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170149. [PMID: 38242445 DOI: 10.1016/j.scitotenv.2024.170149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Deep Geological Repositories (DGRs) consist of radioactive waste contained in corrosion-resistant canisters, surrounded by compacted bentonite clay, and buried few hundred meters in a stable geological formation. The effects of bentonite microbial communities on the long-term stability of the repository should be assessed. This study explores the impact of harsh conditions (60 °C, highly-compacted bentonite, low water activity), and acetate:lactate:sulfate addition, on the evolution of microbial communities, and their effect on the bentonite mineralogy, and corrosion of copper material under anoxic conditions. No bentonite illitization was observed in the treatments, confirming its mineralogical stability as an effective barrier for future DGR. Anoxic incubation at 60 °C reduced the microbial diversity, with Pseudomonas as the dominant genus. Culture-dependent methods showed survival and viability at 60 °C of moderate-thermophilic aerobic bacterial isolates (e.g., Aeribacillus). Despite the low presence of sulfate-reducing bacteria in the bentonite blocks, we proved their survival at 30 °C but not at 60 °C. Copper disk's surface remained visually unaltered. However, in the acetate:lactate:sulfate-treated samples, sulfide/sulfate signals were detected, along with microbial-related compounds. These findings offer new insights into the impact of high temperatures (60 °C) on the biogeochemical processes at the compacted bentonite/Cu canister interface post-repository closure.
Collapse
Affiliation(s)
| | | | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mar Morales-Hidalgo
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | | | - Fadwa Jroundi
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Mohamed L Merroun
- Faculty of Sciences, Department of Microbiology, University of Granada, Granada, Spain
| |
Collapse
|
8
|
Park SY, Zhang Y, O'Loughlin EJ, Jo HY, Kwon JS, Kwon MJ. Temperature-dependent microbial reactions by indigenous microbes in bentonite under Fe(III)- and sulfate-reducing conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133318. [PMID: 38154187 DOI: 10.1016/j.jhazmat.2023.133318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
Bentonite is a promising buffer material for constructing spent nuclear fuel (SNF) repositories. However, indigenous microbes in bentonite can be introduced to the repository and subsequent sealing of the repository develops anoxic conditions over time which may stimulate fermentation and anaerobic respiration, possibly affecting bentonite structure and SNF repository stability. Moreover, the microbial activity in the bentonite can be impacted by the heat generated from radionuclides decay. Therefore, to investigate the temperature effect on microbial activities in bentonite, we created microcosms with WRK bentonil (a commercial bentonite) using lactate as the electron donor, and sulfate and/or ferrihydrite (Fe(III)) as electron acceptors with incubation at 18 ℃ and 50 ℃. Indigenous WRK microbes reduced sulfate and Fe(III) at both temperatures but with different rates and extents. Lactate was metabolized to acetate at both temperatures, but only to propionate at 18 ℃ during early-stage microbial fermentation. More Fe(III)-reduction at 18 ℃ but more sulfate-reduction at 50 ℃ was observed. Thermophilic and/or metabolically flexible microbes were involved in both fermentation and Fe(III)/sulfate reduction. Our findings illustrate the necessity of considering the influence of temperature on microbial activities when employing bentonite as an engineered buffer material in construction of SNF repository barriers.
Collapse
Affiliation(s)
- Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | | | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon 34057, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
9
|
Bartak D, Bedrníková E, Kašpar V, Říha J, Hlaváčková V, Večerník P, Šachlová Š, Černá K. Survivability and proliferation of microorganisms in bentonite with implication to radioactive waste geological disposal: strong effect of temperature and negligible effect of pressure. World J Microbiol Biotechnol 2023; 40:41. [PMID: 38071262 PMCID: PMC10710388 DOI: 10.1007/s11274-023-03849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
As bentonite hosts a diverse spectrum of indigenous microorganisms with the potential to influence the long-term stability of deep geological repositories, it is essential to understand the factors influencing microbial activity under repository conditions. Here, we focus on two factors, i.e., temperature and swelling pressure, using a suspension of Cerny Vrch bentonite to boost microbial activity and evaluate microbial response. Suspensions were exposed either to different pressures (10, 12 and 15 MPa; to simulate the effect of swelling pressure) or elevated temperatures (60, 70, 80 and 90 °C; to simulate the effect of cannister heating) for four weeks. Each treatment was followed by a period of anaerobic incubation at atmospheric pressure/laboratory temperature to assess microbial recovery after treatment. Microbial load and community structure were then estimated using molecular-genetic methods, with presence of living cells confirmed through microscopic analysis. Our study demonstrated that discrete application of pressure did not influence on overall microbial activity or proliferation, implying that pressure evolution during bentonite swelling is not the critical factor responsible for microbial suppression in saturated bentonites. However, pressure treatment caused significant shifts in microbial community structure. We also demonstrated that microbial activity decreased with increasing temperature, and that heat treatment strongly influenced bentonite microbial community structure, with several thermophilic taxa identified. A temperature of 90 °C proved to be limiting for microbial activity and proliferation in all bentonite suspensions. Our study emphasizes the crucial role of a deep understanding of microbial activity under repository-relevant conditions in identifying possible strategies to mitigate the microbial potential within the deep geological repository and increase its long-term stability and safety.
Collapse
Affiliation(s)
- Deepa Bartak
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01, Liberec, Czech Republic
| | - Eva Bedrníková
- Disposal processes and safety, ÚJV Řež, a. s., Hlavní 130, 250 68, Husinec, Czech Republic
| | - Vlastislav Kašpar
- Disposal processes and safety, ÚJV Řež, a. s., Hlavní 130, 250 68, Husinec, Czech Republic
| | - Jakub Říha
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01, Liberec, Czech Republic
| | - Veronika Hlaváčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01, Liberec, Czech Republic
| | - Petr Večerník
- Disposal processes and safety, ÚJV Řež, a. s., Hlavní 130, 250 68, Husinec, Czech Republic
| | - Šárka Šachlová
- Disposal processes and safety, ÚJV Řež, a. s., Hlavní 130, 250 68, Husinec, Czech Republic
| | - Kateřina Černá
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 7, 460 01, Liberec, Czech Republic.
| |
Collapse
|
10
|
Butterworth SJ, Barton F, Lloyd JR. Extremophilic microbial metabolism and radioactive waste disposal. Extremophiles 2023; 27:27. [PMID: 37839067 PMCID: PMC10577106 DOI: 10.1007/s00792-023-01312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023]
Abstract
Decades of nuclear activities have left a legacy of hazardous radioactive waste, which must be isolated from the biosphere for over 100,000 years. The preferred option for safe waste disposal is a deep subsurface geological disposal facility (GDF). Due to the very long geological timescales required, and the complexity of materials to be disposed of (including a wide range of nutrients and electron donors/acceptors) microbial activity will likely play a pivotal role in the safe operation of these mega-facilities. A GDF environment provides many metabolic challenges to microbes that may inhabit the facility, including high temperature, pressure, radiation, alkalinity, and salinity, depending on the specific disposal concept employed. However, as our understanding of the boundaries of life is continuously challenged and expanded by the discovery of novel extremophiles in Earth's most inhospitable environments, it is becoming clear that microorganisms must be considered in GDF safety cases to ensure accurate predictions of long-term performance. This review explores extremophilic adaptations and how this knowledge can be applied to challenge our current assumptions on microbial activity in GDF environments. We conclude that regardless of concept, a GDF will consist of multiple extremes and it is of high importance to understand the limits of polyextremophiles under realistic environmental conditions.
Collapse
Affiliation(s)
- Sarah Jane Butterworth
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK
| | - Franky Barton
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| | - Jonathan Richard Lloyd
- Department of Earth and Environmental Sciences, Research Centre for Radwaste Disposal and Williamson Research Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Hilpmann S, Moll H, Drobot B, Vogel M, Hübner R, Stumpf T, Cherkouk A. Europium(III) as luminescence probe for interactions of a sulfate-reducing microorganism with potentially toxic metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115474. [PMID: 37716067 DOI: 10.1016/j.ecoenv.2023.115474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Microorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344T, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste. D. hippei DSM 8344T showed a weak interaction with Eu(III), most likely due to a complexation with lactate in artificial Opalinus Clay pore water. Hence, a low removal of the lanthanide from the supernatant was observed. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy revealed a bioprecipitation of Eu(III) with phosphates potentially excreted from the cells. This demonstrates that the ongoing interaction mechanisms are more complex than a simple biosorption process. The bioprecipitation was also verified by luminescence spectroscopy, which showed that the formation of the Eu(III) phosphate compounds starts almost immediately after the addition of the cells. Moreover, chemical microscopy provided information on the local distribution of the different Eu(III) species in the formed cell aggregates. These results provide first insights into the interaction mechanisms of Eu(III) with sulfate-reducing bacteria and contribute to a comprehensive safety concept for a high-level radioactive waste repository, as well as to a better understanding of the fate of heavy metals (especially rare earth elements) in the environment.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Henry Moll
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Manja Vogel
- VKTA - Strahlenschutz, Analytik & Entsorgung Rossendorf e. V., Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
12
|
Martinez-Moreno MF, Povedano-Priego C, Morales-Hidalgo M, Mumford AD, Ojeda JJ, Jroundi F, Merroun ML. Impact of compacted bentonite microbial community on the clay mineralogy and copper canister corrosion: a multidisciplinary approach in view of a safe Deep Geological Repository of nuclear wastes. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131940. [PMID: 37390682 DOI: 10.1016/j.jhazmat.2023.131940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Deep Geological Repository (DGR) is the preferred option for the final disposal of high-level radioactive waste. Microorganisms could affect the safety of the DGR by altering the mineralogical properties of the compacted bentonite or inducing the corrosion of the metal canisters. In this work, the impact of physicochemical parameters (bentonite dry density, heat shock, electron donors/acceptors) on the microbial activity, stability of compacted bentonite and corrosion of copper (Cu) discs was investigated after one-year anoxic incubation at 30 ºC. No-illitization in the bentonite was detected confirming its structural stability over 1 year under the experimental conditions. The microbial diversity analysis based on 16 S rRNA gene Next Generation Sequencing showed slight changes between the treatments with an increase of aerobic bacteria belonging to Micrococcaceae and Nocardioides in heat-shock tyndallized bentonites. The survival of sulfate-reducing bacteria (the main source of Cu anoxic corrosion) was demonstrated by the most probable number method. The detection of CuxS precipitates on the surface of Cu metal in the bentonite/Cu metal samples amended with acetate/lactate and sulfate, indicated an early stage of Cu corrosion. Overall, the outputs of this study help to better understand the predominant biogeochemical processes at the bentonite/Cu canister interface upon DGR closure.
Collapse
Affiliation(s)
| | | | - Mar Morales-Hidalgo
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Adam D Mumford
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Jesus J Ojeda
- Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - Fadwa Jroundi
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
13
|
Hilpmann S, Rossberg A, Steudtner R, Drobot B, Hübner R, Bok F, Prieur D, Bauters S, Kvashnina KO, Stumpf T, Cherkouk A. Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344 T. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162593. [PMID: 36889400 DOI: 10.1016/j.scitotenv.2023.162593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Microbial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344T, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D. hippei DSM 8344T showed a relatively fast removal of uranium from the supernatants in artificial Opalinus Clay pore water, but no removal in 30 mM bicarbonate solution. Combined speciation calculations and luminescence spectroscopic investigations showed the dependence of U(VI) reduction on the initial U(VI) species. Scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy showed uranium-containing aggregates on the cell surface and some membrane vesicles. By combining different spectroscopic techniques, including UV/Vis spectroscopy, as well as uranium M4-edge X-ray absorption near-edge structure recorded in high-energy-resolution fluorescence-detection mode and extended X-ray absorption fine structure analysis, the partial reduction of U(VI) could be verified, whereby the formed U(IV) product has an unknown structure. Furthermore, the U M4 HERFD-XANES showed the presence of U(V) during the process. These findings offer new insights into U(VI) reduction by sulfate-reducing bacteria and contribute to a comprehensive safety concept for a repository for high-level radioactive waste.
Collapse
Affiliation(s)
- Stephan Hilpmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - André Rossberg
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Robin Steudtner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Björn Drobot
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Dresden, Germany
| | - Frank Bok
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Damien Prieur
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Stephen Bauters
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Kristina O Kvashnina
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany; Rossendorf Beamline (BM20-ROBL), European Synchrotron Radiation Facility, Grenoble, France
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Andrea Cherkouk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstraße 400, 01328 Dresden, Germany.
| |
Collapse
|
14
|
Grigoryan AA, Jalique DR, Stroes-Gascoyne S, Wolfaardt GM, Keech PG, Korber DR. Prediction of bacterial functional diversity in clay microcosms. Heliyon 2021; 7:e08131. [PMID: 34703919 PMCID: PMC8524152 DOI: 10.1016/j.heliyon.2021.e08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 12/02/2022] Open
Abstract
Microorganisms in clay barriers could affect the long-term performance of waste containers in future deep geological repositories (DGR) for used nuclear fuel through production of corrosive metabolites (e.g., sulfide), which is why clay materials are highly compacted: to reduce both physical space and access to water for microorganisms to grow. However, the highly compacted nature of clays and the resulting low activity or dormancy of microorganisms complicate the extraction of biomarkers (i.e., PLFA, DNA etc.) from such barriers for predictive analysis of microbial risks. In order to overcome these challenges, we have combined culture- and 16S rRNA gene amplicon sequencing-based approaches to describe the functional diversity of microorganisms in several commercial clay products, including two different samples of Wyoming type MX-80 bentonite (Batch 1 and Batch 2), the reference clay for a future Canadian DGR, and Avonlea type Canaprill, a clay sample for comparison. Microorganisms from as-received bentonites were enriched in anoxic 10% w/v clay microcosms for three months at ambient temperature with addition of 10% hydrogen along with presumable indigenous organics and sulfate in the clay. High-throughput sequencing of 16S rRNA gene fragments indicated a high abundance of Gram-positive bacteria of the phylum Firmicutes (82%) in MX-80 Batch 1 incubations. Bacterial libraries from microcosms with MX-80 Batch 2 were enriched with Firmicutes (53%) and Chloroflexi (43%). Firmicutes also significantly contributed (<15%) to the bacterial community in Canaprill clay microcosm, which was dominated by Gram-negative Proteobacteria (>70%). Sequence analysis revealed presence of the bacterial families Peptostreptococcaceae, Clostridiaceae, Peptococcaceae, Bacillaceae, Enterobacteriaceae, Veillonellaceae, Tissierellaceae and Planococcaceae in MX-80 Batch 1 incubations; Bacillaceae, along with unidentified bacteria of the phylum Chloroflexi, in MX-80 Batch 2 clay microcosms, and Pseudomonadaceae, Hydrogenophilaceae, Bacillaceae, Desulfobacteraceae, Desulfobulbaceae, Peptococcaceae, Pelobacteraceae, Alcaligenaceae, Rhodospirillaceae in Canaprill microcosms. Exploration of potential metabolic pathways in the bacterial communities from the clay microcosms suggested variable patterns of sulfur cycling in the different clays with the possible prevalence of bacterial sulfate-reduction in MX-80 bentonite, and probably successive sulfate-reduction/sulfur-oxidation reactions in Canaprill microcosms. Furthermore, analysis of potential metabolic pathways in the bentonite enrichments suggested that bacteria with acid-producing capabilities (i.e., fermenters and acetogens) together with sulfide-producing prokaryotes might perhaps contribute to corrosion risks in clay systems. However, the low activity or dormancy of microorganisms in highly compacted bentonites as a result of severe environmental constraints (e.g., low water activity and high swelling pressure in the confined bentonite) in situ would be expected to largely inhibit bacterial activity in highly compacted clay-based barriers in a future DGR.
Collapse
Affiliation(s)
- Alexander A. Grigoryan
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
- Saudi Arabian Oil Company, Dhahran, Saudi Arabia
| | - Daphne R. Jalique
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
- Lallemand Inc., Saskatoon, Canada
| | - Simcha Stroes-Gascoyne
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Gideon M. Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- Department of Microbiology, University of Stellenbosch, Cape Town, South Africa
| | | | - Darren R. Korber
- Department of Food and Bioproducts Sciences, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
15
|
Bentonite Alteration in Batch Reactor Experiments with and without Organic Supplements: Implications for the Disposal of Radioactive Waste. MINERALS 2021. [DOI: 10.3390/min11090932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bentonite is currently proposed as a potential backfill material for sealing high-level radioactive waste in underground repositories due to its low hydraulic conductivity, self-sealing ability and high adsorption capability. However, saline pore waters, high temperatures and the influence of microbes may cause mineralogical changes and affect the long-term performance of the bentonite barrier system. In this study, long-term static batch experiments were carried out at 25 °C and 90 °C for one and two years using two different industrial bentonites (SD80 from Greece, B36 from Slovakia) and two types of aqueous solutions, which simulated (a) Opalinus clay pore water with a salinity of 19 g·L−1, and (b) diluted cap rock solution with a salinity of 155 g·L−1. The bentonites were prepared with and without organic substrates to study the microbial community and their potential influence on bentonite mineralogy. Smectite alteration was dominated by metal ion substitutions, changes in layer charge and delamination during water–clay interaction. The degree of smectite alteration and changes in the microbial diversity depended largely on the respective bentonite and the experimental conditions. Thus, the low charged SD80 with 17% tetrahedral charge showed nearly no structural change in either of the aqueous solutions, whereas B36 as a medium charged smectite with 56% tetrahedral charge became more beidellitic with increasing temperature when reacted in the diluted cap rock solution. Based on these experiments, the alteration of the smectite is mainly attributed to the nature of the bentonite, pore water chemistry and temperature. A significant microbial influence on the here analyzed parameters was not observed within the two years of experimentation. However, as the detected genera are known to potentially influence geochemical processes, microbial-driven alteration occurring over longer time periods cannot be ruled out if organic nutrients are available at appropriate concentrations.
Collapse
|