1
|
Zeng K, Liu L, Zheng N, Yu Y, Xu S, Yao H. Iron at the helm: Steering arsenic speciation through redox processes in soils. ENVIRONMENTAL RESEARCH 2025; 274:121327. [PMID: 40058542 DOI: 10.1016/j.envres.2025.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The toxicity and bioavailability of arsenic (As) in soils are largely determined by its speciation. Iron (Fe) is widely present in soils with a strong affinity for As, and therefore the environmental behaviors of As and Fe oxides (including oxides, hydrates and hydrated oxides) are closely correlated with each other. The redox fluctuations of Fe driven by changes in the environment can significantly affect As speciation and its fate in soils. The interaction between Fe and As has garnered widespread attention, and the adsorption mechanisms of As by Fe oxides have also been well-documented. However, there is still a lack of systematic understanding of how Fe redox dynamics affects As speciation depending on the soil environmental conditions. In this review, we summarize the mechanisms for As speciation transformation and redistribution, as well as the role of environmental factors in the main Fe redox processes in soils. These processes include the biotic Fe oxidation mediated by Fe-oxidizing bacteria, abiotic Fe oxidation by oxygen or manganese oxides, dissimilatory Fe reduction mediated by Fe-reducing bacteria, and Fe(II)-catalyzed transformation of Fe oxides. This review contributes to a deeper understanding of the environmental behaviors of Fe and As in soils, and provides theoretical guidance for the development of remediation strategies for As-contaminated soils.
Collapse
Affiliation(s)
- Keman Zeng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lihu Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
2
|
Wang C, Ying C, Wang W, Zhou S, Wan B, Tan W, Feng X. Sunlight-Driven Transformation of Ferrihydrite via Ligand-to-Metal Charge Transfer: The Critical Factors and Arsenic Repartitioning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6567-6578. [PMID: 40152612 DOI: 10.1021/acs.est.4c11046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Ferrihydrite, a poorly ordered metastable iron oxide, is closely associated with dissolved organic matter (DOM) in soils and sediments. Although sunlight-induced photoreductive dissolution of ferrihydrite via ligand-to-metal charge transfer (LMCT) has been extensively studied, its potential impacts on mineralogical transformation and environmental behaviors of coexisting contaminants remain largely unknown. Here, we systematically investigated the effects of environmental parameters (e.g., solution pH, pO2 level, arsenic speciation, and content) on ferrihydrite transformation with the representative DOM-oxalate under simulated solar irradiation. Results showed that the oxalate-mediated LMCT process synchronously initiated Fe(II) production and proton consumption, the latter of which facilitated interfacial electron transfer and atom exchange (IET-AEFh-Fe2+) processes among ferrihydrite and newly formed Fe(II). At pH 5.0-8.0, ferrihydrite was prone to transform into goethite due to sufficient Fe(II) (approximately 80-2700 μM) from LMCToxa and enough affinity of Fe(II) with mineral to trigger IET-AEFh-Fe2+, while it only underwent reductive dissolution at pH 3.0-5.0 or kept a quasi-steady state over pH 8.0. Increasing the pO2 level and arsenic content hampered the recrystallization of ferrihydrite by reducing Fe(II) duration or altering the surface property of ferrihydrite, whereas the presence of As(III/V) also led to the formation of lepidocrocite with As(V) being more prominent. Additionally, chemical extraction and As K-edge EXAFS spectroscopy revealed that As was consecutively incorporated into the structures of goethite and lepidocrocite in the form of As(V) regardless of primary As speciation. These findings shed novel insights into low-crystalline iron oxide transformation and element migration driven by sunlight in natural environments.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaoyun Ying
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Department of Geography and Spatial Information Techniques, Zhejiang Collaborative Innovation Center & Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo 315211, China
| | - Wentao Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuijing Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Biao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Jiang Z, Ran H, Yu L, Jiang M, Yang W. Slow-release ferrous effects on synchronous stabilization of lead, cadmium, and arsenic in soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:136. [PMID: 40138041 DOI: 10.1007/s10653-025-02432-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Zero-valent iron (ZVI)-based materials is considered promising for the synchronous stabilization of soils contaminated with multi-heavy metals (e.g., Pb(II), Cd(II), and As(V)), particularly due to its continuous slow-release ferrous. However, little is known about the effect of slow-released Fe(II) on the stabilization of Pb, Cd, and As in the contaminated soil. In this study, ZVI(Fe0) and ball-milled ZVI(B-Fe0), with different ability of slow-releasing Fe(II), were used to investigate the effect of slow-released Fe(II) on the simultaneous stabilization of Pb, Cd, and As in soil. The B-Fe0, with stronger ability to sustainably release Fe(II), possessed higher stabilization efficiency of Pb, Cd, and As in soil compared to the Fe0. After 56 days of B-Fe0 treatment, the stabilization efficiency of NaHCO3-extractable As and DTPA-extractable Pb and Cd reached 72.52%, 43.63%, and 34.71%, respectively. The speciation change analysis demonstrated that soil Pb, Cd, and As were transformed into more stable states with the treatment time. The superior stabilization performance could be attributed to the slow-release of ferrous, which not only increased the content of iron oxide in the soil, but also promoted the conversion of amorphous iron (hydro)oxides (e.g., ferrihydrite) into crystalline magnetite. Consequently, Pb, Cd, and As were effectively stabilized by being incorporated into the structure of the secondary Fe mineral. This study provided valuable guidance for the application of ZVI-based materials in the stabilization remediation of multi-heavy metals contaminated soils.
Collapse
Affiliation(s)
- Zhi Jiang
- Zhongye Changtian International Engineering Co., Ltd., Changsha, 410205, Hunan, People's Republic of China
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - HongZhen Ran
- Hunan Province Environment Monitoring Center, Changsha, 410014, People's Republic of China
| | - Lin Yu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Mei Jiang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
4
|
Ding Y, Sheng A, Li X, Liu Y, Yan M, Takahashi Y, Liu J. Triplet-Excited Riboflavin Promotes Labile Fe(III) Accumulation and Changes Mineralization Pathways in Fe(II)-Catalyzed Ferrihydrite Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22148-22158. [PMID: 39630420 DOI: 10.1021/acs.est.4c08589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Flavins are well-known endogenous electron shuttles that facilitate long-distance extracellular electron transfer in dissimilatory iron reduction (DIR), but the effects of their photosensitivity on DIR and the transformation of metastable iron (oxyhydr)oxides like ferrihydrite (Fh) remain underexplored. This study compared the kinetics, pathways, and products of Fh transformation catalyzed by aqueous Fe(II) (Fe(II)aq) in the presence of oxidized riboflavin (RFox) at pH 7 under both dark and light conditions. While RFox has a negligible impact on Fe(II)-catalyzed Fh transformation in the dark, its photoexcited triplet state (3RF*) can significantly accelerate interfacial electron transfer (IET) from Fe(II)aq to Fh, increasing the reductive dissolution rate of Fh and boosting the accumulation rate of the key intermediate labile Fe(III) (Fe(III)labile) from 14.2 μM·h-1 to 35.6 μM·h-1. The 3RF*-promoted Fe(II)-Fh IET favors the oxolation of Fe(III)labile to lepidocrocite (Lp) over goethite (Gt) formation during Fh transformation and promotes the subsequent conversion of Lp to magnetite (Mt), altering the mineral products from sole Gt to a mixture of Lp (24.1%), Gt (45.4%), and Mt (30.5%). These findings highlight the notable effects of riboflavin as a photosensitizer on Fh biotransformation, with implications for microbial respiration and elemental cycling in natural environments.
Collapse
Affiliation(s)
- Yuefei Ding
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anxu Sheng
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mingquan Yan
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yoshio Takahashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Fan Y, Chi J, Wang L, Jia C, Zhang W. Aluminum substitution stabilizes organic matter in ferrihydrite transforming into hematite: A molecular analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174035. [PMID: 38885705 DOI: 10.1016/j.scitotenv.2024.174035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The association of soil organic matter (SOM) with iron (Fe) oxyhydroxides, particularly ferrihydrite, plays a pivotal role in the biogeochemical cycling of carbon (C) in both terrestrial and aquatic environment. The aging of ferrihydrite to more crystalline phases can impact the stability of associated organic C, a process potentially influenced by aluminum (Al) substitution due to its abundance. However, the molecular mechanisms governing the temporal and spatial distribution of SOM during the aging process of Al-substituted Fe oxyhydroxides remain unclear. This study aims to bridge this knowledge gap through a comprehensive approach, utilizing batch experiments, solid characterization techniques, and atomic force microscopy (AFM) based peak-force quantitative nanomechanical mapping (PF-QNM). Batch experiments revealed that humic acid (HA) was released into the aqueous phase during aging, with Al inhibiting this release. Various solid characterization methods collectively suggested that Al hindered the crystalline transformation of ferrihydrite and significantly preserved HA on the surface of newly formed hematite, rather than it being occluded within the interior of the new minerals. Results from 3-Dimensional fluorescence spectroscopy (3D-EEM) and Fourier-transform infrared spectroscopy (FTIR) indicated that the structure of HA remained constant, with the carboxyl-rich and hydroxyl-rich portions of HA fixed at the mineral interface during the aging period. Furthermore, we developed AFM-based PF-QNM to both quantify and visualize the interactions between Fe oxyhydroxides and HA, demonstrating variations in HA affinity among different Fe oxyhydroxides and highlighting the influence of the Al substitution rate.
Collapse
Affiliation(s)
- Yuke Fan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialin Chi
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lijun Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chonghao Jia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjun Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Ma H, Zhu S, Huang Z, Zheng W, Liu C, Meng F, Chen JL, Lin YJ, Dang Z, Feng C. Photochemical Origins of Iron Flocculation in Acid Mine Drainage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39271452 DOI: 10.1021/acs.est.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Acid mine drainage (AMD) raises a global environmental concern impacting the iron cycle. Although the formation of Fe(III) minerals in AMD-impacted waters has previously been reported to be regulated by biological processes, the role of abiotic processes remains largely unknown. This study first reported that a photochemical reaction coupled with O2 significantly accelerated the formation of Fe(III) flocculates (i.e., schwertmannite) in the AMD, as evidenced by the comparison of samples from contaminated sites across different natural conditions at latitudes 24-29° N. Combined with experimental and modeling results, it is further discovered that the intramolecular oxidation of photogenerated Fe(II) with a five-coordinative pyramidal configuration (i.e., [(H2O)5Fe]2+) by O2 was the key in enhancing the photooxidation of Fe(II) in the simulated AMD. The in situ attenuated total reflectance-Fourier transform infrared spectrometry (ATR-FTIR), UV-vis spectroscopy, solvent substitution, and quantum yield analyses indicated that, acting as a precursor for flocculation, [(H2O)5Fe]2+ likely originated from both the dissolved and colloidal forms of Fe(III) through homogeneous and surface ligand-to-metal charge transfers. Density functional theory calculations and X-ray absorption spectroscopy results further suggested that the specific oxidation pathways of Fe(II) produced the highly reactive iron species and triggered the hydrolysis and formation of transient dihydroxo dimers. The proposed new pathways of Fe cycle are crucial in controlling the mobility of heavy metal anions in acidic waters and enhance the understanding of complicated iron biochemistry that is related to the fate of contaminants and nutrients.
Collapse
Affiliation(s)
- Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, P.R. China
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan R.O.C
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
7
|
Wang J, Wu B, Zheng X, Ma J, Yu W, Chen B, Chu C. Insights into the Crystallinity-Dependent Photochemical Productions of Reactive Oxygen Species from Iron Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10623-10631. [PMID: 38781516 DOI: 10.1021/acs.est.4c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Iron minerals are widespread in earth's surface water and soil. Recent studies have revealed that under sunlight irradiation, iron minerals are photoactive on producing reactive oxygen species (ROS), a group of key species in regulating elemental cycling, microbe inactivation, and pollutant degradation. In nature, iron minerals exhibit varying crystallinity under different hydrogeological conditions. While crystallinity is a known key parameter determining the overall activity of iron minerals, the impact of iron mineral crystallinity on photochemical ROS production remains unknown. Here, we assessed the photochemical ROS production from ferrihydrites with different degrees of crystallinity. All examined ferrihydrites demonstrated photoactivity under irradiation, resulting in the generation of hydrogen peroxide (H2O2) and hydroxyl radical (•OH). The photochemical ROS production from ferrihydrites increased with decreasing ferrihydrite crystallinity. The crystallinity-dependent photochemical •OH production was primarily attributed to conduction band reduction reactions, with the reduction of O2 by conduction band electrons being the rate-limiting key process. Conversely, the crystallinity of iron minerals had a negligible influence on photon-to-electron conversion efficiency or surface Fenton-like activity. The difference in ROS productions led to a discrepant degradation efficiency of organic pollutants on iron mineral surfaces. Our study provides valuable insights into the crystallinity-dependent ROS productions from iron minerals in natural systems, emphasizing the significance of iron mineral photochemistry in natural sites with abundant lower-crystallinity iron minerals such as wetland water and surface soils.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
9
|
Liu L, Yang Z, Yang W, Jiang W, Liao Q, Si M, Zhao F. Ferrihydrite transformation impacted by coprecipitation of lignin: Inhibition or facilitation? J Environ Sci (China) 2024; 139:23-33. [PMID: 38105051 DOI: 10.1016/j.jes.2023.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 12/19/2023]
Abstract
Lignin is a common soil organic matter that is present in soils, but its effect on the transformation of ferrihydrite (Fh) remains unclear. Organic matter is generally assumed to inhibit Fh transformation. However, lignin can reduce Fh to Fe(II), in which Fe(II)-catalyzed Fh transformation occurs. Herein, the effects of lignin on Fh transformation were investigated at 75°C as a function of the lignin/Fh mass ratio (0-0.2), pH (4-8) and aging time (0-96 hr). The results of Fh-lignin samples (mass ratios = 0.1) aged at different pH values showed that for Fh-lignin the time of Fh transformation into secondary crystalline minerals was significantly shortened at pH 6 when compared with pure Fh, and the Fe(II)-accelerated transformation of Fh was strongly dependent on pH. Under pH 6, at low lignin/Fh mass ratios (0.05-0.1), the time of secondary mineral formation decreased with increasing lignin content. For high lignosulfonate-content material (lignin:Fh = 0.2), Fh did not transform into secondary minerals, indicating that lignin content plays a major role in Fh transformation. In addition, lignin affected the pathway of Fh transformation by inhibiting goethite formation and facilitating hematite formation. The effect of coprecipitation of lignin on Fh transformation should be useful in understanding the complex iron and carbon cycles in a soil environment.
Collapse
Affiliation(s)
- Lin Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Wen Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China
| | - Feiping Zhao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (CNERC-CTHMP), Changsha 410083, China.
| |
Collapse
|
10
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
11
|
Huang XL, Harmer JR, Schenk G, Southam G. Inorganic Fe-O and Fe-S oxidoreductases: paradigms for prebiotic chemistry and the evolution of enzymatic activity in biology. Front Chem 2024; 12:1349020. [PMID: 38389729 PMCID: PMC10881703 DOI: 10.3389/fchem.2024.1349020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Oxidoreductases play crucial roles in electron transfer during biological redox reactions. These reactions are not exclusive to protein-based biocatalysts; nano-size (<100 nm), fine-grained inorganic colloids, such as iron oxides and sulfides, also participate. These nanocolloids exhibit intrinsic redox activity and possess direct electron transfer capacities comparable to their biological counterparts. The unique metal ion architecture of these nanocolloids, including electron configurations, coordination environment, electron conductivity, and the ability to promote spontaneous electron hopping, contributes to their transfer capabilities. Nano-size inorganic colloids are believed to be among the earliest 'oxidoreductases' to have 'evolved' on early Earth, playing critical roles in biological systems. Representing a distinct type of biocatalysts alongside metalloproteins, these nanoparticles offer an early alternative to protein-based oxidoreductase activity. While the roles of inorganic nano-sized catalysts in current Earth ecosystems are intuitively significant, they remain poorly understood and underestimated. Their contribution to chemical reactions and biogeochemical cycles likely helped shape and maintain the balance of our planet's ecosystems. However, their potential applications in biomedical, agricultural, and environmental protection sectors have not been fully explored or exploited. This review examines the structure, properties, and mechanisms of such catalysts from a material's evolutionary standpoint, aiming to raise awareness of their potential to provide innovative solutions to some of Earth's sustainability challenges.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- NYS Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook, NY, United States
| | - Jeffrey R Harmer
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gordon Southam
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- School of the Environment, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Shu Z, Liu Q, Liu E, Pan Z, Yan S, Zhang L, Song W, Wang Z. Overlooked role of aqueous chromate (VI) as a photosensitizer in enhancing the photochemical reactivity of ferrihydrite and production of hydroxyl radical. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133557. [PMID: 38309168 DOI: 10.1016/j.jhazmat.2024.133557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
The reactive oxygen species (ROS) photochemically generated from natural iron minerals have gained significant attention. Amidst the previous studies on the impact of heavy metal ions on ROS generation, our study addresses the role of the anion Cr(VI), with its intrinsic photoactivity, in influencing ROS photochemical generation with the co-presence of minerals. We investigated the transformation of inorganic/organic pollutants (Cr(VI) and benzoic acid) at the ferrihydrite interface, considering sunlight-mediated conversion processes (300-1000 nm). Increased photochemical reactivity of ferrihydrite was observed in the presence of aqueous Cr(VI), acting as a photosensitizer. Meanwhile, a positive correlation between hydroxyl radical (•OH) production and concentrations of aqueous Cr(VI) was observed, with a 650% increase of •OH generation at 50 mg L-1 Cr(VI) compared to systems without Cr(VI). Our photochemical batch experiments elucidated three potential pathways for •OH photochemical production under varying wet chemistry conditions: (1) ferrihydrite hole-mediated pathway, (2) chromium intermediate O-I-mediated pathway, and (3) chromium intermediates CrIV/V-mediated pathway. Notably, even in the visible region (> 425 nm), the promotion of aqueous Cr(VI) on •OH accumulation was observed in the presence of ferrihydrite and TiO2 suspensions, attributed to Cr(VI) photosensitization at the mineral interface. This study sheds light on the overlooked role of aqueous Cr(VI) in the photochemical reactivity of minerals, thereby enhancing our understanding of pollutant fate in acid mining-impacted environments.
Collapse
Affiliation(s)
- Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Enyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China.
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Liu R, Dai Y, Feng Y, Sun S, Zhang X, An C, Zhao S. Hydroxyl radical production by abiotic oxidation of pyrite under estuarine conditions: The effects of aging, seawater anions and illumination. J Environ Sci (China) 2024; 135:715-727. [PMID: 37778841 DOI: 10.1016/j.jes.2023.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 10/03/2023]
Abstract
Pyrite is widely distributed in estuarine sediments as an inexpensive natural Fenton-like reagent, however, the mechanism on the hydroxyl radical (HO·) production by pyrite under estuarine environmental conditions is still poorly understood. The batch experiments were performed to investigate the effects of estuarine conditions including aging (in air, in water), seawater anions (Cl-, Br- and HCO3-) and light on the HO· production by pyrite oxidation. The one-electron transfer dominated the process from O2 to HO· induced by oxidation of pyrite. The Fe (oxyhydr)oxide coatings on the surface of pyrite aged in air and water consumed hydrogen peroxide while mediating the electron transfer, and the combined effect of the two resulted in a suppression of HO· production in the early stage of aging and a promotion of HO· production in the later stage of aging. Corrosion of the surface oxide layers by aggressive anions was the main reason for the inhibition of HO· production by Cl- and Br-, and the generation of Cl· and Br· may also play a role in the scavenging of HO·. HCO3- increased the average rate of HO· production through surface-CO2 complexes formed by adsorption on the surface of pyrite. The significant enhancement of HO· production under light was attributed to the formation of photoelectrons induced by photochemical reactions on pyrite and its surface oxide layers. These findings provide new insights into the environmental chemical behavior of pyrite in the estuary and enrich the understanding of natural remediation of estuarine environments.
Collapse
Affiliation(s)
- Ruixue Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yucheng Feng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaodong Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
14
|
Lin K, Afzal S, Xu L, Ding T, Li F, Zhang M. Heterogeneous photo-Fenton degradation of acid orange 7 activated by red mud biochar under visible light irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121454. [PMID: 36997142 DOI: 10.1016/j.envpol.2023.121454] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The heterogeneous photo-Fenton process is an effective technology for degrading organic contaminants in wastewater, and Fe-based catalysts are recently preferred due to their low biotoxicity and geological abundance. Herein, we synthesized a Fe-containing red mud biochar (RMBC) via one-step co-pyrolysis of red mud and shaddock peel as a photo-Fenton catalyst to activate H2O2 and degrade an azo dye (acid orange 7, AO7). RMBC showed excellent AO7 removal capability with a decolorization efficiency of nearly 100% and a mineralization efficiency of 87% in the heterogeneous photo-Fenton process with visible light irradiation, which were kept stable in five successive reuses. RMBC provided Fe2+ for H2O2 activation, and the light irradiation facilitated the redox cycle of Fe2+/Fe3+ in the system to produce more reactive oxygen species (ROS, i.e., •OH) for AO7 degradation. Further investigation revealed that •OH was the predominant ROS responsible for AO7 degradation in the light-free condition, while more ROS were produced in the system with light irradiation, and 1O2 was the primary ROS in the photo-Fenton process for AO7 removal, followed by •OH and O2•-. This study provides insight into the interfacial mechanisms of RMBC as a photo-Fenton catalyst for treating non-degradable organic contaminants in water through advanced oxidation processes under visible light irradiation.
Collapse
Affiliation(s)
- Kun Lin
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Shahzad Afzal
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Liheng Xu
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Tao Ding
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Feng Li
- College of Environment Science and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Ming Zhang
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
15
|
Lu T, Zhao H, Jian L, Ji R, Pan C, Wang G, Dong Y, Zhu Y. Photocatalysis-self-Fenton system over edge covalently modified g-C 3N 4 with high mineralization of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2023; 222:115361. [PMID: 36716807 DOI: 10.1016/j.envres.2023.115361] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The Fenton process is a widely used to remedy organic wastewaters, but it has problems of adding H2O2, low utilization efficiency of H2O2 and low mineralization efficiency. Here, a new photocatalysis-self-Fenton process was exploited for the removal of persistent 4-chlorophenol (4-CP) pollutant through coupling the photocatalysis of 4-carboxyphenylboronic acid edge covalently modified g-C3N4 (CPBA-CN) with Fenton. In this process, H2O2 was in situ generated via photocatalysis over CPBA-CN, the photogenerated electrons assisted the accelerated regeneration of Fe2+ to improve the utilization efficiency of H2O2, and the photogenerated holes facilitated the enhancement of 4-CP mineralization. Under the conjugation of CPBA, the electronic structure of CN was optimized and the molecular dipole was enhanced, resulting in the deepening valence band position, accelerated electron-hole pair separation, and improved O2 adsorption-activation. Therefore, the incremental 4-CP degradation rate in the CPBA-CN photocatalysis-self-Fenton process was approaching 0.099 min-1, by a factor of 3.1 times compared with photocatalysis. The parallel mineralization efficiency increased to 74.6% that was 2.1 and 2.6 times than photocatalysis and Fenton, respectively. In addition, this system maintained an excellent stability in the recycle experiment and can be potentially applied in a wide range of pHs and under the coexistence of various ions. This study would provide new insights for improving Fenton process and promote further development of Fenton in organic wastewater purification.
Collapse
Affiliation(s)
- Tongbin Lu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hui Zhao
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liang Jian
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Rong Ji
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chengsi Pan
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guangli Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yuming Dong
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Yongfa Zhu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Qiu J, Hou X, Ren Y, Liu C, Meng F, Lee JF, Lin YJ, Huang Z, Ma H, Shi Z, Feng C. Photoinduced transformation of ferrihydrite in the presence of aqueous sulfite and its influence on the repartitioning of Cd. WATER RESEARCH 2023; 231:119607. [PMID: 36680820 DOI: 10.1016/j.watres.2023.119607] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The photoinduced transformation of ferrihydrite is an important process that can predict the geochemical cycle of Fe in anoxic environments as well as the fate of trace elements bonded to Fe minerals. We report that the photooxidation of sulfite by UV irradiation produces hydrated electrons (super-reductants), which significantly promote ferrihydrite reduction to Fe(II), and SO3•- (a moderate oxidant), enabling its further oxidation to more crystalline Fe(III) products. The experimental results show that the concentration of sulfite was key in influencing the rate and extent of surface-bound Fe(II) formation, which ultimately determined the distribution of individual products. For example, fitting of the Mössbauer spectroscopy data revealed that the relative abundances of mineral species after 8 h of treatment in the UV/sulfite systems were 41.9% lepidocrocite and 58.1% ferrihydrite at 2 mM SO32-; 41.8% goethite, 28.2% lepidocrocite, and 29.1% ferrihydrite at 5 mM SO32-; and 100% goethite at 10 mM SO32-. The combined results of the chemical speciation analysis and the Cd K-edge EXAFS characterization provided compelling evidence that Cd was firmly incorporated into the structure of newly formed minerals, particularly at high sulfite concentrations. These findings provide an understanding of the role of UV/sulfite in facilitating ferrihydrite transformation and promoting Cd stabilization in oxygen-deficit soils and aquatic environments.
Collapse
Affiliation(s)
- Jinwen Qiu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaokang Hou
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuan Ren
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Fangyuan Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, ROC
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, ROC
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huanxin Ma
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhenqing Shi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
17
|
Zheng X, Wu B, Zhou C, Liu T, Wang Y, Zhao G, Chen B, Chu C. Sunlight-Driven Production of Reactive Oxygen Species from Natural Iron Minerals: Quantum Yield and Wavelength Dependence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1177-1185. [PMID: 36538289 DOI: 10.1021/acs.est.2c06942] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Photochemically generated reactive oxygen species (ROS) play numerous key roles in earth's surface biogeochemical processes and pollutant dynamics. ROS production has historically been linked to the photosensitization of natural organic matter. Here, we report the photochemical ROS production from three naturally abundant iron minerals. All investigated iron minerals are photoactive toward sunlight irradiation, with photogenerated currents linearly correlated with incident light intensity. Hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) are identified as the major ROS species, with apparent quantum yields ranging from 1.4 × 10-8 to 3.9 × 10-8 and 5.8 × 10-8 to 2.5 × 10-6, respectively. Photochemical ROS production exhibits high wavelength dependence, for instance, the •OH quantum yield decreases with the increase of light wavelength from 375 to 425 nm, and above 425 nm it sharply decreases to zero. The temperature shows a positive impact on •OH production, with apparent activation energies ranging from 8.0 to 17.8 kJ/mol. Interestingly, natural iron minerals with impurities exhibit higher ROS production than their pure crystal counterparts. Compared with organic photosensitizers, iron minerals exhibit higher wavelength dependence, higher selectivity, lower efficiency, and long-term stability in photochemical ROS production. Our study highlights natural inorganic iron mineral photochemistry as a ubiquitous yet previously overlooked source of ROS.
Collapse
Affiliation(s)
- Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chong Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Tian Liu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Yanling Wang
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Guoqiang Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
18
|
Liu L, Zhang M, Suib SL, Qiu G. Rapid photooxidation and removal of As(III) from drinking water using Fe-Mn composite oxide. WATER RESEARCH 2022; 226:119297. [PMID: 36323219 DOI: 10.1016/j.watres.2022.119297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Fe-Mn composite oxide (FMO) is widely applied to the oxidation and removal of As(III) from water. However, As(III) can directly reduce manganese oxides, decreasing the oxidation capacity or reusability and thereby greatly limiting the applicability of FMO. Here, the oxidation capacity and reusability of FMO for As(III) were efficiently improved by light radiation, and the effect of typical coexisting ions (SO42- and Ca2+) on the removal of As(III) was also studied. O2•- produced from excited manganese oxide and ligand-to-metal charge transfer in iron oxide-As(III) complex enhanced As(III) oxidation and removal under light radiation. At an initial As(III) concentration of 1000 μg L-1, the total As concentration was respectively decreased to 11.5, 1.5 and 4.4 μg L-1 under darkness, UV light and sunlight at 180 min, and could be reduced to below the guideline limitation of drinking water (10 μg L-1) within 40 and 60 min under UV light and sunlight, respectively. SO42- exhibited negligible effect on As removal efficiency because FMO had obviously lower adsorption capacity and selectivity for SO42- than for As(V). The adsorption of coexisting Ca2+ on manganese oxide decreased the negative charge on the FMO surface, thereby improving As(III) adsorption and oxidation. FMO exhibited excellent reusability, and a total As removal efficiency of 99.1% was still maintained after five cycles of an adsorption-desorption process under UV light. This work elucidates the photochemical oxidation and removal mechanism of FMO for As(III), and proposes a low-cost and efficient method for the detoxification of As(III)-contaminated drinking water.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Mingzhe Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Steven L Suib
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, USA
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070 Hubei Province, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
19
|
Shu Z, Pan Z, Wang X, He H, Yan S, Zhu X, Song W, Wang Z. Sunlight-Induced Interfacial Electron Transfer of Ferrihydrite under Oxic Conditions: Mineral Transformation and Redox Active Species Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14188-14197. [PMID: 36098650 DOI: 10.1021/acs.est.2c04594] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe(II)-catalyzed ferrihydrite transformation under anoxic conditions has been intensively studied, while such mechanisms are insufficient to be applied in oxic environments with depleted Fe(II). Here, we investigated expanded pathways of sunlight-driven ferrihydrite transformation in the presence of dissolved oxygen, without initial addition of dissolved Fe(II). We found that sunlight significantly facilitated the transformation of ferrihydrite to goethite compared to that under dark conditions. Redox active species (hole-electron pairs, reactive radicals, and Fe(II)) were produced from the ferrihydrite interface via the photoinduced electron transfer processes. Experiments with systematically varied wet chemistry conditions probed the relative contributions of three pathways for the production of hydroxyl radicals: (1) oxidation of water (5.0%); (2) reduction of dissolved oxygen (40.9%); and (3) photolysis of Fe(III)-hydroxyl complexes (54.1%). Results also showed superoxide radicals as the main oxidant for Fe(II) reoxidation under acidic conditions, thus promoting the ferrihydrite transformation. The presence of inorganic ions (chloride, sulfate, and nitrate) did not only affect the hydrolysis and precipitation of Fe(III) but also the generation of radicals via photoinduced charge transfer reactions. The involvement of redox active species and the accompanying mineral transformations would exert a profound effect on the fate of multivalent elements and organic contaminants in aquatic environments.
Collapse
Affiliation(s)
- Zhipeng Shu
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Zezhen Pan
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Xingxing Wang
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Haohua He
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Shuwen Yan
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Xiuping Zhu
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Weihua Song
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
| | - Zimeng Wang
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai200438, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| |
Collapse
|
20
|
Zhang M, Liu L, Li A, Zhang T, Qiu G. UV-induced highly efficient removal of As(III) through synergistic photo-oxidation in the presence of Fe(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71583-71592. [PMID: 35604606 DOI: 10.1007/s11356-022-20931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
In polluted waters, arsenic (As) poses substantial risks to the environment and human health. Inorganic As mainly exists as As(V) and As(III), and As(III) usually shows higher mobility and toxicity and is more difficult to be removed by coagulation. The oxidation of coexisting Fe(II) can accelerate As(III) oxidation and removal by promoting the generation of reactive intermediates and Fe(III) coagulant in the presence of dissolved oxygen. However, the removal efficiency of As from acidic wastewaters is far from satisfactory due to the low Fe(II) oxidation rate by dissolved oxygen. Herein, UV irradiation was applied to stimulate the synergistic oxidation of Fe(II)/As(III), and the effects of coexisting Fe(II) concentration and pH were also evaluated. The synergistic oxidation of Fe(II)/As(III) significantly enhanced the removal of As from acidic waters. Under UV irradiation, Fe(II) significantly promoted the generation of reactive oxygen species (ROS), thereby facilitating As(III) oxidation. In addition, the formation of ferric arsenate and amorphous ferric (hydr)oxides contributed much to As removal. In the As(III)-containing solution with 200 μmol L-1 Fe(II) at initial pH 4.0, the total arsenic (As(T)) concentration decreased from 67.0 to 1.3 and 0.5 μmol L-1, respectively, at 25 and 120 min under UV irradiation. The As(T) removal rate increased with increasing Fe(II) concentration, and first increased and then decreased with increasing initial pH from 2.0 to 6.0. This study clarifies the mechanism for the synergistic photo-oxidation of Fe(II)/As(III) under UV irradiation, and proposes a new strategy for highly efficient As(III) removal from acidic industrial and mining wastewaters.
Collapse
Affiliation(s)
- Mingzhe Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Anyu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Tengfei Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
21
|
Li H, Jiang Q, Zhang J, Wang Y, Zhang Y. Synchronization adsorption of Pb(Ⅱ) and Ce(Ⅲ) by biochar supported phosphate-doped ferrihydrite in aqueous solution: Adsorption efficiency and mechanisms. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Liu L, Guo D, Qiu G, Liu C, Ning Z. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115425. [PMID: 35751250 DOI: 10.1016/j.jenvman.2022.115425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Pollution of arsenic (As) in acid mine drainage (AMD) is a universal environmental problem. The weathering of pyrite (FeS2) and other sulfide minerals leads to the generation of AMD and accelerates the leaching of As from sulfide minerals. Pyrite can undergo adsorption and redox reactions with As, affecting the existing form and biotoxicity of As. However, the interaction process between As and pyrite in AMD under sunlight radiation remains unclear. Here, we found that the oxidation and immobilization of arsenite (As(III)) on pyrite can be obviously promoted by the reactive oxygen species (ROS) in sunlit AMD, particularly by OH. The reactions between hole-electron pairs and water/oxygen adsorbed on excited pyrite resulted in the production of H2O2, OH and O2-, and OH was also generated through the photo-Fenton reaction of Fe2+/FeOH2+. Weakly crystalline schwertmannite formed from the oxidation of Fe2+ ions by OH contributed much to the adsorption and immobilization of As. In the mixed system of pyrite (0.75 g L-1), Fe2+ (56.08 mg L-1) and As(III) (1.0 mg L-1) at initial pH 3.0, the decrease ratio of dissolved total As concentration was 1.6% under dark conditions, while it significantly increased to 69.0% under sunlight radiation. The existence of oxygen or increase in initial pH from 2.0 to 4.0 accelerated As(III) oxidation and immobilization due to the oxidation of more Fe2+ and production of more ROS. The present work shows that sunlight significantly affects the transformation and migration of As in AMD, and provides new insights into the environmental behaviors of As.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Diman Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Research Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou Province, China.
| |
Collapse
|
23
|
Li X, Graham NJD, Deng W, Liu M, Liu T, Yu W. Structural Variation of Precipitates Formed by Fe(II) Oxidation and Impact on the Retention of Phosphate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4345-4355. [PMID: 35319869 DOI: 10.1021/acs.est.1c06256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxidation-precipitation process of Fe(II) is ubiquitous in the environment and critically affects the fate of contaminants and nutrients in natural systems where Fe(II) is present. Here, we explored the effect of H2O2 concentration on the structure of precipitates formed by Fe(II) oxidation and compared the precipitates to those formed by Fe(III) hydrolysis. Additionally, the phosphate retention under different H2O2 concentrations was evaluated. XRD, TEM, PDA, XPS, and UV-visible absorbance spectroscopy were used to characterize the structure of the formed precipitates; UV-visible absorbance spectroscopy was also used to determine the residual phosphate and Fe(II) in solution. It was found that the predominant precipitates in Fe(II) solution changed from planar-shaped crystalline lepidocrocite (γ-FeOOH) to poor short-range order (poorly crystalline) spherical-shaped hydrous ferric oxide (HFO) with increasing H2O2 concentrations. Although the HFO precipitates formed from Fe(II) resembled those formed from Fe(III) hydrolysis, the former was larger and had clearer lattice fringes. During the formation of γ-FeOOH, both Fe(II)-Fe(III) complexes and ligand-to-metal charge transfer processes were observed, and it was found that Fe(II) was present in the planar-shaped precipitates. Fe(II) might be present in the interior of precipitates as Fe(OH)2, which could serve as a nucleus for the epitaxial growth of γ-FeOOH. In addition, the extent of phosphate retention increased with the H2O2 concentration, indicating the increased reactivity of formed precipitates with H2O2 concentration. More phosphate was retained via coprecipitation with Fe than adsorption on the preformed Fe precipitates due to the incorporation of phosphate within the structure of the formed Fe hydroxyphosphate via coprecipitation.
Collapse
Affiliation(s)
- Xian Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Wensheng Deng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
24
|
Liu L, Guo D, Ning Z, Liu C, Qiu G. Solar irradiation induced oxidation and adsorption of arsenite on natural pyrite. WATER RESEARCH 2021; 203:117545. [PMID: 34416646 DOI: 10.1016/j.watres.2021.117545] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
The migration and bioavailability of toxic elemental arsenic (As) are influenced by the adsorption and redox processes of sulfide minerals in waters around mining areas. Pyrite is the most abundant sulfide mineral in the Earth's crust and exhibits certain photochemical activity. However, the adsorption and redox behaviors of arsenite (As(III)) on pyrite surface under solar irradiation remain unclear. Here, the interaction between As(III) and natural pyrite was investigated under light irradiation. The results indicated that solar irradiation promotes As(III) oxidation and adsorption on pyrite surface due to reactive oxygen species (ROS) intermediates. The reactions between H2O/O2 and hole-electron pairs (hvb+-ecb-) on excited pyrite and the oxidation of Fe2+ released from pyrite by dissolved O2 contributed much to the generation of OH•, O2•- and H2O2 under light irradiation. ROS production and As(III) oxidation were accelerated by dissolved O2. An increase in pH within 5.0 to 9.0 decreased the concentration of OH• but increased that of H2O2 and the amount of oxidized As(III). In weakly acidic and neutral environments, OH• was mainly responsible for As(III) oxidation, while H2O2 contributed much to As(III) oxidation in weakly alkaline environments. Partial arsenate (As(V)) was adsorbed on pyrite and newly formed ferrihydrite. The present work enriches the understanding of As migration and transformation in the waters around mining areas, and provides a potential method for As(III) removal by using pyrite under solar irradiation.
Collapse
Affiliation(s)
- Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Diman Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
25
|
Blue light-triggered Fe 2+-release from monodispersed ferrihydrite nanoparticles for cancer iron therapy. Biomaterials 2021; 271:120739. [PMID: 33690102 DOI: 10.1016/j.biomaterials.2021.120739] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/23/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Site-specific Fe2+ generation is promising for tumor therapy. Up to now, reported materials or systems for Fe2+ delivery do not naturally exist in the body, and their biological safety and toxicity are concerned. Herein, inspired by the natural biomineral ferrihydrite in ferritin, we synthesized monodispersed ferrihydrite nanoparticles and demonstrated a light triggered Fe2+ generation on tumor sites. Ferrihydrite nanoparticles of 20-30 nm in diameter possessed high cellular uptake efficiency and good biocompatibility. Under common blue light illumination, a large amount of Fe2+ could be released from ferrihydrite and promote the iron/reactive oxygen species (ROS)-related irreversible DNA fragmentation and glutathione peroxidase 4 (GPX4) inhibition, which led to the apoptosis- and ferroptosis-depended cancer cell proliferation inhibition. On mice, this method induced tumor associated macrophage (TAM) polarization from the tumor-promoting M2 type to the tumor-killing M1 type. With the intravenous pre-injection of ferrihydrite, the combinational effects of the light/Fe2+-approach attenuated pulmonary metastasis on mice. These results demonstrated a novel external light controlled Fe2+-generation approach based on biomineral, which will fully tap the anti-cancer potential of Fe2+ in chemo-dynamic, photo-dynamic and immune-activating therapies.
Collapse
|
26
|
Li X, Graham NJD, Deng W, Liu M, Liu T, Yu W. The formation of planar crystalline flocs of γ-FeOOH in Fe(II) coagulation and the influence of humic acid. WATER RESEARCH 2020; 185:116250. [PMID: 32763528 DOI: 10.1016/j.watres.2020.116250] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Although Fe(II) salts have been widely used as coagulants in water treatment for many years, the underlying mechanisms of their performance remain unclear. Here, we present a detailed study of the coagulation behavior of Fe(II) salts and crystallization of flocs, and investigate the effect of humic acid (HA) under different DO concentrations and pH conditions. The behavior of Fe(II) and Fe(III) coagulants was found to be markedly different with the flocs from Fe(II) consisting of planar-like crystalline γ-FeOOH in contrast to the small amorphous spherical-like flocs from Fe(III) dosing. The effect of HA on Fe(II) coagulation was different under different DO concentrations and pH, where by the growth of γ-FeOOH was inhibited by the presence of HA, but independent of DO concentration and pH. It was found that Fe(II) was present within the internal structure of γ-FeOOH, and a plausible formation mechanism is proposed. Firstly, planar nanoparticles of Fe(OH)2 were formed via Fe(II) ion hydrolysis which then servedas the nucleus for subsequent crystal growth. With oxidation, Fe(II) on the surface of nanoparticles transformed to Fe(III). Finally, the formation of γ-FeOOH in Fe(II) coagulation was accompanied by a change in solution colour to yellow.
Collapse
Affiliation(s)
- Xian Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wensheng Deng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
27
|
Hong J, Liu L, Tan W, Qiu G. Arsenic release from arsenopyrite oxidative dissolution in the presence of citrate under UV irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138429. [PMID: 32305755 DOI: 10.1016/j.scitotenv.2020.138429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Arsenopyrite oxidative dissolution is one of the most important sources of arsenic (As) pollution in the soils and waters around sulfide mining areas. Sunlight and low-molecular-weight organic acids in the environment affect the redox behavior of sulfide minerals. In this work, the As release from arsenopyrite was studied in the presence of citrate under UV irradiation, and the effects of dissolved oxygen and citrate concentrations and pH on As release rate were also investigated. The results indicated that As release from the oxidative dissolution of arsenopyrite is affected by the complexation between citrate and dissolved iron ions. Under dark conditions in air atmosphere, dissolved oxygen, Fe(III)-citrate and the active intermediate product O2- facilitated the release of As at pH 7.0, and the As release rate increased first and then decreased with increasing pH from 5.0 to 9.0. Under UV irradiation in air atmosphere at pH 7.0, the reactive oxygen species (ROS) including O2- and OH generated by Fe(III)-citrate through the photo-Fenton reaction accelerated the As release and oxidation. However, Fe(III)-citrate photolysis led to the rapid flocculation and precipitation of dissolved iron ions, inhibiting the further oxidation of arsenopyrite. With increasing pH from 5.0 to 9.0, the As release rate gradually decreased under UV irradiation. Increases in the concentrations of citrate and dissolved oxygen promoted the formation of Fe(III)-citrate and ROS in the reaction system under both UV irradiation and dark conditions. The present work expands our understanding of the geochemical behavior of As in near-neutral pH environment.
Collapse
Affiliation(s)
- Jun Hong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| |
Collapse
|
28
|
Xing B, Graham N, Yu W. Transformation of siderite to goethite by humic acid in the natural environment. Commun Chem 2020; 3:38. [PMID: 36703449 PMCID: PMC9814924 DOI: 10.1038/s42004-020-0284-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/03/2020] [Indexed: 01/29/2023] Open
Abstract
Humic acid (HA) is particularly important in iron-bearing mineral transformations and erosion at the water-mineral boundary zone of the Earth. In this study, three stages of the possible pathway by which HA causes mineral transformation from siderite to goethite are identified. Firstly, a Fe(II)-HA complex is formed by chelation, which accelerates the dissolution and oxidation of Fe(II) from the surface of siderite. As the Fe(II)-HA complex retains Fe atoms in close proximity of each other, ferrihydrite is formed by the agglomeration and crystallization. Finally, the ferrihydrite structurally rearranges upon attachment to the surface of goethite crystals and merges with its structure. The influence of low concentrations of HA (0-2 mg/L) on phosphate adsorption is found to be beneficial by the inducing of new mineral phases. We believe that these results provide a greater understanding of the impact of HA in the biogeochemical cycle of phosphate, mineral transformation.
Collapse
Affiliation(s)
- Bobo Xing
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 10086, Beijing, China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 10086, Beijing, China.
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|